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ABSTRACT 

Existing research assessing human operators’ trust in automation 

and robots has primarily examined trust as a steady-state variable, 

with little emphasis on the evolution of trust over time. With the 

goal of addressing this research gap, we present a study exploring 

the dynamic nature of trust. We defined trust of entirety as a 

measure that accounts for trust across a human’s entire interactive 

experience with automation, and first identified alternatives to 

quantify it using real-time measurements of trust. Second, we 

provided a novel model that attempts to explain how trust of 

entirety evolves as a user interacts repeatedly with automation. 

Lastly, we investigated the effects of automation transparency on 

momentary changes of trust. Our results indicated that trust of 

entirety is better quantified by the average measure of “area under 

the trust curve” than the traditional post-experiment trust measure. 

In addition, we found that trust of entirety evolves and eventually 

stabilizes as an operator repeatedly interacts with a technology. 

Finally, we observed that a higher level of automation transparency 

may mitigate the “cry wolf” effect — wherein human operators 

begin to reject an automated system due to repeated false alarms.  

Keywords 

Supervisory Control; Trust in Automation; Long-term Inter-

actions; Automation Transparency. 

1. INTRODUCTION 
The use of robots to assist humans during task performance is 

growing rapidly. Robots have been deployed for applications such 

as urban search and rescue (USAR) [1], border patrol [2], forest fire 

monitoring [3] and military service operations [4, 5], among others. 

During these tasks, robots are considered an extension of their 

operators, providing an on-site presence while protecting human 

users from potential harm [1]. Although teleoperation has been the 

primary mode of interaction between human operators and remote 

robots in several applications, increasingly autonomous capabilities 

including control, navigation, planning and perception [4-7] are 

being incorporated into robots, with the aim of reducing human 

operators’ workload and stress levels.  

One major design challenge for such human-robot partnerships 

is related to human operators’ degree of trust in automated/robotic 

technology. Trust in automation is defined as “the attitude that an 

agent will help achieve an individual’s goals in a situation 

characterized by uncertainty and vulnerability [8]”. Research has 

indicated that the calibration between operators’ trust and an 

automated/robotic technology’s actual ability is often imperfect [9, 

10]. Incidents due to over- or under-trust have been well 

documented [11, 12]. In order to facilitate proper trust-reliability 

calibration, extensive amounts of research have been conducted 

examining the factors influencing human operators’ trust in 

automation [9, 10]. However, most existing research has examined 

trust as a steady-state variable instead of a time-variant variable, 

with only few exceptions [13-17].  

We, thus, were interested in investigating the dynamic nature of 

trust. We defined trust of entirety as a trust measure that accounts 

for a human’s entire interactive experience with automation. To 

quantify trust of entirety, we investigated a more fundamental 

research question: is the trust rating reported by a human user at 

time t evaluated on the basis of the user’s entire interactive 

experience with an automated/robotic technology retrospectively 

from time 0, or of his or her momentary interaction with the 

technology? Furthermore, we examined how trust of entirety 

evolves and stabilizes over time, and how moment-to-moment trust 

in automation changes upon automation success or failure.  

We conducted a human-subject experiment involving 91 

participants performing a simulated military reconnaissance task 

with the help of an imperfect automation. The participants’ 

subjective trust in automation and behavioral responses were 

collected and analyzed. Our results indicated that trust of entirety 

is better quantified by the average measure of “area under the trust 

curve [17]” instead of the traditional post-experiment trust 

measure. In addition, using a first-order linear time invariant (LTI) 

dynamical system, we found that trust of entirety evolves and 

eventually stabilizes as a human operator undergoes repeated 

interactions with automation. Finally, we also observed differences 
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in moment-to-moment trust changes when human users worked 

with automation of varying degrees of transparency.  

2. PRIOR ART AND RESEARCH AIMS 
Human trust in automated/robotic technology (henceforth, 

referred to as trust in automation) is critical to seamless adaptation 

of technology, and has consequently been of interest to HRI 

researchers since as early as the 1980s [18]. Issues of trust-

reliability mis-calibration continue to be active areas of research 

related to human-robot teaming in its various forms [12, 19-21]. 

Existing research, however, has primarily examined trust as a 

steady-state measure, typically evaluated through questionnaires 

administered to human operators at the end of their interaction with 

automation. Assuming that a human interacts with automation for 

T time units during an experiment, we denote this post-experiment 

measure as Trust (T).  In several studies [13-17], researchers have 

viewed trust as a time-variant measure and elicited human operators’ 

trust in “real time” — i.e., during the interaction. Assuming that 

this real-time measure of trust is elicited during the interaction at 

time unit t (< T), we denote it as Trust (t). 

Using a simulated pasteurization task, Lee and Moray [13, 14] 

proposed a time-series model of automation trust. In this task, 

participants controlled two pumps and one heater, each of which 

could be set to automatic or manual control. A pump fault was 

introduced in the task, at which point the pump failed to respond 

accurately to either manual or automatic control. Based on the 

simulation, the dynamic variation was analyzed and Trust (t) was 

modeled as a function of Trust (t-1) and the automatic control’s 

performance. Similarly, using a memory-recognition task, Yang, 

Wickens and Holtta-Otto [15] reported moment-to-moment, 

incremental improvement to trust upon automation success, and 

moment-to-moment, incremental decline in trust upon automation 

failure. Moreover, automation failure was found to have a greater 

influence on trust than success. The results from these studies 

suggest that human operators’ trust calibration is a dynamic process 

that is sensitive to automation performance.  

More recently, several studies examined how the timing of 

automation failures affects an operator’s trust in automation. 

Sanchez [22] manipulated the distribution of automation failures to 

be concentrated at either the first or second half of a computer-

based simulation task. In this study, participants completed 240 

trials of a collision avoidance task in which they were required to 

avoid hitting obstacles while driving an agricultural vehicle with 

the aid of an imperfect automation. Trust in automation was 

reported at the end of the 240 trials, with the results indicating a 

significant recency effect: participants’ trust in automation was 

significantly lower if automation failures were concentrated in the 

second half of the experiment.  

Desai et al. [23] explored the influence of the timing of robot 

failures on participants’ trust during a robot-controlling task. In 

their experiment, participants maneuvered a robot along a specified 

path, searched for victims, avoided obstacles and performed a 

secondary monitoring task. Participants could drive the robot 

manually or use an imperfect autonomous driving mode, which was 

designed to malfunction at the beginning, middle or end of the 

specified path. Participants reported their degree of trust at the end 

of experiment; the results indicated that robot failures occurring 

toward the end of the interaction had a more detrimental effect on 

trust than failures occurring at the beginning or middle of the 

interaction. Empirical evidence from both studies [22, 23] 

supported the detrimental recency effect on post-interaction trust.  

In a follow-up study, Desai et al. [17] explored the effect of robot 

failures on real-time trust. The participants performed the same task 

as in the prior study, but reported their degree of trust in the robot 

every 25 seconds. The “area under the trust curve” was used to 

quantify a participant’s trust in automation. Intriguingly, the results 

from this study showed an opposite trend as compared to the 

previous studies [22, 23]: robot failures at the beginning of 

interaction had a more detrimental effect on trust.  

Our first objective for the present study is to reconcile these 

seemingly contradictory findings by answering a more fundamental 

question: Does the real-time trust rating reported by the users at 

time t account for the entire interaction (beginning at time 0), or 

only the momentary interaction? We define trust of entirety as a 

trust measure that accounts for one’s entire interactive experience 

with automation, and postulate that if trust at time t is evaluated 

retrospectively, a post-interaction trust rating would be a reliable 

measure for trust of entirety. Alternatively, if trust at time t is 

evaluated on the basis of the momentary interaction, average 

measure of “area under the trust curve” would be a more 

appropriate measure. 

Second, we examine how trust of entirety evolves as a human 

gains more experience interacting with automation. As discussed 

earlier, prior research has examined how the timing of automation 

failures affects trust in automation [17]. Here, we focus on a 

complementary question: how does trust, specifically trust of 

entirety, evolve as a human undergoes repeated interactions with a 

system with fixed reliability? During long-term interactions with a 

robot, while a designer may be unable to control when failures 

occur, he or she can design for a desired level of reliability. By 

studying the effect of repeated interactions on trust, we seek to 

glean insights into estimating human trust in automation over long-

term interactions. We posit that a user, upon repeated interactions 

with a system, eventually achieves a stable value of trust of entirety. 

We denote this final, stable trust value as Trust (∞). 

Third, we aim to investigate the effect of automation 

transparency on moment-to-moment changes to trust (i.e., Trust (t) 

– Trust (t-1)). Automation transparency has been defined as “the 

quality of an interface pertaining to its ability to afford an operator’s 

comprehension about an intelligent agent’s intent, performance, 

future plans and reasoning process [24]”. Previously, Wang, 

Pynadath, and Hill [19] examined the effect of automatically 

generated explanations on trust. In their simulation, participants 

worked with a robot during reconnaissance missions. The robot 

scanned a city and informed its human teammate of potential 

danger. Two independent variables were manipulated in this study: 

robot ability (high- and low-ability conditions) and explanation 

(low-, confidence-level-, and observation-explanation conditions). 

The robot scanned eight buildings and made eight decisions per 

mission. Participants’ trust in the robot was measured post-mission. 

The results indicated a higher degree of trust for high-ability robots 

and for robots that offered explanations for their decisions. This 

study shed light on the influence of automation transparency on 

human operators’ trust in automation. Nevertheless, due to the 

experimental setting, their study did not explore moment-to-

moment changes to trust as participants experienced automation 

successes and failures.  

In the present experiment, we manipulated automation 

transparency through either binary or likelihood alarms. Compared 

with traditional binary alarms, likelihood alarms provide additional 

information about the confidence and urgency level of an alerted 

event [25]. We hypothesize that a high-confidence alert would 

engender a greater increase in trust upon automation success and a 

greater decline in trust upon automation failure.  

3. METHODOLOGY 
We conducted a human-subject experiment to answer the three 

questions posed in Section 2. Inspired by prior research [4, 5, 26], 



a military reconnaissance scenario was simulated wherein a human 

operator supervisory controlled a team of remote robots to gather 

intelligence with the help of an automated threat detector. Human 

participants performed 100 repeated interactions with the threat 

detector. Trust and behavioral responses were collected throughout 

the experiment. In this section, we detail the experiment setup, 

design, evaluation and procedure. 

3.1 Simulation Testbed 
Robots and automation are increasingly being used to support 

humans during reconnaissance operations. A key function of robots 

in such applications is to assist humans by gathering information 

about a remote environment and convey it to the operator. We 

created an analogue simulation testbed, depicted in Figure 1 that 

simulates a military reconnaissance scenario.  

During the simulation, the human operator was responsible for 

performing a compensatory tracking task while simultaneously 

monitoring for potential threats in images of a city provided by a 

team of four drones. To assist in threat detection, alerts from an 

automated threat detector were also made available to the human. 

The participant had the option to trust and thereby accept the 

decisions of the threat detector as-is, or to personally inspect the 

images and make his or her own decisions. In this dual-task 

paradigm, the objective of the human operator was to maximize his 

or her score, which was a combination of tracking and threat 

detection performance. We next describe these two tasks in detail. 

3.1.1 Tracking Task 
A first-order, two-axis compensatory tracking task was 

programmed based on the PEBL’s compensatory tracker task 

(http://pebl.sourceforge.net/battery.html). Participants using a 

joystick, moved a green circle to a crosshair located at the center of 

the display — i.e., minimize the distance between the green circle 

and the crosshair as shown in Figure 1.  

3.1.2 Detection Task 
Along with the tracking task, participants were also responsible 

for monitoring the environment for potential threats.   

In each trial, participants received a set of four images from the 

simulated drones and inspected the presence or absence of threats, 

with the help of an automated threat detector. We incorporated two 

types of threat detectors as a between-subject factor, and the 

reliability of the threat detector was configured according to the 

signal detection theory (see Section 3.2 for details). An alert was 

triggered in both visual and auditory modalities. 

Participants were asked to report the presence of one or more 

threats by pushing the “Report” button on the joystick as accurately 

and as quickly as possible. Along with the detector’s alert, the 

participants had the option of personally inspecting the images. 

They were allowed to access only one of the two displays — 

tracking or detection — at a time, and could switch between them 

using a “Switch” button on the joystick. The participants could 

perform the tracking task using the joystick throughout the trial, 

even though they were allowed access to only one display at a time.  

During the experiment, participants performed 100 trials of this 

dual-tasking military reconnaissance mission. Each trial initiated 

on the tracking display and lasted 10 seconds. The type and 

performance of the alarm, which varied between the participants, is 

detailed below. 

3.2 Alarm Configuration 
We used two types of automated threat detector during the 

experiment: binary and likelihood. The binary alarm provided one 

of two alert messages — “Danger” or “Clear” — based on whether 

it identified the presence of a threat. The likelihood alarm provided 

a more granular alert: Along with “Danger” or “Clear,” it provided 

two additional alert messages — “Warning” or “Possibly Clear” — 

implying a lower level of confidence in the detector’s decision. 

The performance of the automated threat detector was 

configured based on the framework of signal detection theory 

(SDT). SDT models the relationship between signals and noises, as 

well as the threat detector’s ability to detect signals among noises 

[27]. The state of the world is characterized by either “signal 

present” or “signal absent,” which may or may not be identified 

correctly by the threat detector. The combination of the state of the 

world and the threat detector’s alert results in four possible states: 

“hit,” “miss,” “false alarm” and “correct rejection”. 

Within the context of SDT, two important parameters must be 

set: the sensitivity (d’) of the system when discriminating events 

rom non-events, and the criterion of the system (ci) for determining 

the threshold of an alarm. These parameters are represented in 

Figure 2. In the present study, the quality of both types of 

automated threat detector was modeled by manipulating the 

sensitivity d’, which was increased from 0.5 to 3.0 to present an 

increasing level of automation performance. The first threshold (c1) 

was set at 1.0 and was common to both the binary alarm and the 

likelihood alarm. For the likelihood alarm, along with the first 

threshold, two additional thresholds were required: c2, the threshold 

differentiating dark green (“Clear”) and light green (“Possibly 

Clear”) alerts; and c3, the threshold differentiating red (“Danger”) 

and amber (“Warning”) alerts. The values of c2 and c3 were set at 

0.5 and 3.0, respectively. Benchmarking previous studies [28], the 

base event rate was set at 30%, indicating that potential threats were 

present in 30 out of the 100 trials. 

3.3 Design 
The experiment was carried out according to a repeated-

measures, between-subjects design. This design involved two 

independent variables: alarm type and alarm reliability. The value 

 

Figure 1. Dual-task environment in the simulation testbed. 

The two images show displays from the simulation testbed 

for the tracking (top) and detection (bottom) tasks 

respectively. Participants could access only one of the two 

displays at a time, and could switch between them. 
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of alarm reliability was achieved by manipulating alarm sensitivity 

(d’). Two conditions were present for alarm type (binary and 

likelihood) and three for alarm reliability (70%, 80% and 90%), 

resulting in six treatment conditions, apart from a control condition. 

For each of these conditions, based on the associated values of d’, 

c1, c2 and c3, the corresponding occurrences of hits, misses, false 

alarms and correct rejections were computed (Table 2). 

A total of 91 participants (average age = 24.3 years, SD = 5.0) 

with normal or corrected-to-normal vision and without reported 

color vision deficiency participated in the experiment. They were 

assigned to one of seven experimental conditions, including six 

treatment conditions and one control condition. Randomization 

when assigning experimental conditions was stratified according to 

participants’ self-reported experience playing flight simulation 

games and first-person shooting games, in order to minimize 

potential confounding effects.  

3.4 Dependent Measures 
The dependent variables of interest for the present paper were 

participants’ subjective trust in automation and objective measures 

of their display-switching behaviors. Working with the same 

detector, participants completed reconnaissance tasks for 100 sites 

(100 trials). After each site, participants indicated their subjective 

trust in the automated threat detector, denoted as Trust (t), using a 

visual analog scale, with the leftmost anchor indicating “I don’t 

trust the threat detector at all” and the rightmost anchor indicating 

“I trust the threat detector completely.” The visual analog scale was 

later converted to a 0-100 scale. In addition, for each trial, whether 

participants switched, and the time at which participants switched 

their display from tracking to detection were recorded. We used 

these measures to compute participants’ trusting behaviors, which 

will be discussed in Section 4.1. 

3.5   Procedure 
Participants signed an informed consent form and provided 

demographic information. They then received the following 

description and instructions:  

“A group of potential threats has taken over a city, and we are 

sending you in together with four drones to find out where the 

threats are before a reinforcement team comes. As a soldier, you 

have two tasks at the same time: First, you have to make sure that 

the drones are maintaining level flight. Due to external turbulences, 

the drones (indicated as the green circle) will be unstable and the 

green circle will move away from the center (indicated as the 

crosshair sign). You will control the joystick and move the green 

circle back to the center as close as possible. At the same time, the 

four drones will navigate in the city and take surveillance pictures 

every 10 seconds. The pictures will be sent back to you for threat 

detection. You need to report to your commander if you identify a 

potential threat as accurately and as fast as possible by pressing the 

“Report” button. Due to resource limitations, you can only access 

one display at a time and you need to press the “Switch” button to 

switch between the tracking and the detection display. There is an 

automated threat detector to help you with the task.” 

If a participant was assigned to a binary alarm condition, they 

were told the following: “If the detector identifies a threat at a site, 

the red light in the detector will be on and you will also hear the 

sound ‘Danger.’ If the detector identifies there is no threat, the 

green light will be on and you will hear the sound ‘Clear.’  

If a participant was assigned to a likelihood alarm condition, they 

were told the following: “If the detector identifies a threat at a site, 

either the red light or the amber light will be on, and you will also 

hear the sound ‘Danger’ or ‘Warning,’ respectively. The red light 

and the ‘Danger’ sound indicate a higher level of confidence and 

the amber light and ‘Warning’ sound indicates a lower level of 

confidence. If the detector identifies no threat, either the dark green 

or the light green light will be on, and you will hear the sound 

‘Clear’ or ‘Possibly Clear.’ The dark green light and the ‘Clear’ 

sound indicate a higher level of confidence that the site is safe. The 

light green light and the ‘Possibly clear’ sound mean a lower level 

of confidence that the site is safe.’’  

Table 1. Four possible states according to SDT 

 State of the world 
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  Signal No Signal 

Signal Hit False alarm  

No Signal Miss Correct rejection  

 

 

Figure 2. Demonstration of the binary and likelihood 

alarms, with increasing sensitivity 

Table 2. Alarm configurations and corresponding numbers of 

hits, misses, false alarms and correct rejections 

Reliability = 70% 

Binary alarm Likelihood alarm 

Alert Threat Clear Alert Threat Clear 

Danger 9 11 
Danger 5 5 

Warning 4 6 

Clear 21 59 
Possibly clear 6 11 

Clear 15 48 

Reliability = 80% 

Binary alarm Likelihood alarm 

Alert Threat Clear Alert Threat Clear  

Danger 21 11 
Danger 15 5 

Warning 6 6 

Clear 9 59 
Possibly clear 4 11 

Clear 5 48 

Reliability = 90% 

Binary alarm Likelihood alarm 

Alert Threat Clear Alert Threat Clear 

Danger 29 11 
Danger 28 5 

Warning 1 6 

Clear 1 59 
Possibly clear 1 11 

Clear 0 48 

 

 



After the introduction, participants completed a practice session 

consisting of a 30-trial block of the tracking task only, followed by 

an eight-trial block including both the tracking task and the 

detection task. Hits, misses, false alarms and correct rejections were 

illustrated during the eight practice trials of combined tasks. The 

participants were told that the alerts from the automated threat 

detector may or may not be correct. The subsequent experimental 

block consisted of 100 trials, lasting approximately 60 minutes with 

a 5-minute break at the halfway point. Each participant received 

compensation consisting of a $10 base plus a bonus up to $5. The 

compensation scheme was determined through a pilot study, 

incentivizing participants to perform well on both tasks. 

4. ANALYSIS AND RESULTS 
In this section, we discuss the observations, data and results from 

our experiment. We first examine which user-reported trust 

measures are good indicators of trust of entirety. Next, we present 

a novel model to explain the evolution of trust of entirety over time. 

Finally, we present our findings on the relationship between 

automation transparency and moment-to-moment trust changes. 

Data from participants in the control group was excluded from the 

subsequent analysis, as they did not receive any automation aid and 

did not report subjective trust. 

4.1 Indicators of Trust of Entirety 
In prior literature, two measures of trust have been used to 

quantify trust of entirety: Trustend, the trust rating elicited after the 

terminal trial T, and TrustAUTC, the area under the trust curve. For 

our experiment, we computed these quantities as follows (note that 

the computation of 𝑇𝑟𝑢𝑠𝑡𝐴𝑈𝑇𝐶 included averaging of trust across 

number of interactions): 

𝑇𝑟𝑢𝑠𝑡𝑒𝑛𝑑 = 𝑇𝑟𝑢𝑠𝑡𝑇 

 𝑇𝑟𝑢𝑠𝑡𝐴𝑈𝑇𝐶 =
1

𝑇
∑ 𝑇𝑟𝑢𝑠𝑡𝑡

𝑇
1 , where T = number of interactions 

To examine whether 𝑇𝑟𝑢𝑠𝑡𝑒𝑛𝑑  or 𝑇𝑟𝑢𝑠𝑡𝐴𝑈𝑇𝐶  corresponds to 

trust of entirety more appropriately, we calculated the correlation 

between the two subjective trust measures and the participants’ 

trusting behaviors including their reliance and compliance 

behaviors. Reliance has been defined in prior literature as the 

human operator’s cognitive state when automation indicates no 

signal (no threat); compliance represents the human operator’s 

cognitive state when automation indicates a signal (threat) [29].  

In the present study, we measured both response rate (RR) and 

response time (RT). Reliance is characterized by trusting the 

automation to indicate “Clear” or “Possibly Clear” in the absence 

of a threat, and thus no switch or a slower switch from the tracking 

task to the detection task. Compliance is characterized by trusting 

the automation to signal “Danger” or “Warning” in the presence of 

one or more threats, and thus reporting threats blindly with no 

switch to the detection task, or a rapid switch from the tracking task 

to the detection task. Further, we calculated the difference between 

reliance RT and compliance RT. This measure eliminates potential 

confounding effects due to participants’ intrinsic characteristics of 

switching behaviors (i.e., participants may switch more quickly or 

slowly regardless of the alerts [22]).   
 

𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑅(𝐶𝑅𝑅) =
𝑃𝑟𝑜𝑏(𝑟𝑒𝑝𝑜𝑟𝑡 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑠𝑤𝑖𝑡𝑐ℎ |𝑑𝑎𝑛𝑔𝑒𝑟 𝑜𝑟 𝑤𝑎𝑟𝑛𝑖𝑛𝑔 𝑎𝑙𝑒𝑟𝑡𝑠) 
 

𝑅𝑒𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑅(𝑅𝑅𝑅) =
𝑃𝑟𝑜𝑏(𝑛𝑜𝑡 𝑟𝑒𝑝𝑜𝑟𝑡 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑠𝑤𝑖𝑡𝑐ℎ | 𝑐𝑙𝑒𝑎𝑟 𝑜𝑟 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑦 𝑐𝑙𝑒𝑎𝑟 𝑎𝑙𝑒𝑟𝑡𝑠) 
 

𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑇(𝐶𝑅𝑇) =
 𝑇𝑖𝑚𝑒 (𝑓𝑖𝑟𝑠𝑡 𝑠𝑤𝑖𝑡𝑐ℎ |𝑑𝑎𝑛𝑔𝑒𝑟 𝑜𝑟 𝑐𝑎𝑢𝑡𝑖𝑜𝑛 𝑎𝑙𝑒𝑟𝑡𝑠) 
 

𝑅𝑒𝑙𝑖𝑎𝑛𝑐𝑒𝑅𝑇(𝑅𝑅𝑇) = 

𝑇𝑖𝑚𝑒 (𝑓𝑖𝑟𝑠𝑡 𝑠𝑤𝑖𝑡𝑐ℎ|𝑐𝑙𝑒𝑎𝑟 𝑜𝑟 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑦 𝑐𝑙𝑒𝑎𝑟 𝑎𝑙𝑒𝑟𝑡𝑠) 

Table 3 summarizes results from Pearson’s correlation analysis. 

TrustAUTC was significantly correlated with CRR, RRR, and (RRT - 

CRT), while Trustend was not significantly correlated with any of the 

behavioral measures. These results indicate that a user’s degree of 

trust reported at time t is more influenced by their momentary 

interaction with automation. Therefore, we claim that TrustAUTC is 

a more appropriate measure of trust of entirety.  

 This finding could explain the seemingly contradictory findings 

in previous studies [17, 22, 23]: when automation failures occurred 

toward the end of an experiment, it resulted in a momentary decline 

in trust. As Trustend was used in these studies to quantify 

participants’ entire interactive experience with automation, it was 

more severely affected as compared with a condition under which 

automation failures occurred at the beginning of the interactive 

process.  

For clarification, from this point onward we use Truste to denote 

trust of entirety. Further, in subsequent analysis TrustAUTC is used 

as an indicator for trust of entirety, Truste.  

4.2 Effect of Experience on Truste-Reliability 

Calibration 
Issues due to over- and under-trust have been a challenge for the 

adoption of automation, highlighting the need to investigate not 

only trust-reliability calibration but also how it evolves with 

experience. Using repeated measurements of self-reported trust, we 

assessed how Truste -reliability calibration varied across trials. 

A trust-reliability calibration curve depicts the correspondence 

between trust and reliability over a wide spectrum of automation 

reliability [11]. To plot the Truste-reliability calibration curve, 

𝑇𝑟𝑢𝑠𝑡𝑒  was regressed against automation reliability. Figure 3 

depicts the slope variation for the Truste-reliability calibration 

curve with respect to automation experience (trial number) and 

Figures 4 and 5 show the calibration curves for the 1st, 50th, and 

100th trial, respectively, with the black line indicating the 

regression line, the blue lines the 95% confidence interval and the 

red lines the 95% predictive band. Figures 3-5 indicate that the 

calibration curves change with automation experience for both 

alarm types. In addition, for both alarm types, the calibration curve 

became steeper as human operators gained more experience with 

the threat detector. Further, the slope of the likelihood alarm curve 

increased more rapidly than that of the binary alarm curve.  

Table 3. Pearson correlation coefficient between trust 

measures and participants’ trusting behavior  

(*p < .05; **p < .01) 

 CRR CRT RRR RRT RRT - CRT 

Trustend n.s. n.s. n.s. n.s. n.s. 

TrustAUTC .31** n.s. .31** n.s. .26* 

 

 

Figure 3. Variation of the slope of the Truste-calibration 

curve with automation experience 

 

 



4.3 Effect of Experience on Truste 
To further understand how trust evolves with experience, we 

analyzed Truste with respect to automation experience (trial 

number) for each of the six treatment conditions. We found that 

users’ trust in automation evolved over time, and that change in 

trust, averaged across all users, exhibited an asymptotic stabilizing 

trend for each condition. To explain this trend, we propose a model 

for the evolution of trust over time. This model is inspired by the 

theory of dynamical systems, which has previously been used for 

modeling cognitive processes such as the forgetting curve [30]. 

We hypothesized that for a robot or automation system that does 

not involve a learning or adaptive component — i.e., a system with 

fixed performance/reliability over time — the trust of the average 

user converges to a value Trust (∞) as he or she gains experience 

with the system. Further, the evolution of trust over time can be 

modeled as the response of a first-order linear time invariant (LTI) 

dynamical system to a constant (step) input signal. 

The proposed model is described mathematically as follows: 

𝑑 𝑇𝑟𝑢𝑠𝑡𝑒

𝑑𝑡
+

𝑇𝑟𝑢𝑠𝑡𝑒

𝜏
= 𝐺 𝑢(𝑡) 

t corresponds to time (experience with automation), 𝜏 corresponds 

to the ‘time constant’ of the system, G corresponds to the system 

gain and u(t) corresponds to unit step input. In the context of our 

experiment, these quantities further relate as follows: t represents 

the trial number; 𝜏 represents a quantity proportional to the number 

of trials needed for trust to reach its final, stable value; and the 

constant (step) input corresponds to a system with fixed reliability.  

Upon solving the above first-order differential equation, the 

evolution of trust with experience can be represented as follows: 

𝑤 =  exp(−𝑡 𝜏⁄ ) 

𝑇𝑟𝑢𝑠𝑡𝑒(𝑡) = 𝑇𝑟𝑢𝑠𝑡𝑒(𝑓𝑖𝑛𝑎𝑙) ∗ [1 − 𝑤] + 𝑇𝑟𝑢𝑠𝑡𝑒(𝑖𝑛𝑖𝑡𝑖𝑎𝑙) ∗ [𝑤] 

 𝑇𝑟𝑢𝑠𝑡𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 (𝑡) = 𝑇𝑟𝑢𝑠𝑡𝑒 𝐶ℎ𝑎𝑛𝑔𝑒(𝑓𝑖𝑛𝑎𝑙)[1 − w]  

We fitted the above equation to the trust measurements recorded 

during our experiment. The data was fit to the mean value of trust 

for different instances of automation — i.e., different reliability 

condition for each alarm type. We used Matlab's nonlinear least 

squares method for curve fitting, and estimated the initial trust 

using the mean trust level during the first interaction. The resulting 

plots are depicted in Figures 6 and 7 for the binary and likelihood 

alarm, respectively. The plots include a scatter plot of the data and 

the fitted curve along with its 95% confidence interval. Goodnesss 

of fit for each curve is quantified using “adjusted R-squared” and 

is listed in Table 4, which also includes the estimated value of the 

time constant and the estimated asymptotic value of trust. 

 The adjusted R-squared values indicate that the proposed first-

order dynamical systems is a good fit for the empirically observed 

data. The goodness of fit is higher for the likelihood alarm. Further, 

the estimated final values of trust as determined by our first-order 

model vary proportionally with system reliability. Additionally, we 

observed two interesting patterns. First, the time constant is greater 

for the likelihood alarm; this implies that users require more 

interaction with in order to arrive at a stable trust value for the 

likelihood alarm. This may be due to the greater number of 

alternatives associated with the likelihood alarm compared with the 

       Table 4. Results from the first-order model of Trust 

Alarm 

 type 
Reliability 

Adjusted  

R-squared 

Estimated 

Time Constant 

Estimated 

Trust(∞) 

Binary 

70% 0.662 11.48 40.81 

80% 0.963 19.23 57.24 

90% 0.896 20.50 72.83 

Likeli-

hood 

70% 0.962 35.77 30.69 

80% 0.994 49.68 53.48 

90% 0.995 41.72 83.15 

 

 

Figure 4. Variation of Truste-reliability calibration with automation experience for binary alarm 

 

Figure 5. Variation of Truste-reliability calibration with automation experience for likelihood alarm 

 

 

 

 

 



binary alarm, resulting in users requiring more time to create a 

stable, mental model of the likelihood alarm.  

Second, we observed that while using binary alarms, 

participants’ Truste increased with repeated interactions with 

automation for all three automation reliability levels, whereas when 

using likelihood alarms, Truste decreased over time at reliability of 

70% and 80% and increased at reliability of 90%. This variation in 

Truste evolution patterns may be explained by the interplay between 

operators’ initial expectation of automation and their subsequent 

observation of automation’s performance [9]. Studies have shown 

that people have higher initial expectation and trust when 

automation is portrayed as an “expert” system [31, 32]. Likelihood 

alarms may be perceived more “intelligent” compared to binary 

alarms of the same reliability and engender higher initial trust. As 

participants interacted with the threat detector, they adjusted their 

trust to reflect automation’s true performance. Trust decrement 

may reflect participants’ initial over-expectation and subsequent 

decrement of trust, whereas trust increment reflects initial under-

expectation and subsequent increment of trust. 

Note that caution is warranted when interpreting the estimates of 

the LTI model described above. The model is obtained using the 

average measurements of trust across participants; thus, it allows 

for estimation of the degree of trust likely to be exhibited by the 

average user. For instance, the final value of trust obtained by the 

empirical fit provides the average degree of trust that might be 

observed across users. Although the model does not allow for 

predictions regarding the evolution of trust for a single user, its 

utility lies in estimating the average value of trust in a system across 

multiple users. Further, we claim the applicability of this model 

only for systems with fixed reliability/performance; this may or 

may not extend to systems that adapt or learn during interaction. 

4.4 Effect of automation transparency on 

momentary trust change 
In order to examine the effect of automation transparency on the 

change of moment-to-moment trust, Trustt –Trustt-1, we conducted 

the following tests: (i) paired sample t-tests to compare the 

differences between high- and low-likelihood alerts, (ii) 

independent sample t-tests to compare the differences between 

binary and high-likelihood alerts, and between binary and low-

likelihood alerts. Note that paired-sample t-tests have greater 

statistical power than independent sample t-tests. 

Figures 8-11 depict momentary change of Trustt for hits, false 

alarms, correct rejections and misses. When the threat detector’s 

decisions were hits, there was a marginally significant difference 

between high- and low-likelihood alerts (1.22 vs. 0.71, paired 

sample t(38) = 1.946, p = .06), indicating that a correct alert of 

threat presence with high confidence led to a greater increase to 

Trustt in comparison with Trustt-1. When the threat detector gave 

false alarms, Trustt decreased. Further, the comparisons indicated a 

significant difference between high- and low-likelihood alerts（-

4.95 vs -1.49, paired sample t(38) = -3.11, p < .01) and between 

binary alerts and low-likelihood alerts (-3.31 vs -1.49, independent 

t(76) = -2.37, p = .02).  

Trustt increased when the threat detector correctly identified the 

absence of threats. Moreover, we observed a significantly greater 

improvement to Trustt for high-likelihood alerts compared with 

low-likelihood alerts (0.72 vs 0.40, paired sample t(38) = 2.085, p 

= .04), and a marginally significantly greater improvement for   
binary alerts compared with low-likelihood alerts (0.76 vs 0.40, 

independent t(76) = 1.848, p = .07). When the threat detector 

missed potential threat, there was a decrease in Trustt, with no 

statistically significant differences between high- and low-

likelihood alerts, between binary and high-likelihood alerts or 

between binary and low-likelihood alerts.  

 

Figure 6: Variation of Truste (averaged across participants) with automation experience for binary alarm. 

 

Figure 7. Variation of Truste (averaged across participants) with automation experience for likelihood alarm.  

Notice the change in the magnitude of Truste (y-axis) across the three plots for both the binary (Fig. 6) and  

likelihood (Fig. 7) alarm. We observe that higher automation reliability results in higher value of trust. 

 



5. DISCUSSIONS 
Our first objective was to determine whether a human operator’s 

trust rating at time t is evaluated on the basis of his or her entire 

interactive experience or according to the momentary interaction 

with automation. Our results indicated that trust at time t was 

evaluated according to the momentary interaction, and that trust of 

entirety was better quantified by TrustAUTC compared with Trustend. 

This finding has important implications for trust measurement 

during human-automation/robot interaction — specifically, merely 

administering a trust survey at the end of an experiment is 

inadequate if the intent is to measure human participants’ degree of 

trust in an automated/robotic technology over the course of the 

entire interactive process. Continuous trust measure in real time is 

necessary to achieve this goal. 

The second objective of the present study was to explore how 

trust of entirety evolves as a human gains more experience 

interacting with automation. Our proposed first-order LTI model 

suggested that trust of entirety evolved and stabilized as an operator 

interacted more with the automated system. Interestingly, we 

observed a larger time constant for the likelihood alarm, suggesting 

that human operators require longer interaction with this type of 

alarm in order to arrive at a stable value of trust. This finding is 

potentially attributable to the high- and low-likelihood information 

associated with the alarm, which may require additional trust 

calibration before a steady state is reached. Additionally, we 

observed variations in patterns of trust evolution, which could be 

explained by the interplay between human participants’ initial 

expectation of automation and their subsequent adjustment of trust 

in automation. 

Our third objective was to investigate the influence of 

automation transparency on human operators’ moment-to-moment 

trust changes. Increasing automation transparency has been 

proposed as a method of increasing a human operator’s trust in 

automation [22]. Findings from this study confirm that high-

likelihood alerts engender a greater increase to momentary trust 

upon automation success, as well as a greater decline in momentary 

trust upon automation failure. Our results also shed light upon the 

underlying reason for the benefits of increasing automation 

transparency: higher automation transparency may mitigate the 

“cry wolf” effect. 

The “cry wolf” effect is a phenomenon commonly observed in 

high-risk industries in which the threshold to trigger an alarm is 

often set very low in order to capture every critical event [9]. This 

low threshold, however, inevitably results in false alarms, which 

can cause human operators to question or even abandon the 

automated technology. The significant difference we observed in 

the response to low-likelihood and binary alerts suggests that 

human participants were still able to retain their trust in automation 

if the false alarm was provided through low-likelihood alerts. It is 

possible that users are less inclined to interpret these false alarms 

as false since the low-likelihood alerts merely suggest that a threat 

may exist, rather than explicitly confirm the presence of a threat.  

6. CONCLUSION 
Existing research examining human trust in automation and 

robots has primarily examined trust as a steady-state variable, with 

little emphasis on the evolution of trust over time. The present study 

explored the dynamic nature of trust.  

We defined trust of entirety as a trust measure that accounts for 

a human’s entire interactive experience with automation. Using a 

simulated reconnaissance task, we conducted a human-subject 

experiment (N=91) and found that TrustAUTC is a more appropriate 

measure for trust of entirety. The present study also showed that 

trust of entirety evolves and stabilizes over time, and demonstrated 

that a higher level of automation transparency may mitigate the 

“cry wolf” effect. 
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Figure 8. Momentary change of Trustt for hits 

 

Figure 9. Momentary change of Trustt for false alarms 

 

Figure 10. Momentary change of Trustt for correct rejections 

 

Figure 11. Momentary change of Trustt for misses 
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