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Abstract: We consider human-robot collaboration in sequential tasks with known
task objectives. For interaction planning in this setting, the utility of models for
decision-making under uncertainty has been demonstrated across domains. How-
ever, in practice, specifying the model parameters remains challenging, requiring
significant effort from the robot developer. To alleviate this challenge, we present
ADACORL, a framework to specify decision-making models and generate robot
behavior for interaction. Central to our approach are a factored task model and a
semi-supervised algorithm to learn models of human behavior. We demonstrate
that our specification approach, despite significantly fewer labels, generates mod-
els (and policies) that perform equally well or better than models learned with
supervised data. By leveraging pre-computed performance bounds and an online
planner, ADACORL can generate robot behavior for collaborative tasks with large
state spaces (> 1 million states) and short planning times (< 0.5 s).
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1 Introduction

Planning robot actions for interacting with humans, or interaction planning, is essential to effective
human-robot collaboration. The utility of interaction planning for improving both fluency and effi-
ciency of human-robot collaboration has been demonstrated across a variety of collaborative tasks,
including shared workspace, shared manipulation, and handover tasks [1, 2, 3, 4, 5]. Here, we con-
sider the problem of interaction planning for a subclass of human-robot collaborative tasks, namely,
sequential tasks with known task objectives.

Instantiations of this subclass of collaborative tasks are found across domains, including homes,
offices, hospitals, and outer space. For instance, consider a robotic assistant tasked to support a
human in the assembly of parts in a factory [6]. Assembly tasks typically require multiple steps
and are, thus, sequential. Further, the human, the robot, and the robot developer (i.e., the person/s
programming the robot) know the objective of the assembly task a priori. Other examples include, a
robotic scrub nurse supporting a human surgeon [7] and a robot supporting astronauts [8].

Despite the knowledge of the task objective, manually hand-crafting robot behavior (i.e., policy)
is difficult; since, among other factors, it requires the robot developer to specify a robot action for
all possible interaction scenarios. To address this difficulty, researchers have developed algorithmic
approaches to generate robot behavior [3, 6, 9, 10]. Broadly, these algorithmic approaches to in-
teraction planning involve two steps, namely, specification of a robot’s decision-making model and
generation of the robot’s policy through algorithms for decision-making.

Algorithmic computation of robot’s policy speeds up the specification of robot behavior; however,
in practice, specification of the decision-making models remains time-intensive. In the process of
specifying the robot’s decision-making model, the developer needs to specify models for both the
collaborative task and human behavior. The task model corresponds to the specification of the task
objective and dynamics (i.e., a model specifying the outcomes of human and robot actions). The
model of human behavior allows for the prediction of human states and actions.

∗These authors contributed equally to this work.

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.



Task Model
(MMDP)

Robot Model
(POMDP)

Human Model
(AMM)

Developer

Teammate

Interaction PolicyLabels and
Domain Expertise

Domain
Expertise

Unsupervised
Data

Figure 1: ADACORL: a model specification and interaction planning framework for human-robot
collaboration. The developer specifies the collaborative task and provides partial specifications of
human behavior. By combining data and domain expertise, our approach reduces the labeling effort
required to specify human models. Given the specifications, both the robot’s model and interaction
policy are generated algorithmically. (right) Stills from demonstrations of our approach in two
human-robot collaborative tasks: (top) a shared workspace task, (bottom) handover task.

To enable human-robot collaboration at scale, approaches that can accelerate this model specification
process will prove to be critical. Here, we present such an approach that reduces the robot devel-
oper’s effort while specifying models for interaction planning. As described next, our framework –
titled Adaptive Collaboration with Reduced Labeling (ADACORL) – enables both semi-supervised
model specification and execution-time planning for interaction (see Fig. 1).

Specifying Task Model Due to our focus on known tasks, the developer has the necessary do-
main expertise to specify the task model. However, the choice of model representation is critical to
facilitating model specification. Thus, in ADACORL, we model the task as a multi-agent Markov
decision process (MMDP) [11] and utilize a factored state representation, wherein the developer can
specify the known dynamics of the robot, the human, and the environment in a modular fashion.

Specifying Human Model While necessary domain expertise is available for the task model, robot
developers only have partial knowledge of human behavior. Further, human behavior depends on
latent states (such as goal, trust, attention) that are difficult to sense. Hence, in the prior art, learning
approaches have been used to specify models of human behavior, which require labeled data. To
reduce the effort required for labeling data, in ADACORL, we leverage constrained variational in-
ference (CVI) to generate models of human behavior [12]. CVI, a hybrid learning approach, enables
the use of both semi-supervised data and domain expertise in the learning process. We demonstrate
through numerical experiments that, despite significantly fewer labels, models learned through CVI
are equally or more accurate as compared to models learned through a supervised approach.

Generating Robot Behavior Given the task and human models, our approach allows for the au-
tomatic generation of the robot’s decision-making model as a partially observable Markov decision
process (POMDP). We generate robot policies, given the decision-making model, using a variant
of the R-DESPOT algorithm, a state-of-the-art POMDP solver [13]. We demonstrate ADACORL
in human-robot collaborative tasks with state spaces significantly larger than prior art (> 1 million
states), short planning time (< 0.5 s), and temporally-extended actions (shown in Fig. 1). Through
experiments, we confirm that the benefit of our model specification approach, when coupled with
the planning algorithm, also translates to metrics of human-robot collaboration.

2 Related Work

In recent years, multiple models and algorithms have been developed to enable robots to work with
or alongside humans [14]. Here, we discuss approaches related to interaction planning for human-
robot collaborative tasks. We focus on sequential tasks with two agents (i.e., a single human and a
single robot) and a known objective. Based on the domain and the application, this task objective is
typically composed of metrics of safety, task success, efficiency, and fluency of interaction [4].
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Modeling Human Behavior Despite a shared and known task objective, the human might have
multiple ways to accomplish the collaborative task. The human’s behavior may also depend on their
preference and mental states. Thus, approaches to interaction planning utilize a predictive model
of human behavior.1 Due to difficulty in hand-crafting a human model for all possible interaction
scenarios, learning algorithms that utilize data of human behavior are used in prior art [16, 17].
For instance, Javdani et al. [3] utilizes inverse reinforcement learning to learn goal-directed human
policies. Similarly, variants of inverse reinforcement learning and supervised learning have been
used to model human behavior for scenarios of close-proximity interaction, shared teleoperation, and
simulated autonomous driving [6, 10, 18, 19, 20, 21, 22, 23]. Along with data of human behavior,
these learning approaches require labels for human’s latent states (such as goal, preference, or trust).

In practice, obtaining labels for these latent states is time-intensive, as the latent states cannot be
readily measured and evolve during task execution. Our approach aims to reduce this labeling
effort. Nikolaidis et al. [2] provides an unsupervised approach to recover human type but assumes
that the latent state (human type) does not change during task execution. In contrast, by utilizing
semi-supervised data, ADACORL jointly learns human’s policy and latent state dynamics.

Generating Robot Behavior Given the knowledge of task objective and a model of human be-
havior, decision-making algorithms are required to generate robot behavior. Different modeling and
algorithmic frameworks have been proposed, building upon foundations from planning as inference
[24], timed-Petri nets [9], graph search [6], model predictive control [21, 22], robust control [25],
and (partially observable) Markov decision processes [2, 3, 10, 19, 26, 27], among others [14, 28].
Motivated by the presence of latent states in human task execution and their heritage in human-robot
collaborative research, we focus on and utilize POMDPs as the decision-theoretic model to generate
robot behavior. However, to facilitate the specification of the decision-making model, ADACORL
requires only the specification of the task model from robot developers. The robot’s decision-making
model is algorithmically generated using the task model and the learned model of human behavior.

3 Task Specification

We utilize a factored MMDP to describe the human-robot collaborative task, described as follows:

• The state space S denotes the finite set of states s. We use a factored representation where s .
=

(sH , sR, sE), in which sH and sR correspond to human- and robot-specific features, respectively,
and sE denotes additional features (e.g., based on task structure and the environment);

• The action space A = AH×AR denotes the finite set of joint actions a .
= (aH , aR). AH and AR

denote the sets of humans action aH and robot action aR, respectively.
• The state dynamics are assumed to be Markovian, and are governed by the transition function
T (s′|s, a) : S×A×S → [0, 1]. The transition function is assumed to have the following structure,

T (s|s, a) = TH(s′H |s, a) · TR(s′R|s, a) · TE(s′E |s, a), (1)

where TH , TR, TE are transition functions for factors of the MMDP state;
• The human-robot team receives a shared reward at each step, R(s, a) : S×A→ R; and
• γ ∈ [0, 1] denotes the discount factor.

The human-robot team’s objective is to maximize the expected cumulative discounted reward.

Scope In this paper, we consider problems where the parameters of the MMDP, i.e., (S,A, T,R, γ),
are common knowledge, and the state s is observable to both the agents. Note that while actions of
both the agents impact the reward and transition function, the task model does not capture human
behavior or mental states (such as intents or subgoals). Thus, given knowledge of the task, the task
model can be specified by the robot developer without reasoning about human behavior.

Example Task We describe the specification of the MMDP model via an example human-robot
handover task (see Fig. 1, bottom-right). Consider a robot assisting a person preparing sandwiches
in a kitchen. The kitchen includes two cooking areas and three cabinets. To prepare one sandwich,
the human needs to fetch ingredients from the cabinets and assemble them in the cooking areas.

1While approaches that do not explicitly model human can be used to generate robot behavior, their sample
complexity for human-robot collaboration is often prohibitively large [15].
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However, one of the ingredients is missing from the cabinets. The robot has access to the missing
ingredient. To complete the sandwich, the robot needs to handover the missing ingredient to the
human at one of the cooking areas. Thus, for making multiple sandwiches, the task requires the
agents to visit multiple subgoals of interest (i.e., cooking areas, cabinets) and perform temporally-
extended actions (i.e., fetch, cook, handover). Further, the robot needs to predict when and where
the human will be to successfully perform the handover and accomplish the collaborative task.

Example of MMDP Specification While specifying the MMDP for the sequential handover task,
sH corresponds to the human’s position, and sR corresponds to the robot’s configuration (joint an-
gles and progress of temporally-extended actions). The task progress is encoded via sE . The human
actions correspond to her motion primitives. The robot actions include both motion primitives and
temporally-extended actions (macro actions) for performing the handover. The transition models TH
and TR correspond to the motion dynamics of the human and the robot, respectively. The transition
model TE corresponds to the task recipe. The reward specifies that the task should be completed as
soon as possible while maintaining a safe distance between the human and the robot.

4 Model for Robot Decision-Making

For successful collaboration, the robot needs to make decisions to maximize the team’s objective.
While the task performance depends on both the agents, the robot has autonomy only over its own
actions. Thus, from the robot’s perspective, the problem of interaction planning is viewed as a single-
agent decision-making problem (cf. [3, 10, 21, 29]). Here, we discuss the approach to arrive at this
model. Following prior research [3, 10, 19], we model the robot’s decision-making using a single-
agent POMDP [30]. We denote the model parameters using the subscript c (for collaboration).

State and Action Space The state of the decision-making model is denoted as sc
.
= (s, xH), which

is obtained by augmenting the MMDP state swith human’s latent decision factors (denoted by xH ∈
XH ). The latent decision factors cannot be sensed during interactions; further, manual labeling and
extensive effort are required to collect xH -data for training. We reiterate that the MMDP state
includes human’s observable features (such as position) but not latent states (such as subgoal). Only
the robot’s actions are considered for the single-agent model of decision-making, thus, Ac

.
= AR.

Transition Model Tc(s
′
c|sc, aR) : Sc×AR×Sc → [0, 1] denotes the transition dynamics. The

transitions only depend on the robot action and model the effect of robot action on the collaborative
task and human’s task execution (via their effect on human’s latent state). The transition model is
derived from the task specification as follows,

Tc(s
′
c|sc, aR) = T (s′, x′H |s, xH , aR) = T (s′|s, xH , aR)T (x′H |s, xH , aR) (2)

T (s′|s, xH , aR) = ΣaH∈AH
T (s′, aH |s, xH , aR) (3)

= ΣaH∈AH
T (s′|s, aR, aH)Pr(aH |s, xH , aR)

T (x′H |s, xH , aR) = ΣaH∈AH
T (x′H , aH |s, xH , aR) (4)

= ΣaH∈AH
Pr(x′H |s, xH , aR, aH)Pr(aH |s, xH , aR)

Our approach assumes that the transition model is factored (Eq. 2), and the human’s latent state im-
pacts the task only through human’s actions, i.e., T (s′|s, xH , aR, aH) = T (s′|s, aR, aH). The term
T (s′|s, aR, aH) is known based on the task specification (transition model of MMDP). In addition,
the probability distributions corresponding to human’s decision-making policy Pr(aH |s, xH , aR)
and latent state dynamics Pr(x′H |s, xH , aR, aH) are required to define the POMDP transition
model. We defer the discussion of learning the human decision-making model to Sec. 5.

Reward Similar to the transition model, the reward functionRc(sc, aR) for the POMDP is obtained
by combining the task specification and a model of human behavior,

Rc(sc, aR) = Rc(s, xH , aR) = ΣaH∈AH
R(s, aH , aR)Pr(aH |s, xH , aR) (5)

where, R(s, aH , aR) is known based on the MMDP.

Observation Space The task state s is modeled as observable, while xH is unobservable.

The discount factor is identical to that of the MMDP. The analysis describes the generation of robot’s
decision-making model from the task specification and a model of human behavior. ADACORL is
modular in that the same human model can be utilized for different tasks, and vice-versa. This
feature facilitates the personalization of robot behavior and reprogramming of robots for new tasks.
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5 Model for Human Decision-Making

To complete the specification of the robot’s decision-making model, the robot developer needs to
specify human’s policy Pr(aH |s, xH , aR) and latent state dynamics Pr(x′H |s, xH , aR, aH). In our
framework, with the aim of reducing the developer’s specification effort, we provide a hybrid semi-
supervised approach to jointly learn the human’s policy and latent state dynamics.

Domain Expertise for Model Specification In addition to labeled data, partial specification of
behavior is often available from the robot developer. Minimally, this includes the specification of
features (decision factors) that impact the human’s behavior (such as sH , xH ). However, often
partial knowledge of latent state dynamics or policies is also available. For instance, in an assembly
task, not only are the human’s subgoals (xH ) known, often, the (complete or partial) sequence of
subgoals is also known. Similarly, for modeling behavior of a human driver, policy in some states
(such as at a traffic signal) may be reliably known but not at other parts of the road. We posit that
leveraging such domain expertise can reduce the labeling effort required from the developer.

Agent Markov Model To pose the learning problem, we represent the human’s decision-making as
an Agent Markov Model (AMM) [12]. The AMM models the sequential decision-making behavior
of an agent with both observable sA and latent xA decision factors. The agent’s action selection is
quantified by the agent’s policy πA(aA|xA, aA). The transition dynamics of the decision factors are
modeled as Markovian with the following factored structure

T (s′A, x
′
A|sA, xA, aA) = T (s′A|sA, aA) · Tx(x′A|sA, xA, aA) (6)

i.e., the latent factors model mental states and impact the observable states only via actions. For
modeling the human behavior as an AMM, we choose sA ⊆ (s, aR), xA ≡ xH , and aA ≡ aH .
This enables us to recover the terms required for specifying the robot’s decision-making model.
Specifically, the human’s policy Pr(aH |s, xH , aR) ≡ πA(aA|xA, aA), and latent state dynamics
Pr(x′H |s, xH , aR, aH) ≡ Tx(x′A|sA, xA, aA).

Inputs for AMM Learning ADACORL views the set of human’s decision factors/states (sA, xA)
and the transition model of observable states T (s′A|sA, aA) as known parameters for learning. Since
sA and its transition model is available from the task specification, the developer additionally only
needs to specify the set of latent decision factors xA ∈ XA. For instance, in applications where the
latent state represents the human’s subgoal, this input corresponds to the specification of the number
of subgoals. Similarly, if the latent state represents trust, this input corresponds to the number of
discrete levels of trust. The training data includes unsupervised data of human behavior (i.e., N
sequences of sA, aA-tuples), and labels of the latent state for a subset of the unsupervised data
(i.e., M labels of xA). The robot developer, optionally, can provide partial specification (i.e., some
elements) of the human’s policy and latent state dynamics.

Bayesian AMM Learning Following Unhelkar and Shah [12], we pose the problem of recovering
AMM parameters as one of Bayesian learning. We first specify the priors for unknown model
parameters (πA, Tx, bx) and infer their posterior Pr(πA, Tx, bx|·) given the inputs for learning. In
our approach, as the set of latent state is a known parameter, we utilize the following parametric
priors for the latent state distributions, bx(·) ∼ Dirichlet(αb) and Tx(·|xH , sH , aH) ∼ Dirichlet(αt),
where αb and αt are hyper-parameters. In the absence of additional domain knowledge, we use
Dirichlet distribution as policy priors with hyper-parameter ρ. To perform posterior inference, we
utilize a combination of sampling-based and variational inference algorithm.

Blocked Gibbs Sampling We first perform blocked Gibbs sampling, described in Appendix A. In-
tuitively, the Gibbs sampler begins with an initial guess for the unknown latent state (xA) sequences.
Next, using this initial guess and semi-supervised data of behavior, the sampler updates the unknown
AMM parameters. This procedure is repeated iteratively to generate successive samples. The Gibbs
sampler provides a Bayesian approach to learn the AMM given semi-supervised data; however, it
cannot incorporate the partial specifications available from the robot developer.

Constrained Variational Inference To perform hybrid learning and incorporate partial knowl-
edge of Tx or π, we utilize the constrained variational inference algorithm [12]. Similar to vari-
ational inference [31], CVI approximates the posterior using a known distribution, parametrized
by λ. The variational parameter λ (and, consequently, the approximate posterior) is learned through
constrained optimization. The optimization objective is the same as that of variational inference (ev-
idence lower bound, [31]), and constraints are obtained from partial specifications. For initializing
CVI while learning the human model, we use the result of the Gibbs sampler.
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We consider the following types of partial specifications about latent state dynamics,

PS1) transitions from xA = i to xA ∈ Xn are not possible, where the developer specifies i, Xn;
PS2) transitions from xA = i to xA ∈ {j, k} are equally likely, where the developer specifies j, k;
PS3) minimum time ti spent in the state xA = i, where the developer specifies i and ti; and
PS4) the subset of features from the set {sA, aA, xA} that impact the latent state transition.

These specifications enable the developer to specify domain expertise regarding the human’s behav-
ior dynamics. For instance, consider the case where the robot developer models xA as a human’s
subgoal and has knowledge of the possible sequences of the human’s subgoals (i.e., the subgoal
sequence). If subgoal j is not possible after the subgoal i, this information can be specified via the
first type of partial specification PS1. Similarly, if the information is available about the duration of
activity at the subgoal i, it can be specified via PS3. PS1−3 incorporates domain expertise specific
to a single state. PS4 enables the robot developer to perform feature selection while modeling the
dynamics of human behavior. To utilize CVI, the partial specifications need to be converted to con-
straints over the variational parameters. We utilize the moments of Dirichlet distribution to obtain
these constraints [12]. In summary, by utilizing CVI, ADACORL provides a hybrid semi-supervised
approach to specifying decision-making models for human-robot collaboration.

6 Algorithm for Robot Decision-Making

Having discussed the model specification process, we briefly describe our approach to interaction
planning. Given a robot’s decision-making model, existing POMDP solvers can be used to arrive
at the robot’s interaction policy, πR, which maps the robot’s belief about the state sc to robot’s
actions aR. Planning time available during interaction is limited; thus, we leverage the R-DESPOT
algorithm for interaction planning [13].

R-DESPOT The Regularized-DESPOT (or R-DESPOT) is an anytime execution-time algorithm
for solving POMDPs. By reasoning at execution-time and in anytime fashion, it can generate poli-
cies for problems with large state spaces, for which offline solvers may have memory bottlenecks.
To identify the best action given the robot’s belief, R-DESPOT performs forward simulations using
the POMDP model and creates a sparse approximation of the belief tree through heuristic search.
To perform this search, the R-DESPOT requires a default policy and bounds on the value of a belief.

Default Policy and Value Bounds To pre-compute these inputs, we first arrive at an MDP corre-
sponding to the robot’s POMDP by assuming that the states are fully observable. We compute the
optimal policy of this MDP (which maps states to actions) using value and policy iteration. Follow-
ing Ye et al. [13], we use the mode-MDP policy to obtain the default POMDP policy (which maps
beliefs to actions). The value of the MDP policy is used as the upper bound value for the state. The
upper bound value for a belief is computed as the expectation of the MDP value under the belief,
while the lower bound value is computed at planning time using forward simulations.

Interleaving Planning and Execution During interactions, the outcome of a robot’s action and the
corresponding observation are received a timestep after the robot selects its action. To interleave
planning and execution, we modify the belief tree construction and action selection of R-DESPOT.
While creating the sparse belief tree, R-DESPOT uses all actions to expand the root belief node.
In contrast, we only include the previously selected action to expand the root node, as the action at
the root node is known. At the end of the planning time, when a new observation is received, we
perform action selection using the constructed tree. We first identify the child of the root node that
has support for the new observation, and use the best action of this child node as the robot’s action.

7 Experiments

We evaluate the performance of ADACORL using two collaborative tasks: the handover task and a
shared workspace task. We conduct experiments both in simulation and with human participants.
Video demonstrations, implemented on a UR-10 robot [32], are included as supplementary material.
Further, additional results are included in Appendices B-C. We hypothesize that our hybrid semi-
supervised approach, despite fewer number of inputs, can generate robot behavior that accrues equal
or higher reward as compared to a supervised approach during human-robot collaboration.
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Shared Workspace Task Handover Task

Model wKL(Tx) wKL(πH) Reward Stops wKL(Tx) wKL(πH) Reward Handovers

Hand-crafted 0 0 -213.8 ± 22.2 0.03 0 0 -163.8 ± 3.0 2.0

Supervised 0.011 0.041 -223.6 ± 27.4 0.94 0.066 0.051 -174.1 ± 5.4 1.4
Semi-A 0.014 0.042 -184.5 ± 23.1 0.09 0.035 0.055 -174.4 ± 2.6 1.5
Semi-B 0.015 0.042 -208.9 ± 25.7 0.03 0.030 0.052 -168.4 ± 3.0 1.7

Table 1: Model specification and interaction planning performance. The model specification perfor-
mance (wKL) is reported for the best model learned after ten learning trials. The metrics of planning
performance (reward, safety stop time, and number of handovers) are averaged over thirty-two trials.

Collaboration Scenarios Both the tasks occur in a shared kitchen environment, depicted in Fig. 1,
where the human is making sandwiches. As described in Sec. 3, in the handover task, the robot
needs to handover missing ingredients to the human. In our experiments, the robot needs to perform
three handovers during an episode. In the shared workspace task, the robot is tasked with pouring
drinks in four cups on the table, while the human is making sandwiches. The robot needs to finish
pouring drinks as soon as possible while maintaining a safe distance with the human.

Task Specification While specifying both tasks as MMDPs, sH represents the position of human’s
hand, sR represents the robot’s joint angles and the progress of macro action, and sE encodes task
progress. A two-dimensional grid is used to represent the human’s position; the size of the grid is
12 for the shared workspace task and 16 for the handover task. The robot’s action space consists
of motion primitives in the configuration space and macro actions (for pouring and handover); the
size of sR state space is ≈ 4, 000. The task progress, sE , is modeled with ≈ 30 states. In total, the
shared workspace and handover tasks have ≈ 1.8 × 106 and ≈ 2 × 106 states, respectively. The
reward function penalizes unsafe executions (i.e., collisions) and emphasizes faster task completion.
To prevent collisions during execution, a safety stop is implemented, due to which the robot stops if
it is within 0.1 m of the human. The timestep of the MMDP (and the planning time) is 0.3 s.

Ground Truth Human Behavior For simulation experiments, we define a ground truth model of
human behavior with the observable decision factor sA as the human’s position sH , and the latent
decision factor xA as the human’s subgoal. Both the tasks include five subgoals, corresponding
to the cabinets and cooking areas. The human exhibits subgoal-directed motion. Upon reaching a
subgoal, the human finishes the activity (e.g., cook, fetch) at the subgoal within a pre-specified time
interval. Thus, the simulated human exhibits non-Markovian behavior. The task structure is used
to define the subgoal transitions, e.g., after collecting ingredients from the cabinet, the human goes
to the cooking area for making the sandwich. The human can finish the task with different types of
subgoal sequences. Datasets for the simulation experiments are generated using the true model.

Baselines We use a hand-crafted AMM human model, and a model learned using supervised
learning as the baselines. The ground truth human behavior is used to specify the hand-crafted
AMM model; however, the AMM is Markovian. Supervised learning is performed using the Gibbs
sampler and variational inference described in Sec. 5, however, without sampling the latent states
(as xH labels are available). The supervised approach serves as a proxy for prior approaches, which
require labeled data of human’s latent states and cannot utilize partial specifications.

A training dataset of sixteen (sH , aH)-sequences and identical hyper-parameters are used for all
learning algorithms. Duration of each sequence is ≈ 200 timesteps. For supervised learning, in
addition, labels of xH are provided for all sequences (i.e., ≈ 3200 labels). We evaluate two variants
of our approach: Semi-A and Semi-B. For all the variants, labels of xH are provided for only
four sequences (i.e., ≈ 800 labels). For Semi-A, additionally, ≈ 10 high-level inputs are provided
that encode domain expertise about subgoal sequences (specified as PS1−2) and minimum time to
complete the activity at each subgoal (specified as PS3). For Semi-B, we further specify that the
subgoal dynamics Tx only depends on the previous subgoal (i.e., feature selection specified as PS4).

For each pair of task and learning algorithm, ten AMM models are learned. The AMM model
with the lowest test error and the task specification are then used to arrive at the robot’s POMDP.
Thirty-two simulations of human-robot collaboration are conducted to evaluate the performance of
the learned model for interaction planning. In practice, dataset of human behavior may not include
all possible types of behavior. To test this case, for the handover task, half of the test set consists of
behaviors (specifically, subgoal sequences) that are absent in the training set.
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Simulation Results The results of the simulation evaluations are summarized in Table 1. Modeling
performance is evaluated using the weighted KL divergence (wKL) between the learned and the true
models [33]. In both the tasks, the models learned through our semi-supervised approach (Semi-A
and Semi-B) have model alignment comparable to that of the supervised approach. As the hand-
crafted model is specified using the ground truth model, it has zero KL divergence. Near identical
POMDP models can have vastly different policies. Thus, while the modeling performance of our
approach is encouraging, evaluating its planning performance is critical. We evaluate interaction
planning performance using the total reward and task-specific metrics – namely, the timesteps for
which robot’s safety stop was engaged (denoted as Stops) and the number of successful handovers.

By reasoning about the human’s latent state, all approaches are able to complete the shared
workspace task with minimal safety stops; the highest average safety stop time is 1 timestep for
the supervised model. However, the semi-supervised model (Semi-A), on average, obtains higher
reward than both the hand-crafted model and the supervised model. As the ground truth behavior is
not Markovian, the robot behavior with the hand-crafted model is not necessarily optimal.

For the multi-step handover task, the hand-crafted model performs best. In their failure modes,
the models either incorrectly identify the human’s subgoal or identify too late to complete the han-
dover. Among the learned models, we again observe that the semi-supervised approach (Semi-B),
on average, accrues higher reward and completes more handovers as compared to the model learned
via supervised learning. The supervised approach relies on data alone and cannot utilize high-level
inputs, which can result in models that overfit to the training data. The generalization to behavior
absent in the training set is critical for human-robot collaboration, as the training data will seldom
have all possible types of human behavior. In contrast, our approach can successfully utilize both
partially labeled data and domain expertise, thereby improving performance in collaborative tasks.

Performance with Human Participants We next evaluated our approach via a human subject study
(N = 9; 5 female, 4 male; median age = 29 years). Two participants indicated prior experience
with robots. The human-robot team performed the multi-step handover task, where sH was sensed
using the PhaseSpace motion capture system. Each participant performed the task six times, twice
each with the three models: hand-crafted, supervised, and semi-supervised (Semi-B). The order of
treatments was randomized. To train the learned models, data was collected from three humans
(different from study participants) and labeled by the authors. Similar to the simulations, the train-
ing data included a subset of possible human behaviors (subgoal sequences). Further, latent state
(subgoal) labels of only 25% of training sequences were provided to the semi-supervised approach.

We compare the task-specific metric, number of handovers, for the three models. A non-parametric
Friedman test of differences was conducted, which rendered a Chi-square value of 11.6 indicating
statistical significance (p < 0.01). On average, the hand-crafted model resulted in 2.2 handovers,
the supervised model in 1.4 handovers, and the Semi-B model in 2.9 handovers. Similar to simula-
tion experiments, the supervised model completes the fewest handovers. With human participants,
the hand-crafted model (obtained from the true model of the simulated human) results in fewer han-
dovers than the semi-supervised model. These results further demonstrate that in practice, it is diffi-
cult to rely only on either manual specification or data alone to generate models of decision-making.
In summary, our evaluations confirm that our hybrid semi-supervised approach, despite 75% fewer
labels, performs equally well or better than a model learned with fully-labeled behavioral data.

8 Conclusion

We present a novel framework, ADACORL, to specify decision-making models and generate robot
behavior for human-robot collaboration. In the prior art, labeled datasets of human’s latent states
have been a prerequisite to generate fluent robot behavior. Our approach to model specification re-
laxes this requirement by learning decision-making models with partially labeled data and domain
expertise. We demonstrate our approach in two human-robot collaborative tasks, with state spaces
significantly larger than those considered in the prior art. Our approach to interaction planning en-
ables the robot to make decisions in these tasks, despite their large state spaces and short planning
times. In future work, we aim to further expand the vocabulary of our semi-supervised approach by
considering additional types of partial specifications and evaluating their relative utility for develop-
ers. Another avenue is to leverage approaches that infer task objectives [34, 35, 36, 37] and further
reduce the developer’s effort for specifying the task model and creating collaborative agents.

8



Acknowledgments

We thank the anonymous reviewers for their constructive comments and suggestions.

References
[1] G. Hoffman and C. Breazeal. Effects of anticipatory action on human-robot teamwork efficiency, fluency,

and perception of team. In Intl. Conf. on Human-Robot Interaction (HRI), pages 1–8. ACM, 2007.

[2] S. Nikolaidis, R. Ramakrishnan, K. Gu, and J. Shah. Efficient model learning from joint-action demon-
strations for human-robot collaborative tasks. In Intl. Conf. on Human-Robot Interaction (HRI), pages
189–196. ACM, 2015.

[3] S. Javdani, H. Admoni, S. Pellegrinelli, S. S. Srinivasa, and J. A. Bagnell. Shared autonomy via hindsight
optimization for teleoperation and teaming. The International Journal of Robotics Research, 37(7):717–
742, 2018.

[4] G. Hoffman. Evaluating fluency in human–robot collaboration. IEEE Transactions on Human-Machine
Systems, 49(3):209–218, 2019.

[5] T. Iqbal and L. D. Riek. Human-robot teaming: Approaches from joint action and dynamical systems.
Humanoid Robotics: A Reference, pages 2293–2312, 2019.

[6] V. V. Unhelkar, P. A. Lasota, Q. Tyroller, R.-D. Buhai, L. Marceau, B. Deml, and J. A. Shah. Human-
aware robotic assistant for collaborative assembly: Integrating human motion prediction with planning in
time. IEEE Robotics and Automation Letters, 3(3):2394–2401, 2018.

[7] M. G. Jacob, Y.-T. Li, G. A. Akingba, and J. P. Wachs. Collaboration with a robotic scrub nurse. Commun.
ACM, 56(5):68–75, 2013.

[8] M. A. Diftler, J. Mehling, M. E. Abdallah, N. A. Radford, L. B. Bridgwater, A. M. Sanders, R. S. Askew,
D. M. Linn, J. D. Yamokoski, F. Permenter, et al. Robonaut 2-the first humanoid robot in space. In Intl.
Conf. on Robotics and Automation (ICRA), pages 2178–2183. IEEE, 2011.

[9] C. Chao and A. Thomaz. Timed Petri nets for fluent turn-taking over multimodal interaction resources in
human-robot collaboration. The International Journal of Robotics Research, 35(11):1330–1353, 2016.

[10] S. Nikolaidis, D. Hsu, and S. Srinivasa. Human-robot mutual adaptation in collaborative tasks: Models
and experiments. The International Journal of Robotics Research, 36(5-7):618–634, 2017.

[11] F. A. Oliehoek, C. Amato, et al. A concise introduction to decentralized POMDPs, volume 1. Springer,
2016.

[12] V. V. Unhelkar and J. A. Shah. Learning models of sequential decision-making with partial specification
of agent behavior. In AAAI Conf. on Artificial Intelligence, 2019.

[13] N. Ye, A. Somani, D. Hsu, and W. S. Lee. DESPOT: Online POMDP planning with regularization.
Journal of Artificial Intelligence Research, 58:231–266, 2017.

[14] A. Thomaz, G. Hoffman, M. Cakmak, et al. Computational human-robot interaction. Foundations and
Trends R© in Robotics, 4(2-3):105–223, 2016.

[15] R. Choudhury, G. Swamy, D. Hadfield-Menell, and A. D. Dragan. On the utility of model learning in
HRI. In Intl. Conf. on Human-Robot Interaction (HRI), pages 317–325. IEEE, 2019.

[16] P. A. Lasota and J. A. Shah. A multiple-predictor approach to human motion prediction. In Intl. Conf. on
Robotics and Automation (ICRA), pages 2300–2307. IEEE, 2017.

[17] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In AAAI Conf. on Artificial Intelligence, volume 8, pages 1433–1438, 2008.

[18] H. S. Koppula and A. Saxena. Anticipating human activities for reactive robotic response. In Intl. Conf.
on Intelligent Robots and Systems (IROS), page 2071. Tokyo, 2013.

[19] M. Chen, S. Nikolaidis, H. Soh, D. Hsu, and S. Srinivasa. Planning with trust for human-robot collabora-
tion. In Intl. Conf. on Human-Robot Interaction (HRI), pages 307–315. ACM, 2018.

[20] A. D. Dragan and S. S. Srinivasa. A policy-blending formalism for shared control. The International
Journal of Robotics Research, 32(7):790–805, 2013.

9



[21] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan. Planning for autonomous cars that leverages effects
on human actions. In Robotics: Science and Systems (R:SS), 2016.

[22] E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone. Multimodal probabilistic model-based planning
for human-robot interaction. In Intl. Conf. on Robotics and Automation (ICRA), pages 1–9. IEEE, 2018.

[23] S. Nikolaidis, M. Kwon, J. Forlizzi, and S. Srinivasa. Planning with verbal communication for human-
robot collaboration. ACM Transactions on Human-Robot Interaction (THRI), 7(3):22, 2018.

[24] P. Trautman, J. Ma, R. M. Murray, and A. Krause. Robot navigation in dense human crowds: Statistical
models and experimental studies of human–robot cooperation. The International Journal of Robotics
Research, 34(3):335–356, 2015.

[25] J. F. Fisac, A. Bajcsy, S. L. Herbert, D. Fridovich-Keil, S. Wang, C. J. Tomlin, and A. D. Dragan. Prob-
abilistically safe robot planning with confidence-based human predictions. In Robotics: Science and
Systems (R:SS), 2018.

[26] F. Broz, I. Nourbakhsh, and R. Simmons. Planning for human–robot interaction in socially situated tasks.
International Journal of Social Robotics, 5(2):193–214, 2013.

[27] D. Whitney, E. Rosen, J. MacGlashan, L. L. Wong, and S. Tellex. Reducing errors in object-fetching
interactions through social feedback. In Intl. Conf. on Robotics and Automation (ICRA). IEEE, 2017.

[28] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch. Human-aware robot navigation: A survey. Robotics
and Autonomous Systems, 61(12):1726–1743, 2013.

[29] F. S. Melo, M. T. Spaan, and S. J. Witwicki. QueryPOMDP: POMDP-based communication in multiagent
systems. In European Workshop on Multi-Agent Systems, pages 189–204. Springer, 2011.

[30] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Partially observable markov decision processes for
artificial intelligence. In Annual Conference on Artificial Intelligence (AAAI), pages 1–17. Springer, 1995.

[31] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. The Journal of
Machine Learning Research, 14(1):1303–1347, 2013.

[32] Universal Robots. UR 10 Collaborative Industrial Robotic Arm, Accessed July 1, 2019. URL https:
//www.universal-robots.com/products/ur10-robot/.

[33] A. Panella and P. Gmytrasiewicz. Interactive POMDPs with finite-state models of other agents. Journal
of Autonomous Agents and Multi-Agent Systems, 31(4):861–904, 2017.

[34] M. Cakmak and A. L. Thomaz. Designing robot learners that ask good questions. In Intl. Conf. on
Human-Robot Interaction (HRI), pages 17–24. ACM, 2012.

[35] S. Chernova and A. L. Thomaz. Robot learning from human teachers. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 8(3):1–121, 2014.

[36] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan. Inverse reward design. In Advances
in Neural Information Processing Systems (NeurIPS), pages 6765–6774, 2017.

[37] A. Shah, P. Kamath, S. Li, and J. A. Shah. Bayesian inference of temporal task specifications from
demonstrations. In Advances in Neural Information Processing Systems (NeurIPS), pages 3804–3813,
2018.

10

https://www.universal-robots.com/products/ur10-robot/
https://www.universal-robots.com/products/ur10-robot/


A Blocked Gibbs Sampler for the Agent Markov Model

Algorithm 1: Gibbs Sampler to Learn AMM
Data: N seqs. of (sA, aA)-tuples, M labels of xA
Result: Samples for πA, Tx, bx, and N seqs. of xA

1 Initialize πA, Tx, bx, and unknown xA randomly
2 while number of samples generated < Ns do
3 Sample initial distribution, Pr(bx|xA, data;αb)
4 Sample transition model, Pr(Tx|xA, data;αv)
5 Sample policy, Pr(πH |xA, data; ρ)
6 Sample latent states, Pr(xA|data, Tx, bx, πH)
7 end

Algorithm 1 describes the blocked Gibbs sampler for the Agent Markov Model. Using data and
(optionally) labels of human behavior, the blocked Gibbs sampler enables learning of the latent
parameters (πA, Tx, bx) of the AMM describing human behavior.

The Gibbs sampler begins with an initial guess for the unknown latent state sequences xA. Samples
of model parameters (πA, Tx, bx) are then generated by utilizing the counts of latent state sequences
xA. For sampling Tx, we define nisaj as the count of transition from latent state xA = i to latent
state x′A = j for action aA and observed state sA. Both i and j range from 1 to |XA|. The
conditional distribution of Tx is given as: Tx(·|xA, sA, aA) ∼ Dirichlet(nxsa· + αt). The sampling
of initial distribution follows similarly, and depends on the initial counts of latent states in the data.
Conditional distributions for πH depend upon the policy prior. Latent state sequences are sampled
using a variant of forward filtering-backward sampling (FFBS) algorithm derived for the AMM.
This procedure is repeated iteratively to generate successive samples.

B Utility of Incorporating Domain Knowledge

The ability to incorporate domain knowledge, via partial specifications of latent AMM parameters
(π, Tx), is one of the key contributions of our model specification approach. In many human-robot
collaboration tasks, such domain knowledge is available. However, it is difficult to incorporate this
domain knowledge during model learning. To highlight the benefit of incorporating this domain
knowledge, we include additional simulation evaluations.

Specifically, we conduct a set of simulations for a variant of our approach (Semi-C). Similar to
Semi-A and Semi-B, labels of xH were provided for four sequences (i.e., ≈ 800 labels). However,
no high-level inputs were provided. Thus, Semi-C still performs semi-supervised learning but does
not incorporate the developer’s domain expertise. The remaining parameters were identical to that
of the simulation experiments presented in Sec. 7.

Shared Workspace Task Handover Task

Model wKL(Tx) wKL(πH) Reward Stops wKL(Tx) wKL(πH) Reward Handovers

Semi-C 0.012 0.041 -252.4 ± 32.4 3.5 0.069 0.056 -173.9 ± 5.4 1.4

Table 2: Model specification and interaction planning performance for the variant Semi-C.

The performance of Semi-C is summarized in Table 2. We observe that for both the tasks, Semi-C
accrues lower reward than both Semi-A and Semi-B. Thus, this set of evaluations further highlights
the importance of the ability to utilize partial domain knowledge.

The semi-supervised approach Semi-C has access to significantly fewer labels than the supervised
approach. Further, both approaches do not utilize partial domain knowledge. Thus, we expect the
performance of the supervised approach to be equal or better than that of Semi-C. This is indeed the
case for the shared workspace task. However, in the handover task, Semi-C accrues reward similar
to that of the supervised approach. We posit that this trend occurs since the supervised approach
may overfit to the training data, which is detrimental in tasks where the test set consists of behaviors
that are absent in the training set (e.g., the handover task in our evaluations).
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Thus, in summary, these additional evaluations confirm that, despite fewer labels, semi-supervised
learning with partial domain knowledge (i.e., ADACORL) results in performance better than that of
both supervised learning and vanilla semi-supervised learning. Further, the importance of domain
knowledge is heightened for collaboration scenarios where the training data set of human behavior
does not include human behavior encountered during the interaction.

C Performance with Human Participants

In Sec. 7, we discuss the evaluations of our approach via a human subject study. To further describe
the results from these experiments, we include figures summarizing the performance of the different
approaches. Since we do not have access to the true model of human participants, the metrics
of model alignment cannot be computed for experiments with human subjects. Thus, we provide
figures for the metrics of collaborative performance – namely, cumulative reward and the number of
handovers.
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Figure 2: Metrics of collaborative performance from the human subject study.

We reiterate that successful handovers were essential for the handover task. Only by successfully
completing the handover, the robot could assist human in preparation of the sandwich. As shown in
Fig. 2, the robot using our approach performs more handovers than both the baselines. Further, our
approach accrues a higher reward than both the hand-crafted and supervised models.
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