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OBOTS that operate alongside or cooperatively with
R humans are envisioned as the next generation of
robotics. Toward this vision, we present the first mobile
robot system designed for and capable of operating on the
moving floors of automotive final assembly lines (AFALSs).
AFALs represent a distinct challenge for mobile robots in
the form of dynamic surfaces: the conveyor belts that trans-
port cars throughout the factory during final assembly. In
this work, we identify the key behaviors necessary for au-
tonomous navigation along dynamic surfaces, develop a con-
trol strategy to achieve trajectory tracking on such surfaces,
and design a sensing module capable of detecting conveyor
belt speed and location in a factory setting. These solutions
are integrated with localization, path planning and car track-
ing to achieve autonomous navigation. The system is imple-
mented via Rob@Work 3 (a robotic platform designed for
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industrial applications) and Robot Operating System (ROS).
The integrated system is evaluated on an operational auto-
motive factory floor alongside human workers. A mobile
robot capable of working on moving floors (conveyor belts)
alongside human associates can provide greater flexibility
when designing automotive manufacturing processes, yield-
ing ergonomic benefit for users, improving task performance
and efficiency, and opening avenues for novel application of
robotics.

Robots in Automotive Manufacturing

In recent decades, large industrial robots have revolutionized
manufacturing across multiple sectors. The automotive in-
dustry was among the first to introduce robotics into the man-
ufacturing process; today, approximately half of the manu-
facturing tasks in a typical automotive factory are performed
by industrial robots. However, the majority of these robots
are caged, stationary, and non-interactive. A robot’s environ-
ment is rendered highly predictable through operations away
from humans, allowing for the reliable and safe execution of
pre-planned tasks.



In recent years, the boundaries for robots within the realm
of manufacturing have begun to expand [1, 2], introducing
them into the final assembly process to work alongside hu-
mans. Intelligent assist devices and stationary robots have
been used for car assembly tasks [3]. These robots operate
in close proximity with humans; they are stationary, how-
ever, and are limited in the operations they can perform and
the flexibility they allow for manufacturing processes.

Several automotive factories incorporate automated
guided vehicles (AGVs) to deliver parts across large-scale
factory floors. However, these vehicles work with their mo-
bility limited to specific grids positioned within the envi-
ronment, and are incapable of entering the area in which
value-added work is performed on the assembly line. “Robot
Workmate,” a collaborative robotic system for AFALs de-
signed by Miiller et al. [4], is capable of performing inspec-
tion tasks; however, the system’s mobility is limited to pre-
installed linear rails within the work environment. Freely
moving mobile robots have recently been developed for use
at automated workstations [5, 6], but these systems require
that work is performed on static surfaces. Consequently,
such systems are not compatible with AFALs, which typi-
cally include dynamic surfaces in the form of the conveyor
belts that transport vehicles during assembly.

To the best of our knowledge, there have thus far been no
mobile robots capable of working alongside humans on dy-
namic AFAL surfaces. In this paper, we report on a robotic
system that autonomously navigates along moving-floor as-
sembly lines, and is not restricted to preconfigured paths.
Our system opens new opportunities for close-proximity
human-robot collaboration during final automobile assem-
bly on dynamic AFAL surfaces. In contrast to systems with
constrained mobility, a freely moving robot provides a larger
operating region and can potentially improve task efficiency.
We highlight this performance benefit through a simulation
evaluation of human-robot interaction, in which the system
predicts human motion and plans in time to navigate amongst
humans in the shared workspace. Finally, we discuss direc-
tions of future work for achieving seamless human-robot col-
laboration in production environments.

A preliminary version of this work, in which the system
was demonstrated in a laboratory environment, is available
at [7]. Here, we present an integrated mobile robotic sys-
tem for use in automotive factories that includes algorithms
for localization, car tracking and path planning, and demon-
strate this system in a workspace shared with humans. As
part of this demonstration, conducted in October 2014, the
robot operated successfully on a live automotive production
line for 1 week (5 work days) and performed a prototypical
assembly task on approximately 200 cars. To our knowledge,
this is the first instance of a mobile robot navigating dynamic
surfaces within automotive factories.

Automotive Final Assembly Lines

The automotive final assembly environment (shown in the
title figure) is highly dynamic, uncertain, and includes both
humans and mobile objects, such as cars on the assembly
line, AGVs, and part carts. The motion of humans is uncon-
strained: they are free to move throughout the factory both
on and off the assembly line.

Automotive assembly lines also feature dynamic surfaces:
the conveyor belts that transport cars within the factory. The
conveyor belts are flush with the surrounding static surfaces.
The speed of these belts - and, consequently, that of the cars
they transport - is largely uniform. While in motion, the con-
veyor belts tend to move at a slow and almost constant speed
(< 200 mm/s); however, a belt can occasionally stop due to
events occurring on the factory floor.

The motion of the belt results in each car typically spend-
ing fewer than 3 minutes at a given workstation. Unsched-
uled stops are highly discouraged, as they can lead to de-
lays and substantial economic costs (e.g., losses greater than
$10,000 per min [8]), rendering the tasks to be performed
during final assembly highly time-critical. Any agent in-
volved in automobile assembly should be able to success-
fully and repeatedly complete tasks within short time cycles
and on dynamic surfaces, as incomplete work would result
in unscheduled stops.

Challenges for Autonomous Navigation

Here, we identify the key behaviors necessary for a mobile
robot to achieve autonomous navigation on AFALs. In or-
der to do so, we focus on the differentiating characteristic of
AFALs from other manufacturing environments: the pres-
ence of dynamic surfaces.

First, the robot must have knowledge of whether it is cur-
rently located on a dynamic surface. This requires that the
robot maintain a location estimate of the conveyor belt rela-
tive to itself.

Second, awareness of the assembly line’s speed is re-
quired for trajectory tracking, localization, and tracking ob-
jects along the line. This information may be required even
when the robot is not positioned on the assembly line.

Third, the robot requires trajectory tracking algorithms in
order to follow a desired path along dynamic surfaces. The
robot can enter the conveyor belt in any arbitrary orientation,
and can have any number of its wheels present on the dy-
namic surface. Trajectory tracking must also be functional
on static surfaces, or while positioned partially on and par-
tially off the assembly line in any orientation.

Solutions to achieve these behaviors ideally should require
minimal modifications to factory layout and infrastructure
and allow for use of off-the-shelf software and hardware.
Further, the robot should be able to plan paths in dynamic
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Figure 1: Overview of the mobile robotic system along with an image of the Rob@Work 3 mobile base.

environments and in the presence of human coworkers. Nav-
igation within dynamic environments and among humans is
an active area of research [9]. Hence, we provide a modular
solution for navigation that not only takes dynamic surfaces
into consideration, but also enables the use of existing algo-
rithms for path planning within dynamic environments.

System at a Glance

To achieve the key behaviors highlighted above, we provide
(i) an algorithm for trajectory tracking along both static and
dynamic surfaces, and (ii) a sensing system for detecting
the presence and speed of dynamic surfaces. The success-
ful achievement of these behaviors allows robots operating
on dynamic surfaces to make use of localization and path
planning algorithms originally designed for use on static sur-
faces. The developed solutions are integrated with local-
ization and path planning to achieve autonomous navigation
during final automobile assembly. We also briefly discuss an
approach to tracking dynamic goals (i.e., the cars being as-
sembled on the line). Figure 1 depicts an overview of our
mobile robotic system.

We chose Rob@Work 3 (see Fig. 1 and Table 1) as the
base robotic platform for our system, primarily due to its four
independently actuated wheels that can be both steered and
driven. We augmented the Rob@Work 3 platform with ad-
ditional sensors to detect the speed and location of conveyor
belts in an automotive factory. In addition, the Rob@ Work
3 platform possesses the following desirable characteristics
for facilitating industrial operations:

Table 1: Rob@Work 3: Salient Features

Dimensions 103 x 57 x 40 cm
Weight 120 kg

Payload Capacity | 150 kg
Maximum Speed | 1.2 m/s

Actuators 4 wheels (2 motors per wheel,
for driving and steering)
Sensors Eight encoders (1 per motor)

2 SICK S300 Laser Scanners

a high payload capacity, necessary for assembly tasks;
battery life of ~ 8 hr, enabling extended operation;
on-board sensing;

a laser-scanner based safety system; and

a middleware based on ROS.

Reference Frames and Variables

A schematic of the factory environment (workstation) where
we evaluated our system is included in Fig. 2, which also il-
lustrates the reference frames and variables used herein. The
dynamic surface (conveyor belt) is depicted in gray. “Start”
refers to the initial location of the robot. Points “Goal-A”
and “Goal-B” are defined relative to the car currently being
assembled.

We use the static coordinate systems of the world W and
the conveyor belt B, and the non-static coordinate systems
of the robot R and the moving automobiles I, J,---. The
x coordinate of the transition between static and dynamic
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Figure 2: A schematic of the robot’s workstation during
factory evaluations.

surfaces, as specified in the world frame, is referred to as the
location of the assembly line and represented by the variables
ayp and Fp. The position of the first car in the belt frame is
denoted by the variable py, and the constant distance between
two consecutive cars is denoted by d.

Trajectory Tracking along
Dynamic Surfaces

State-of-the-art wheeled robots are capable of following a
given path with high fidelity along static surfaces. In the
case of Rob@Work 3 specifically, the nominal control ar-
chitecture for trajectory tracking incorporates multiple feed-
back loops [10]. A path planning algorithm or human tele-
operator issues a desired trajectory, which is translated into
velocity commands for the mobile robot. The desired veloc-
ity of the i wheel vgheel’i = (wxi, vy,i) is obtained in terms
of robot velocity (&, ¥y, ér) as follows:

(1a)
(1b)

Ty — ¢ryw,i
Vyi = Yr + ¢rxw,i'

UX,i =

The controller then converts each wheel velocity com-
mand to the wheel configuration, a steering angle ¢ and an
angular rate 6 command, as detailed in prior work by Con-
nette et al [10]. A PD controller is used to control 7 and 0
for each wheel.

Algorithm 1: A modification to the command is-
sued to the nominal wheel controller for navigating
environments with dynamic surfaces.

Input: Nominal wheel controller command, and
Surface velocity
Output: Compensated wheel controller command

Virﬂi . absolute velocity of the surface at i*" wheel
Vﬁheel’i . absolute velocity of the at i** wheel

foreach robot wheel do
sense absolute surface velocity (Vglrfi) at wheel;
modify the nominal command:-
R —_ R R .
theel,i - vwheel,i - vsurf,i’
end

Limitations of Nominal Architecture

The nominal trajectory tracking architecture of mobile bases,
however, is not designed to accommodate dynamic surfaces.
To illustrate this point, we created a scenario that included
a dynamic surface using the Gazebo simulator. The robot’s
task was to navigate in a straight line across the dynamic sur-
face moving at a rate of 100 mm/s. However, the robot con-
tinuously deviated from the desired path, indicating failure
of the existing architecture to follow the desired trajectory (a
video is available! at http://tiny.cc/mral).

Further, by not accounting for the motion of the dynamic
surface, the robot experienced torques at the wheels while
transitioning from a static to dynamic surface, or vice-versa.
Repeated application of these torques would structurally
weaken the robot, which would in turn impact system main-
tainability and be highly undesirable for the effective intro-
duction of mobile robots onto a factory floor.

Architecture for Dynamic Surfaces

We designed a control algorithm based on reference shap-
ing that considers the surface speed as additional input; this
allows for modular implementation, but requires additional
sensing of surface parameters. However, as this method
avoids undesired effects on robot hardware - a key require-
ment for the structural integrity of robots and their effective
introduction onto a factory floor - we adopted this approach.

Fig. 3 depicts our control architecture, and Algorithm 1
details the modification we made to the nominal controller.
This architecture leverages the independent actuation of each
wheel, and compensates for the motion of the dynamic sur-
face by suitably modifying the reference sent to the robot’s
wheel controllers. This results in a modular design that pre-
serves the use of the existing wheel PD controllers and soft-

!The video is also included as a multimedia attachment with
the submission, please see file: VIDEO-CLIP-1.mp4
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Figure 3: Our control architecture for autonomous robot navigation on dynamic surfaces.
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Figure 4: The deviation from the desired path as the
robot crosses the moving surface.

ware architecture. Using Algorithm 1, we compensated the
command for each wheel (vvlfheel ;) based on the absolute sur-

face velocity at its point of contact (vfﬁrf’i). The modified
wheel velocity command is used to compute the wheel con-
figuration - specifically, the steering angle and angular rate.

We validated the designed algorithm using the same
Gazebo simulation environment in which the nominal archi-
tecture was evaluated. During the task, the robot’s deviation
from the nominal path remained < 4 cm (see Fig. 4; a video
is available? at http://tiny.cc/mral). Algorithm 1 en-
abled the robot to successfully navigate across the simulated
assembly line by dynamically compensating for surface ve-
locity and correcting the robot heading accordingly.

Sensing the Assembly Line

When designing a module for sensing the assembly line, we
explored the use of four types of sensors: miniature radars,
optic flow sensors, contact-based encoders, and inertial sen-

2The video is also included as a multimedia attachment with
the submission, please see file: VIDEO-CLIP-1.mp4

sors. As the surface in question moves relatively slowly
(< 200 mm/s), the performance of miniature radars and
low-cost inertial sensors is limited by poor accuracy at low
speeds. Further, measurements obtained through an indirect
method (such as an inertial sensor-based system) would be
reactive, detecting surface motion only through disturbances
to the robot’s motion caused by the surface.

On-board optic flow sensors have been previously used to
maintain location estimates for mobile robots [11] on static
surfaces. Also, images from on-board optic flow sensors can
potentially be used to detect the location of the robot relative
to the assembly line.

Assembly Line Location

An initial estimate of the assembly line location is available
based on a static map (see oy and G in Fig. 2). However,
the assembly line location must be within the robot’s refer-
ence frame, which in turn requires an estimate of the robot’s
pose. Therefore, the accuracy of the initial estimate of the
assembly line location relative to the robot is lower-bounded
by localization accuracy.

Our system continually updates an online location esti-
mate of the assembly line in the robot’s map. We use four
PX4Flow optic flow sensors [12] mounted facing downwards
on the robot, as shown in Fig. 1. Four sensors allow for as-
sembly line detection independent of the robot’s heading or
pose as it enters the line; this is of particular importance due
to the omni-directional motion of the mobile base.

(c) Line
detection

(a) Raw
image

(b) Edge
detection

Figure 5: The image processing pipeline to detect the
assembly line location.



The optic flow sensors frame the surface at a frequency
of 6Hz. Using image processing techniques, our system de-
tects whether the image includes a line corresponding to the
boundary of the assembly line (see Fig. 5). Note that such
a line would be present in the image when the sensor transi-
tions from a static to dynamic surface (or vice-versa). Specif-
ically, we used a Canny edge detector to detect edges in each
image transmitted by the four sensors [13]. Next, the sys-
tem calculates the Hough transform to identify lines within
the detected edges [13]. Lines that differ from the expected
orientation of the assembly line are eliminated from possible
assembly line detection. Lastly, the robot’s model of the as-
sembly line’s location is updated based on the current sensor
location and the line in the image. This process mitigates er-
ror due to estimation of assembly line location based purely
on localization information, and provides redundancy in as-
sembly line detection during robot operations.

Assembly Line Speed

The optic flow sensors can also be used to sense surface ve-
locity. We have previously demonstrated the applicability
of these sensors for surface velocity detection [7]. How-
ever, this method requires an additional estimate of robot ve-
locity to estimate conveyor belt speed using on-board optic
flow sensors. Furthermore, the speed information is avail-
able only when the dynamic surface is within the field of
view sensors, i.e., on or near the assembly line.

Hence, we incorporate an off-board wheel encoder
mounted on the dynamic surface to measure assembly line
speed. The sensing information is transmitted wirelessly to
the robot. Although the presence of an off-board sensor re-
quires additional infrastructure, the need for an estimate of
the assembly line speed throughout the robot’s operation de-
mands this approach. This method does not require any ad-
ditional measurement of robot velocity, alleviating the cas-
cading effects of any error in robot velocity estimation.

Localization and Car Tracking

To achieve autonomous navigation, we additionally imple-
ment solutions for localization, tracking moving cars, and
planning paths to moving goals. Localization and tracking
of moving targets are closely related, as the robot must con-
tinuously keep track of its own location in the world, as well
as its location relative to its moving target. Therefore, we ap-
ply an integrated approach for simultaneous localization and
tracking.

Specifically, we extend the feature-based Extended
Kalman Filter (EKF) localization algorithm [14], which pro-
cesses geometrical features extracted from raw laser scan
data (e.g., lines and corners), to correct the robot’s 2D pose

estimate based on odometry information. In the automotive
factory setting, it is also necessary to track the 2D poses of n
dynamic objects (the cars to be assembled) simultaneously.
However, since the cars are fixed to a straight conveyor belt
with a constant distance d between them, the task is reduced
to tracking the position of the first car pj (see Fig. 2). Given
Py, the system can simply reconstruct the pose of car ¢ in the
world frame as follows:

W . B
T (i—1)-d+p
p;" = |yi| =T§- 0 (2)
0; 0
i € {1,...,n} and T} represent the static transformation

from the belt frame B into the world frame W.
For simultaneous localization and tracking, we expand the

state vector of the EKF with pp as x = [x}V pﬂT, where

W' is a 2D pose estimate of the robot in the world frame.

X
During the prediction step of the EKF, current robot veloc-
ity measurements v and the belt U{? are used to propagate

the state vector:

oo [R(Oi—1) O] [VE@®) +vE(@E-1)] At
OB e et i o] ST
(3)

R(6;—1) is the rotation matrix and At represents the time
elapsed since the last update. To account for surface motion,
the odometry information from the wheel encoders must be
rectified with the sensed surface velocity as follows:

<

(4)

During the measurement update, first an association step
is carried out using a nearest neighbor search [15], and then
new feature observations are processed in order to correct
the predicted state. In general, this includes feature observa-
tions from the static environment fg;,; and dynamic features
fayn originating from moving objects. For static features,
this approach follows a standard update routine as described
by Thrun et al. [16], resulting in a correction of x!V. In the
case of dynamic features, the measurement model is defined
as a function h transforming a mapped feature k£ of dynamic
object ¢ m,]c into the robot frame using the objects current
pose estimate from Eq. 2:

R _ _R R
Vr = Vodom + Vsurf

fdyn,k : ZkR =h (X}f‘/,p?, mi) +N(O7R’) (5)
Noise is assumed to be Gaussian, and R represents the mea-
surement noise covariance matrix. The dynamic features are
mapped a priori relative the object’s coordinate system. As
can be determined from Eq. 5, the transformation of mapped
feature k£ depends upon both the robot’s pose and ppg; thus,
the complete state vector is updated when the system ob-
serves a dynamic feature.



Path Planning

The path planning module computes safe, smooth paths
(which serve as input to the trajectory tracking algorithm)
to potentially moving targets, while avoiding dynamic ob-
stacles such as humans. We adopt a standard planning ar-
chitecture, wherein a global planner (A*) generates a path to
the goal; this path is then optimized at runtime using a local
planner (an implementation based on the Elastic Band plan-
ner [17]). The local path planner allows for quick reaction to
unforeseen obstacles, as it incorporates previously computed
solutions to generate optimal paths based on current sensor
data. These properties are desirable in the dynamic, human-
centric environment of a factory floor. Further, the ability to
efficiently incorporate prior solutions into closed-loop path
optimization at runtime is of critical importance when plan-
ning paths to dynamic goals (e.g., for approaching cars on a
moving conveyor belt or for handling perturbations in robot
localization when transitioning onto and off of the belt).

System Evaluation on Factory Floor

We conducted our system evaluation on an operational auto-
motive final assembly line. Each car spent roughly 150-180
seconds on the line due to conveyor belt motion within the
robot’s workspace. The assembly line, while in its “on” state,
moved at an average speed of 78.9 mm/s (0 = 1.7 mm/s) as
measured by the off-board contact sensor. The workstation
included human workers who were typically assembling cars
adjacent to the car being worked on by the robot, but who
did occasionally work simultaneously with the robot on the
same car. The robot detected the surrounding humans using
its on-board laser scanners, and used this information to plan
collision free paths using the path planning module.

The robot’s task involved movement between the follow-
ing waypoints: Start (on a static surface), Goal-A (on a con-
veyor belt), and Start. The robot performed a proprietary as-
sembly task at Goal-A; this task had to be completed within
the cycle time for which the car was present at the robot’s
workstation. To evaluate the system’s performance within a
more challenging scenario, we also had the robot complete
assembly tasks at both Goal-A and Goal-B within a single
time cycle. We collected data logs from 15 iterations of the
test scenario, including one iteration of the task involving
Goal-B. The robot took an average of 54.88 s (¢ = 3.34s) to
complete the single-sided task. The average navigation time
was 19.83 s (o = 2.875).

Achievement of Key Behaviors

The robot transitioned between static and dynamic surfaces
twice during each task. The sensing sub-system updated the

assembly line location a median of 1.5 times during each
transition; the robot detected this transition at least once per
trial. The assembly line speed was detected through the off-
board, contact-based sensor (see Fig. 6a). Assembly line
speed was available to the robot throughout its motion at an
update rate of 30 Hz.

We validated the control algorithm using a position hold
task with robot positioned partially on and partially off of the
dynamic surface (see Fig. 6b); a video of this test is avail-
able? at http://tiny.cc/mra2 . This scenario was par-
ticularly challenging due to the excessive, damaging torques
the robot could experience in the event that the control algo-
rithm did not compensate for surface motion. The robot suc-
cessfully held its position during the task despite being only
partially positioned on the moving conveyor belt. Note that
when the desired velocity was zero, the wheel commands
were non-zero (see Fig. 7). For this trial, the mean deviation
in robot position was < 2 cm even as the robot was posi-
tioned partially on and partially off of the assembly line. We
additionally tested the system by teleoperating it on the dy-
namic surface; the results of these tests are depicted in an
attached video® (see http://tiny.cc/mra3).

System Performance

Lastly, we evaluated the performance of our autonomous
robotic system during a time-critical task on an operational
line. Figure 8a depicts the robot’s path during one pro-
totypical run, demonstrating the integrated performance of
the system. Similarly, Fig. 9 depicts the trial in which the
robot performed its assembly task on either side of the mov-
ing vehicle. A video of the robot’s autonomous navigation
from static to dynamic surface and vice-versa is available®
athttp://tiny.cc/mra4a and http://tiny.cc/mra4b.
The robot was able to successfully follow desired velocity
commands during its task (Fig. 8b). The ability to track the
desired robot velocities demonstrates successful operation of
both the control and sensing sub-systems.

The dynamic surface changed its state periodically
throughout the trials: e.g., the assembly line (and, conse-
quently, the car) occasionally stopped moving after the robot
began its motion, due to normal operations within the fac-
tory. By maintaining an estimate of the assembly line speed
and location, the robot was able to accomplish its task de-
spite unscheduled changes in the state of the assembly line.

3The video is also included as a multimedia attachment with
the submission, please see file: VIDEO-CLIP-2.mp4

4The video is also included as a multimedia attachment with
the submission, see file: VIDEO-CLIP-3.mp4

5The video is also included as a multimedia attachment with
the submission, please see file: VIDEO-CLIP-4a.mp4 and VIDEO-
CLIP-4b.mp4
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Figure 6: The motion of the conveyor belt and an example of its effect on our mobile robot system.
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Figure 7: The operation of the control sub-system during the position hold task. (left) The desired linear velocity
of the robot was provided by a human operator. The desired angular velocity was zero throughout the scenario,
and is not included in the figure. The shaded region denotes the duration for which the desired robot velocity
was zero (i.e., when the robot was required to hold its position). The plots in the center depict the commands
issued to the front wheels of the robot. The commands to the front right wheel were non-zero during the position
hold task in order to compensate for the motion of the assembly line. The plots on the right depict the robot’s
pose during the task. Despite the robot’s position being partially on and partially off of the moving assembly
line, we observed only minimal deviations to robot pose when the commanded velocity was zero.
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Figure 8: The performance of the integrated system during the time-critical factory task.
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Figure 9: The robot trajectory for the test scenario during which the assembly task was performed on both sides
of the car (Goal-A and Goal-B). The orange arrow denotes the direction of robot motion. This task required the
robot to travel farther and spend more time on the dynamic surface than the single-side task.



Implications for Human-Robot Collabo-
ration in Automotive Final Assembly

Equipped with a capability for autonomously navigating on
dynamic surfaces, our mobile robot can perform tasks such
as delivering parts to human associates on the conveyor belt
and carrying out assembly tasks on moving cars. A freely
mobile system increases the effective operating region, as
compared to a robot with constrained mobility, provides
greater flexibility when designing automotive manufacturing
processes, and can achieve improvements in task efficiencies
while sharing its environment with humans.

In order to highlight this benefit, we conducted a simu-
lation evaluation in which the system predicts human mo-
tion and plans to navigate amongst the human in a shared
workspace with a static surface. The evaluation compared
the performance of a freely moving robot to a constrained
robot whose mobility was limited to a linear axis [18]. Sim-
ilar to [18], we simulated human motion by recording in a
motion capture system the trajectories of real humans walk-
ing to four goal locations. We drew from the dataset a
random sequence of eight recorded trajectories for use in
each simulation task. The robot’s task was to navigate to
a sequence of goal locations while sharing the environment
with the simulated human. Both the freely moving and con-
strained robots used MPS [19] a system for predicting human
motions and SIPP [20] a planner for generating robot paths
using time-indexed predictions. A safety stop was triggered
during task execution if the distance between human and the
robot reduced beyond a safety threshold. Similarly, the mo-
tion of the simulated human was paused if the robot was in
her way. The two robots used a different set of motion prim-
itives due to the difference in their degrees of freedom; the
rest of the simulation parameters were set identically for the
two robots.

We ran ten simulation trials of the task and observed that
the freely moving robot required substantially less time on
average to complete its task (147.9s), as compared to the
constrained robot (167.3s). Further, the human required
less time on average to complete its sequence of eight mo-
tions while sharing the environment with the freely mov-
ing robot (160.3s), as compared to the constrained robot
(167.0s). Both these differences were statistically signifi-
cant (p < 0.05, Wilcoxon signed rank test), and were re-
alized using the additional degree of freedom available to
the freely moving robot to adapt and plan around the human.
Lastly, the simulations indicated a higher number of safety
stop triggers on average for the freely moving robot (2.1) as
compared to the robot limited to a linear axis (1.1).

These simulations provide proof of concept that perfor-
mance benefits can be realized with a freely moving robot
working alongside humans in automotive final assembly.

However, additional challenges must be addressed to field
collaborative mobile robots on an AFAL, including consid-
eration of safety (see ISO 10218-2 and ISO/TS 15066) and
maintainability. In addition, techniques for predicting hu-
man motion and conveying robot intent will be required to
achieve anticipatory robot behavior and realize the benefits
in task performance.

The modular design of our control and sensing system will
enable the development and testing of algorithms for human-
robot collaboration without additional consideration of dy-
namic surfaces, and will facilitate the integration of these
technologies with a system that can effectively navigate on
moving-floor assembly lines. We believe the autonomous
navigation capability presented herein is a necessary first
step towards new forms of human-robot collaboration in au-
tomotive final assembly and will provide greater flexibility
in planning next-generation manufacturing processes.
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