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Abstract

Generating high-resolution frames of an individual’s
face from a low-resolution version is useful in a number
of applications like low-bitrate video conferencing, video
enhancement, and de-blurring. A common technique to im-
prove fidelity to high-frequency content is to use one or more
example or reference images at higher resolution. However,
typical optical flow based models do not easily scale to mul-
tiple example images, and are constrained to generating
good frames only for poses that are close to the reference
pose. We propose a novel multi-resolution-attention archi-
tecture that encodes information from the reference images
into a set of key-value pairs at multiple resolutions that are
attended to for frame synthesis. Notably, once trained, our
model can effortlessly adapt to varying numbers of refer-
ence images during inference, while during training, it effi-
ciently requires only a single reference frame. On a highly
curated dataset, we show that even with a single refer-
ence frame, our multi-resolution architecture improves the
PSNR, SSIM and LPIPS of synthesized images on average
by 1.71 dB, 1.13 dB and 0.06 respectively over a single-
resolution architecture. Further, using multiple references
provides an additional improvement of 0.15 dB in PSNR,
0.07 dB in SSIM, and 0.01 in LPIPS. Moreover, on a more
diverse dataset, our approach exhibits a remarkable boost
in reconstruction quality – ∼1 dB PSNR and SSIM, and
20% in LPIPS – when comparing the use of ten references
to a single reference frame.

1. Introduction

Generating or reconstructing faces in a novel pose us-
ing priors such as a reference image or audio informa-
tion has been an area of active research the past few
years [27, 22, 42, 37, 35, 19]. Most approaches use a
source image, and a sparse representation of the (target)
unseen pose as inputs to a neural network that has been
trained to reuse relevant parts of the source image in the

new pose while also synthesizing unseen portions. These
sparse representations may involve keypoints [27, 42, 37],
audio [50, 43, 47] or even low-resolution video input [29].
Since these sparse representations can often be compressed
very efficiently, these approaches [29, 22, 37] pose new op-
portunities for low-bandwidth video-conferencing by trad-
ing off receiver side compute for less information transmit-
ted per video frame.

Synthesis approaches that produce high-resolution (HR)
images from low-resolution (LR) version with help from
reference images have been shown to be particularly ro-
bust to extreme motion or changes in orientation [29].
Many of the existing techniques such as Gemino [29] and
HIME [39], inspired by prior work on keypoint-based tech-
niques [42, 27, 37, 29], compute optical flow in their face
reconstruction pipeline. Specifically, they estimate, in two-
dimensions, which source feature (or pixel) needs to be
moved to a given target image location in order to pro-
duce the reconstruction. However, this estimation is chal-
lenging when there is extreme motion, and image or fea-
ture correspondence is minimal. While this can be alle-
viated to an extent with the use of multiple source or ref-
erence images, it often requires an additional layer [35]
to compute masks that combine the different sources’ op-
tical flows. Since not all target regions can be mapped
back to one or more references, these approaches rely on
a partially generative network to synthesize or hallucinate
such regions. Gemino [29], for instance, uses personalized
generative models that capture features of a person in their
weights.

A more versatile alternative to optical flow is atten-
tion [34, 5]. The basic approach within an attention layer
is to compute correspondence between query and key fea-
tures that identify which spatial locations in the target frame
(query) should draw upon which locations in the reference
(key). Each key feature maps to a value feature that is the
actual feature used after the attention operation. Attention is
similar to optical flow in that it identifies a correspondence
between source and target pixels. However, it is much more



general in that it allows you to produce a weighted com-
bination of input locations for every output location, rather
than rely on a single input location. This versatility comes
at the cost of higher computation [5, 46] but provides much
more flexibility to the model in the form of a larger cor-
pus of features, potentially from multiple references [35],
to pick from. It also opens up the ability to identify a set of
person- or video-specific features that the attention mech-
anism can learn to draw upon appropriately in the recon-
struction pipeline.

The idea of using attention in the face reconstruction
pipeline has been explored recently [48, 19]. However, cur-
rent approaches are either generative and may not maintain
identity [48], or limit themselves to the use of fixed number
of reference frames [19]. The latter approach hinders the
adaptability of a single model to different numbers of ref-
erence frames without requiring costly retraining for each
variation.

In this paper, motivated by the robustness of the
high-frequency conditional super-resolution approach in
Gemino, we discuss an alternate approach to super-
resolution aided by reference frames called Gemino (Atten-
tion) that uses attention mechanisms similar to [19] instead
of optical flow. Specifically, Gemino (Attention) encodes
a LR target image as well as low and high-resolution ver-
sions of the reference into a set of features. It then computes
attention or correspondence between the features from the
LR target (query features) and the LR reference (key fea-
tures), and extracts the corresponding high-resolution refer-
ence features (value features). The attended features from
the high-resolution reference features are then put through
a series of decoding layers to produce the final reconstruc-
tion. This attention structure naturally lends itself to mul-
tiple reference frames; we simply extract key-value pairs
from each reference frame’s LR and HR versions and stack
them together in the attention pipeline. The model can then
decide, on its own, which parts of which frame are most
different and necessary to reconstruct a new target frame.
Note that the model is trained once for a single reference
image, but extends at inference time to multiple reference
images. This is because attention is merely computing a
dot product between queries and keys, and can naturally do
this for more keys than it was originally trained for without
retraining.Unlike [19], that only computes attention in the
bottleneck layer, we compute attention at multiple resolu-
tions and show that it improves reconstruction quality.

We evaluate Gemino (Attention) on publicly available
TCDTimit [8] dataset and show that our novel multi-
resolution attention design provides an improvement of
1.71 dB in PSNR, 1.13 dB in SSIM and 0.06 in LPIPS over
a similar design that runs attention only at the coarsest level.
Further, the same model when evaluated using five refer-
ences provides an additional improvement of 0.15 dB in

PSNR, 0.07 dB in SSIM, and 0.01 in LPIPS. Since TCD-
Timit [8] lacks sufficient variation in pose and backgrounds,
we also evalute on a more diverse dataset and observe that
we get an improvement of nearly 1 dB in both SSIM and
PSNR, and a 20% decrease (0.01) in LPIPS when using 10
references instead of 1. As the number of reference frames
grows, our model incurs higher computational costs. How-
ever, this issue can be mitigated by employing a one-time
compression of the fixed key-value pairs derived from the
reference frames or by utilizing faster techniques to approx-
imate the attention mechanism [36, 26, 14].

2. Related Work
Novel-view Synthesis Approaches. Face synthesis tech-
niques fall under the broader problem of synthesizing a
novel-view of an object or a person given a certain reference
view. Many proposals [49, 23] have attempted to tackle the
general version of the problem including Multi-View Image
Fusion [32] and NeRF [21]. These approaches typically es-
timate a flow from the existing views to the novel view that
captures both which parts of existing reference views can
be copied over to the novel view, and what parts need to be
synthesized.

Approaches specific to generating faces in a target pose
based on reference or texture information have also been
widely studied [27, 42, 37, 22, 35, 19, 29, 39]. For exam-
ple, the First-Order Motion Model (FOMM) [27] animates
a source image of a person into the target pose by estimat-
ing the motion using a first-order approximation around a
set of ten sparse keypoints that are learnt end-to-end. Max-
ine [37] furthers this idea by using three-dimensional key-
points. The FOMM itself has been extended to use multiple
source images [35] as well as optimized to run on mobile
devices [22] albeit at much lower fidelity. Since keypoints
provide a limited representation of the facial movement and
mouth positioning, a few approaches [50, 43, 47, 24] lever-
age audio data in addition to pose information. HIME [39]
and Gemino [29] use a low-resolution target image as their
input instead of keypoints or audio. All these approaches
rely on warping the source image based on optical flow es-
timation between the source and target poses. A recent pro-
posal [19] attempts to replace the flow module with an at-
tention mechanism instead but requires a careful selection
of reference images. We seek to go further by letting the
model automatically use whichever and how many ever ref-
erence images amongst a pool it deems most useful.
Super-resolution Techniques. Super-resolution (SR) ap-
proaches take as input a low-resolution (LR) input and
reconstruct a high-resolution (HR) version. The stan-
dard form within this realm is single-image SR techniques
which only use the input image. Recently, CNN-based ap-
proaches [15, 16, 18, 13] that learn this transformation have
significantly outperformed classic (non-learnt) interpolation
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methods such as bilinear or bicubic [12]. Since a number of
these models tend to be large, efforts to distill SISR mod-
els into lightweight versions have resulted in newer models
such as IDN [10] and IMDN [9]. However, all of these
approaches need to fundamentally hallucinate or memorize
high-frequency texture information since LR inputs only
capture low-frequency details.

To overcome this challenge, a handful of reference-
image based SR techniques have been proposed over the
years. A number of these techniques predate the neural net-
work renaissance and use simple motion or similarity com-
parisons at a pixel level [3, 41, 30, 31]. More recent ap-
proaches either rely on a HR version of the LR input [45],
or use learnt correspondences using patches [44, 7], fea-
tures [40], or optical flow [29, 39] to extract the relevant
parts of the reference image that can help reconstruct the in-
put image. Our technique is inspired by an attention-based
solution to this problem as used in [19, 40]. However, we
focus exclusively on face synthesis, and provide a corpus
of reference images to our model. Though our model has
been trained on a single reference image like Gemino [29],
at test time, it can leverage any number of reference frames
and automatically combine them in the most useful way to
generate the HR target image.
Attention Mechanisms. Attention mechanisms have
gained popularity in vision tasks since the introduction of
the self-attention layer (identical query, key, values) in [34].
A number of models [46, 17, 2] for image and video-related
tasks including ViT [5] and VCT [20] have since employed
either self or cross attention. Even certain super-resolution
techniques rely on transformers [15, 40, 18] to help model
the long-range dependencies between the low-resolution in-
put and high-resolution target better. Recently, codebook-
based approaches [33, 6] combined with attention have
shown good reconstruction quality despite their use of dis-
crete codes or quantized features that capture very specific
visual parts of the frame. In particular, Codeformers [48]
uses a codebook specific to faces, and uses attention to find
correspondence between LR input patches and the corre-
sponding HR patch from the codebook. However, it is a
generative approach that may not synthesize images with
the same identity as the HR ground-truth.

3. Motivation
As shown in Gemino [29], many of the techniques devel-

oped for novel-view synthesis using keypoints have catas-
trophic failures if the reference frame and the target frame
differ significantly in their poses. While standard super-
resolution techniques with a series of downsampling and
upsampling layers has better low-frequency fidelity and
places objects in the right place, it fails to capture high-
frequency details such as hair strands and facial texture.
Gemino [29] combines these two approaches in its high-
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(a) Optical flow maps a single target block to a reference block.
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(b) Attention computes each target block (query) as a weighted av-
erage of all reference blocks (keys).

Figure 1. Comparison between optical flow and attention.

frequency conditional super-resolution design wherein it
upsamples a LR target but uses information from a high-
resolution reference frame to condition the upsampling.
This way, Gemino transfers high-frequency information
from the reference frame to the target frame in regions that
are similar, but falls back on super-resolution as a lower
bound for reconstruction error for regions that are new or
very different in the target frame.

While Gemino achieves audio-like bitrates with good re-
construction fidelity, it uses only reference frame. This is
because the model estimates motion between the reference
and the target using optical flow methods and uses the re-
sulting warping field to translate the reference features into
the coordinate system of the target prior to decoding. The
output from running optical flow maps each region or block
of the target frame to its closest match in the reference frame
(Fig. 1(a)). Though this is an efficient technique for motion
estimation, it does not inherently let the model leverage in-
formation from multiple reference frames.

Consider the case of a target that has both eyes open
and the mouth wide, but needs to choose one of two op-
tions for references: one with open eyes and another with
an open mouth. An optical flow approach would only be
able to leverage one of the two frames, missing out on rele-
vant high-frequency information in either the mouth or eye
region. One option would be to add a linear layer after
computing individual warping fields based on each of the
two references. Such a linear layer would be responsible
for computing weights for which image regions need to fo-
cus on which of the two references. Such a weighing layer
is outside of the default optical flow formulation. How-
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ever, this is precisely what the expressiveness of an attention
layer lets us do.

Attention [34] is a mechanism to capture correspondence
between regions of the target frame and all regions of one
or more reference frames. In contrast to optical flow which
maps a region of the target to a single region in a refer-
ence frame, attention allows you to compute a particular
region of the target as a weighted combination of all refer-
ence regions (Fig. 1(b)). This automatically scales to mul-
tiple references since it simply returns weights across all
regions of all references. In the above example of the target
with open eyes and a wide mouth, attention allows target
regions around the eyes to weigh the reference with open
eyes more while target regions around the mouth rely more
on the other reference with the wide mouth. The precise
correspondence is calculated using a region-by-region dot
product between the target and the references. Since this
operation does not involve any learning, an attention-based
model trained on a single reference frame can be easily ex-
tended to any number of references at inference time. The
model simply calculates correspondence or attention with
as many references as provided before running the attended
output through the rest of the decoding pipeline. Due to
its versatility, we employ attention as an alternative to op-
tical flow for motion estimation in Gemino (Attention), an
alternate design to Gemino for high-frequency conditional
super-resolution.

4. Method
The input to Gemino (Attention) is a set of references in

both their LR and HR versions, and a LR target whose HR
version we want to reconstruct. Note that the LR and HR
images have the same dimensionality because the LR im-
age is downsampled and then re-upsampled using bicubic
interpolation. This results in a blurry LR image whose di-
mensions match that of the crisper HR image. Fig. 2 depicts
the architecture of our system.

A shared key-query encoder encodes the LR references
and the LR target into key and query features respectively.
A separate value encoder encodes the HR references into a
set of value features. An aggregator module (e.g. concate-
nation) aggregates key-value feature pairs from multiple
references into a smaller compact set of key-value pairs. An
attention layer computes attention between key and query
feature pairs and maps it to the corresponding values. This
process is repeated at higher resolutions (or finer levels) to
provide skip connections that are leveraged during decod-
ing to preserve high-frequency content. The attended value
features at the coarsest level are then decoded, along with
skip connections at subsequent levels, to produce the final
reconstructed image.

We describe in detail the key-query encoder, the value
encoder and decoder in §4.1. A strawman version of atten-

tion that uses a single reference image is described in §4.2.
We extend this strawman to multiple references in §4.3, and
finally describe how we leverage skip connections and at-
tention at multiple resolutions to preserve high-frequency
content in §4.4.

4.1. Feature Encoding and Decoding

To capture information from the LR and HR images at mul-
tiple resolutions in a richer space than their per-pixel RGB
representations, we first encode them into the feature space.
We then perform attention before decoding the same fea-
tures.
Key-Query Encoder. The LR references and the LR ver-
sion of the target frame are encoded using a shared key-
query encoder. Since our attention mechanism computes
correspondences between the keys and the queries, it is best
that their features are semantically aligned, and so, we use
a shared encoder to improve that likelihood. The key-query
encoder consists of three convolutional layers each with
stride 1. Each of these layers is paired with a downsampling
layer that runs convolutions of stride 2. Thus, each down-
sampling layer reduces each spatial dimension by a factor 2,
decreasing the total spatial blocks by 4x. The convolutions
use a 3×3 kernel and ‘same’ padding to capture informa-
tion across regions of the input images. Each convolutional
layer also uses a ReLU activation. Fig. 3 diagrammatically
describes this encoder design. Since we use 384×384 im-
ages in our evaluation, the encoder produces features with
spatial dimensions of 192×192, 96×96 and 48×48.
Value Encoder. The architecture of the value encoder is the
same as the key-query encoder. In other words, the value
encoder also uses three convolutional layers with stride 1,
each of which is paired with a downsampling layer that
reduces each spatial dimensions by 2×. However, unlike
the key-query encoder, the value encoder operates on high-
resolution references and thus, encodes high-frequency con-
tent associated with the reference images.
Decoder. The decoder’s design nearly mirrors that of the
value encoder since it is designed to produce an RGB im-
age from the attended (value) features. Specifically, the de-
coder consists of three convolutional layers each with stride
1. Each of these layers is paired with a two-dimensional
upsampling layer that performs a bilinear interpolation to
increase the spatial dimensions of the feature by 2× along
each axis. The convolutions use a 3×3 kernel and ‘same’
padding to combine information across regions of the input
images. Each convolutional layer also uses a ReLU activa-
tion. The architecture is a mirror of the encoder shown in
Fig. 3 with Upsampling layers replacing the down blocks.
The decoder further uses skip-connections produced by at-
tending appropriately to the encoded key and value features
at the resolutions in intermediary layers of the encoder. We
motivate the use of these skip connections further in §4.4.
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Figure 2. Gemino (Attention)’s architecture. The LR target is encoded into query features, while a set of LR and HR reference frame pairs
are encoded into their respective key and value feature pairs. The key and value features can be aggregated to smaller dimensions using an
aggregator (e.g. concatenation, clustering, PCA). Scaled dot-product attention (denoted by the ‘.’) is computed between query features and
each of the key value pairs to obtain attended HR value features that are then decoded to produce the final reconstruction.

Figure 3. Gemino (Attention)’s key-query encoder architecture
consisting of two convolutional blocks followed by a downsam-
pling block (convolutions with stride 2) at each resolution. Each
block uses ReLU activation. The encoding layers convert the
384×384×3 RGB image into features of size 48×48×512. The
decoder architecture mirrors the encoder, but uses 2D upsampling
layers instead of the downsampling layers.

4.2. Attending to a Single Reference

As described in §4.1, the key-query encoder produces a
sequence of query features from the LR target frame and
key features from the LR reference frames, while the value
encoder encodes the HR reference frame. The next step is
to compute correspondence between these query and key

features. For simplicity, we assume that we have exactly
one reference frame, which ensures that the query, key, and
value features are all of the same dimensionality. In §4.3,
we build on this design to extend it to multiple references.

To compute correspondence between the query and key
features, we use the scaled dot-product attention layer [34,
1]. Specifically, we compute:

Attended Values(Q, K, V) = softmax
(QKT

c

)
V

where Q, K, and V denote query, key and value features re-
spectively, and c is a learnt scaling parameter. This layer
computes the inner-product QKT between each query ele-
ment against each key element, and obtains a softmax over it
to produce a weighted average of key elements across all lo-
cations that contribute to a particular query location. Effec-
tively, this layer captures the similarity between the query
and the key or learns how to combine different regions of
the reference to produce a particular region of the target.
Since we ultimately want to use the HR features in the de-
coding procedure, this similarity, though computed on LR
reference features, is mapped to HR value features from the
reference via the multiplication with value features V.

If we have d dimensions in the query (assume that all
spatial and channel dimensions are flattened), the query Q
is (1 × d) in size. Since the key-query encoder is shared
and the value encoder’s architecture is identical to that of
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the key-query encoder, the values and the keys also have
dimension d when flattened. Assuming a single reference
image, this means that V and K are also (1 × d) in size.
This produces a similarity value QKT of dimensions (1×1)
and attended values of dimensions (1 × d) which can then
be decoded to produce the final reconstruction.

Note that we choose to use the simplest version of atten-
tion by leveraging a single dot-product attention layer with c
being the only learnt parameter. Multi-headed attention [34]
is more commonly used in transformer architectures, and is
known to be much more powerful. However, we did not see
significant gains in our evaluations, and thus chose to avoid
the increased computational overheads.

4.3. Attending to Multiple References

Using attention even on a single reference image allows
for improved capabilities in combining information from
multiple image regions in contrast to optical flow that moves
a single source location to a single target location. How-
ever, the versatility of attention is put to its true use with
multiple reference images. To extend the design described
in §4.2 to multiple images, we alter the attention layer to
now compute correspondences across many more features
from multiple references.

Specifically, we assume that we have n different refer-
ence images, and we have LR and HR versions of each ref-
erence. The key-query encoder encodes the LR references
to produce key features of size (n × d) while the value en-
coder encodes the HR references to produce value features
of size (n × d). So far, we have merely concatenated fea-
tures from n different reference images. We discuss in fu-
ture work possibilities to aggregate these concatenated fea-
tures into a smaller representation of size (a× d) using the
aggregator module in Fig. 2. However, we assume for the
rest of this section and the evaluation, that we simply con-
catenate the features obtained from multiple references.

Once concatenated, the attention layer computes the
same scaled-dot product attention, albeit on different di-
mensions. Specifically, the similarity between key and
query features is now computed across all n key features
to result in a value QKT of dimensions (1× n). However,
since the attended values are (n × d) in size, the final di-
mensions of the attended values is still (1 × d) which can
then be decoded to produce the final reconstruction.

This reveals a very powerful detail about the attention-
based design in our model. The attention layer, even if
trained on a single reference image to learn its scaling pa-
rameter c, can be extended at inference time to use multiple
reference images without retraining. This is because the
sizes of the key and value pairs are abstracted away in the
dot-product and only the query feature dimensions and the
final attended value features need to be maintained for the
model pipeline from Fig. 2 to work between train and test

time.

4.4. Preserving High-frequency Content

Multi-resolution Attention. The attention mechanism de-
scribed above operates on query, key and value features of
dimensions d. However, the actual value of d and what it
means in the context of spatial and channel dimensions for
the features can have an outsize impact on the granularity
of these features and subsequently, the quality of the final
reconstruction. A strawman solution would be to run at-
tention once on the coarsest (last) level of features obtained
from the query, key, and value features. In our evaluations
with 384×384 images and encoders with three downsam-
pling layers, this would mean spatial dimensions of 48×48.
While this makes the computationally intensive attention
operation tractable, such a resolution is too coarse to realis-
tically preserve any high-frequency content associated with
the images.

Instead, we leverage its skip connection design pop-
ularized by U-Nets [25] to improve the fidelity to high-
frequency content in Gemino (Attention). Since we al-
ready have an encoder and decoder structure, it is relatively
straightforward to extend our design to use skip connec-
tions. Specifically, we obtain encoded query, key and value
features from each intermediary level of the key-query en-
coder and value encoder. This results in features of spa-
tial dimensions 192×192, 96×96 and 48×48. We compute
attention or correspondence between each of these levels’
query and key features to produce attended value features at
each intermediary level. While the coarsest level’s attended
features are used as the input to the decoder, the remain-
ing levels’ attended features are progressively fed in as skip
connections to improve the fidelity to high-frequency con-
tent in the final reconstruction. We deem this architectural
element “multi-resolution attention” and evaluate its bene-
fits in §5.2.
Block-based Attention for Reducing Compute. Though
the skip connections help with improving fidelity, run-
ning a scaled dot-product attention at resolutions as high
as 192×192 is simply impractical. This is because the
dot product is effectively computed between every spa-
tial query and key location resulting in a vector of size
192×192×192×192. To overcome this issue, we break our
feature space into smaller patches and compute attention
only within that patch. This idea is inspired by ViT [5],
but modified to account for the fact that we are only synthe-
sizing talking heads.

In the design of Gemino (Attention), we break features
that are spatially large into 12×12 blocks and only com-
pute attention within the 144 locations inside each of these
blocks and across the 144 locations in the same block of all
the reference image features. In other words, query features
of dimensions 192×192×f where (f is the filter or channel
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dimension) are broken into 256 separate 12×12×f blocks
with their indices identifying which region in the original
192×192 they came from. We repeat this across all n refer-
ence frames’ key and value features to generate n separate
key and value features for each 12×12 block index. Then,
we pick a particular block index, and compute attention be-
tween the (1 × 144.f) query features and its (n × 144.f)
key and value features for that block. In conceptual terms,
this boils down to first narrowing down to a small set of
features mapping to the eye region, and then leveraging in-
formation on the orientation of the eye across n frames to
reconstruct the eye in the target. This is similarly repeated
(across blocks) to attend to features in regions focused on
the ear, mouth, nose, etc.

5. Evaluation

5.1. Setup

Dataset. We use the TCDTimit [8] dataset that consists of
1080p videos that are recordings of trained actors who read
a script facing a camera against a green screen. The videos
are short clips of duration less than 10 seconds and are at a
framerate of ∼ 30 FPS. The videos are of high-quality, en-
coded at bitrates above 50Mbps. Out of the 60 actors, we
choose 51 to form our training set and nine people to form
our test set. Each person has 96 videos. Prior to training,
we crop a square frame of size 384×384 in the center. The
low-resolution (LR) input is either of size 48×48 or 96×96
depending on whether it is a 8× or 4× upsampling task. In
both cases, the LR frames have been resized to 384×384
by bicubic upsampling prior to use in the training or infer-
ence pipeline. We run inference on every frame of every
test video of every person, but for training, we sample 1000
pairs of reference and target frames per video. Note that the
people in the train and test dataset are completely different;
unlike Gemino, this approach does not leverage per-person
finetuning for improved reconstruction fidelity.
Baselines. We compare the following approaches to under-
stand the benefits that Gemino (Attention) provides com-
pared to existing solutions.

• Single-image Super-resolution (SISR): A simple en-
coder and decoder pair that encodes the LR target im-
age and decodes it into the HR target image. This ap-
proach does not use any HR reference frames.

• Gemino: A version of the Gemino [29] model that
does 8× upsampling. Gemino operates directly on the
LR input (48×48) without resizing it using bicubic up-
sampling to 384×384. We use this only to provide
a baseline for compute overheads (and not visual fi-
delity) since Gemino was trained on a very different
dataset with personalization benefits that we do not ex-
plore in this paper.

• Coarse Attention with Single Reference Image

(Coarse Attn.): This approach, like Gemino, encodes
the LR and HR frames into a set of encoded features.
However, instead of computing optical flow to warp
the HR features, it computes attention on the coars-
est (or smallest spatial dimension) features of the HR
frame with those of the LR frame. This attention is
run over the entire spatial dimension (48×48) of these
encoded features. The decoding pipeline does not use
any of the skip connections described in §4.4.

• Gemino (Attention): Our contribution that builds
upon the previous “Coarse Attention” model by run-
ning attention at multiple resolutions using the inter-
mediary outputs of the encoder’s layers when applied
to the HR and LR reference and target frames. Each
of these intermediary attended outputs is provided to
the decoder as skip connections to improve its high-
frequency fidelity. To ensure that this approach scales
as the number of reference frames is increased, atten-
tion is computed over smaller blocks to focus the at-
tention mechanism over small regions of all the refer-
ences. This model is trained using a single reference
image randomly sampled from the same video as the
target image, but is used at inference time with upto 10
reference images in our evaluations. In such cases, the
encoded features from all the references are provided
as key-value pairs to the attention module that decided
how to appropriately weigh them when computing fea-
tures to decode into the target image.

Model and Training Procedure. We train all models on
the entire corpus of train videos for 1M steps. Gemino (At-
tention) is trained with a batch size of 8 with random ro-
tational augmentations of ninety degrees to improve its ro-
bustness. The learning rate starts at 0.0001 and decays by
a factor of 0.46 halfway. Our model is trained with both
an L1-loss on the pixel space between the ground truth and
the reconstruction, as well as a feature matching loss from
VGG [11] that improves the sharpness of the output pro-
duced. Both these losses are weighed equally.
Visual Quality Metrics. We compute the average Peak
Signal-to-Noise Ratio (PSNR), the Structural Similarity In-
dex (SSIM) [38], and the Learned Perceptual Image Patch
Quality Metrics (LPIPS) on the reconstructed frames from
each of the above baselines and the ground-truth. PSNR is
reported as the mean-square error of pixels in each frame
averaged across all test frames of a given video, measured
on the RGB scale. SSIM is reported as the average (across
frames) of the structural similarity between the reconstruc-
tion and its high-resolution counter-part. For SSIM and
PSNR, a higher value denotes better reconstruction qual-
ity. LPIPS is reported as a distance metric in the VGG [28]
feature spaces of the reconstructed image and its high-
resolution ground-truth. Lower LPIPS scores correspond to
higher fidelity. We also show visuals to provide qualitative
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PSNR (dB) ↑ SSIM (dB) ↑ LPIPS ↓

Scheme Avg. P5 P1 Avg. P5 P1 Avg. P95 P99

SISR 30.98 28.72 28.56 8.14 6.77 6.69 0.17 0.21 0.22
Coarse Attention 30.98 28.73 28.55 8.07 6.70 6.62 0.17 0.20 0.21
Gemino (Attention): 1 ref 32.69 29.86 29.39 9.55 7.19 7.04 0.11 0.15 0.16
Gemino (Attention): 2 refs 32.67 29.83 29.42 9.50 7.25 7.08 0.11 0.15 0.16
Gemino (Attention): 5 refs 32.84 29.86 29.46 9.62 7.33 7.13 0.10 0.14 0.15

Table 1. Performance improvements from using multiple references with Gemino (Attention) running over 24×24 blocks over Single-
Image SR (SISR) and attention that runs at the coarsest level alone (Coarse Attention) at an 8× upsampling task. SISR and Coarse
Attention miss high-frequency information while Gemino (Attention) retains it.

comparisons across approaches.
Computational Overhead Metrics. In addition to assess-
ing the fidelity of the reconstructions to their ground truth,
we also measure the computational overhead of each of the
models. This is important because attention is an expensive
operation since it computes large matrix dot products. We
measure the the size of the model in terms of its number
of parameters, its computational complexity as reflected by
the number of floating point operations (FLOPS) it needs, as
well as the time it takes to run inference on a single frame
on a V100 GPU. We ignore any one-time operations such
as encoding time of the references for Gemino (Attention)
since this will likely be done once, and then reused for sub-
sequent attention computations.

5.2. Results

Main Takeaway. We compare all of the baselines against
Gemino (Attention) when upsampling 8× from a 48×48
frame to a 384×384 frame and present a quantitative sum-
mary in Tab. 1. We show visual samples in Figures 4 and
5 to provide qualitative examples. Overall, Gemino (Atten-
tion) outperforms other baselines, and also provides ben-
efits in reconstruction quality as the number of references
increases. Specifically, it maintains high-frequency fidelity
when compared to SISR and Coarse Attention, but also per-
forms better in particular regions of the face and torso with
improved information from multiple references. We break
these results down in subsequent paragraphs.
Comparison with Single-Image SR. We observe in Tab. 1
that single-image SR (SISR) achieves on average 1.7 dB
less PSNR, 1.41 dB less SSIM, and 0.06 more LPIPS than
Gemino (Attention) with one reference frame. A similar
difference of 0.06 manifests with LPIPS on the worst 5%
and 1% of test frames. Without a reference frame to pro-
vide high frequency information, SISR’s upsampling layers
are unable to recover the details associated with individu-
als’ facial features. As seen in Figures 4 and 5, the SISR
output misses the freckles and acne associated with both in-
dividuals’ foreheads. Its reconstruction of both individuals’
hair also lacks detail. This is unsurprising since the low-

resolution input frame lacks high-frequency detail. Further,
these models have not been trained with frames of the test
individuals and thus, cannot encode such information into
their weights.
Benefits of Multi-resolution Attention. Tab. 1 shows that
“Coarse Attention” does not perform better than SISR. This
suggests that running attention at the coarsest level with
encoded reference features fails to capture the same high-
frequency details that SISR misses. This is reflected in
the visual samples in Figures 4 and 5 too; Coarse Atten-
tion misses the same freckles and acne that SISR misses on
the foreheads. This is because the encoded features at the
coarsest level of the encoder are too low-resolution (48×48)
to retain enough high-frequency information from the ref-
erence frame that can later be leveraged through attention
before the decoding pipeline.

However, when that same information is passed through
a series of skip connections in Gemino (Attention), the re-
construction quality improves significantly even with one
reference frame. Specifically, the skip connections provide
reference features at multiple resolutions via attention com-
puted on each intermediary encoder layer’s outputs. The
decoder then uses these reference features at the appropri-
ate resolution to recover the high-frequency details associ-
ated with the individual. This improved architecture pre-
serves the acne and freckles in the visual samples produced
by Gemino (Attention) in Figures 4 and 5.
SR Task Difficulty. In Tab. 2, we compare existing base-
lines to Gemino (Attention) at a 4× upsampling task from
96×96 to 384×384. Like the 8× upsampling case, we ob-
serve that Gemino (Attention) outperforms SISR and at-
tention at the coarsest level alone due to the lack of suffi-
cient high-frequency information in both approaches. As
the number of references is increased to ten, we observe a
marginal improvement in visual quality as reported by the
PSNR, SSIM and LPIPS values for the average and worst
5% and 1% of frames. Since 4× upsampling is generally
easier than 8×, all of the reported numbers are much better
than those reported in Tab. 1.
Computational Overheads. Though using attention with
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(a) Pool of Five References

(b) Reconstruction of Different Schemes.

(c) Zoomed-In View of Reconstruction of Different Schemes.

Figure 4. Reconstruction quality of different approaches on a specific frame using upto five references. Unlike Gemino (Attention), SISR
and Coarse Attention miss high-frequency information associated with freckles and acne on the face. As the number of references for
Gemino (Attention) is increased, the reconstruction of the eyelashes and the folds of the eyes improves as seen in the zoomed-in version.

PSNR (dB) ↑ SSIM (dB) ↑ LPIPS ↓

Scheme Avg. P5 P1 Avg. P5 P1 Avg. P95 P99

SISR 33.61 31.23 31.02 9.76 8.10 8.02 0.12 0.14 0.15
Coarse Attention 33.61 31.18 30.97 9.78 8.16 8.05 0.12 0.14 0.15
Gemino (Attention): 1 ref 34.57 32.01 31.31 10.77 8.54 8.40 0.09 0.11 0.13
Gemino (Attention): 2 refs 34.55 32.04 31.31 10.73 8.60 8.44 0.09 0.11 0.13
Gemino (Attention): 5 refs 34.63 32.05 31.32 10.78 8.64 8.44 0.09 0.11 0.13
Gemino (Attention): 10 refs 34.71 31.98 31.32 10.86 8.65 8.46 0.09 0.11 0.13

Table 2. Performance improvements from using multiple references (15 frames apart) with Gemino (Attention) running over 12×12 blocks
over Single-Image SR (SISR) and attention that runs at the coarsest level alone (Coarse Attention) at an 4× upsampling task. The trends
across approaches are similar to 8× upsampling but the reconstruction quality is much better since the starting resolution is higher.

multiple references instead of optical flow improves the vi-
sual quality of generated frames, computing attention in-
volves multiplication of large matrices that imposes severe
overheads. As seen in Tab. 3, single-image SR takes only
11.65ms to run inference on a 384×384 frame, and has
far fewer parameters and FLOPs in comparison to its atten-
tion counterparts. Gemino [29] has a lot more paramters (∼
82M) because it has a separate keypoint extraction and mo-
tion estimation pipeline. However, because many of these
operations run at lower resolutions in its multi-scale archi-
tecture, this does not cause an explosive increase in FLOPs

or inference time.

All of the attention versions of Gemino and coarse at-
tention have fewer parameters than Gemino’s optical flow
version because we use dot-product scaled attention for mo-
tion estimation which only has one parameter regardless of
the attention block size and the input dimensions. How-
ever, as the block size increases for a fixed number of ref-
erences, the FLOPs for Gemino (Attention) increases be-
cause each attention operation computes matrix multiplica-
tion over larger spatial regions . This consequently mani-
fests as an increase in V100 inference time. As the number
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(a) Pool of Five References

(b) Reconstruction of Different Schemes.

(c) Zoomed-In View of Reconstruction of Different Schemes.

Figure 5. Reconstruction quality of different approaches on a specific frame using upto five references. Unlike Gemino (Attention), SISR
and Coarse Attention miss high-frequency information associated with freckles and acne on the face. As the number of references for
Gemino (Attention) is increased, the reconstruction of the eyelashes and the eye gaze improves as seen in the zoomed-in version.

Scheme Params FLOPs V100 Inference

SISR 11.66M 191B 11.65ms
Coarse Attn. 18.60M 385B 285.81ms
Gemino 82.41M 82B 14.87 ms

Gemino (Attention) @ 12×12
1 ref 20.22M 481B 29.72ms
2 refs 20.22M 655B 30.15ms
5 refs 20.22M 1178B 47.38ms
10 refs 20.22M 2049B 66.14ms

Gemino (Attention) @ 24×24
1 ref 20.22M 540B 31.67ms
2 refs 20.22M 774B 47.23ms
5 refs 20.22M 1476B 98.70ms

Table 3. Computational overheads of Gemino (Attention) at block
sizes of 12×12 and 24×24 with different number of reference
frames in comparison to single-image SR, attention at the coars-
est level and Gemino’s optical flow version. Parameters, floating
point operations (FLOPS), and inference time on a V100 GPU are
measured in millions, billions, and milliseconds respectively.

of references increases, attention becomes more expensive
(increased FLOPs and inference time) once again because
of more matrix multiplications. Note that this increase is

not quite linear because we only measure the inference time
for the attention and decoding pipeline, and assume that the
encoding process from multiple references into features is
only done once at the beginning of the video call.

Since attention at the coarsest level computes attention
over 48× 48 blocks, its inference time is quite high due
to prohibitively large matrix multiplication operations de-
spite the fact that the encoded features themselves are only
48×48 (only one attention block as a result). Note that
the FLOPs for the coarse attention approach is lower than
Gemino (Attention) running attention over multiple sepa-
rate 12×12 or 24×24 blocks. Yet, the size of the atten-
tion matrix with coarse attention at 48×48 itself is 16 times
larger than Gemino (Attention) with 24×24 blocks. This
could result in more memory bottlenecks [4] when creat-
ing large matrices causing the overall inference time with
coarse attention to be nearly 3× larger than Gemino (Atten-
tion).

5.3. Gemino (Attention) Ablation

Number of Reference Frames in Gemino (Attention).
Tab. 1 shows small improvements in reconstruction qual-
ity for the average and worst 5% and 1% of frames as
the number of references in Gemino (Attention) is in-
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PSNR (dB) ↑ SSIM (dB) ↑ LPIPS ↓

Scheme Avg. P5 P1 Avg. P5 P1 Avg. P95 P99

Gemino (Attention) w/ consecutive references 32.74 29.87 29.40 9.62 7.23 7.06 0.11 0.15 0.16
Gemino (Attention) w/ references 15 frames apart 32.84 29.86 29.46 9.62 7.33 7.13 0.10 0.14 0.15

Table 4. Impact of space between five reference frames in Gemino (Attention). Larger inter-frame gaps leads to more diverse reference
frames in comparison to using consecutive frames that are likely to be very similar and consequently leads to better performance.

PSNR (dB) ↑ SSIM (dB) ↑ LPIPS ↓

Scheme Avg. P5 P1 Avg. P5 P1 Avg. P95 P99

Gemino (Attention) @ 6×6 32.30 29.33 28.97 9.13 7.37 6.99 0.12 0.16 0.18
Gemino (Attention) @ 12×12 32.21 29.33 28.90 9.04 7.16 6.89 0.12 0.15 0.18
Gemino (Attention) @ 24×24 32.84 29.86 29.46 9.62 7.33 7.13 0.10 0.14 0.15

Table 5. Impact of attention block size in Gemino (Attention) when using five references. A larger block size allows the attention module
to leverage information across a wider region when computing correspondence, leading to better performance.

creased. Specifically, we observe 0.15 dB increase in
PSNR, 0.07 dB increase in SSIM and 0.01 decrease in
LPIPS when using five references. These quantitative dif-
ferences are small because the TCD-Timit dataset [8] is
highly curated to involve actors speaking a script in solely
front-facing poses with minimal movement. We anticipate
the differences being more substantial in datasets that in-
volve more movement and a range of poses.

Despite these small quantitative differences, we observe
visual differences with five references in Figures 4(c) and
5(c). Specifically, Fig. 4(c) shows that the reconstruction
of the eyelashes and the folds of the eyes is a lot more ac-
curate with five references where the latter three have open
eyes when compared to using one or two references with
closed eyes. Similarly, Fig. 5(c) shows a more accurate re-
construction of the eye gaze and lashes with five reference
frames that have different gazes than with two references
with very similar gazes.

Type of Reference Frames in Gemino (Attention). To
understand whether the underlying diversity within the ref-
erence frames also impacts the reconstruction quality in ad-
dition to the number of reference frames, we choose five
reference frames with two different strategies. Specifically,
we choose five consecutive reference frames that are likely
to be very similar and compare that against using five ref-
erence frames at intervals of fifteen frames from the ori-
gin test video, and compare the resulting output. Tab. 4
compares the two approaches and suggests that picking ref-
erence frames that are fifteen frames apart leads to better
visual quality for the average and worst frames. We sus-
pect that this is because frames that are further apart in the
underlying video are likely to be more different and lend

high-frequency information from different parts of the face
that can be leveraged for better fidelity in the final output.
Impact of Attention Block Size. We show the effect that
the attention block size has on reconstruction quality with
five references when upsampling by 8× in Tab. 5. The at-
tention block size determines the size of the region over
which attention is computed or how large of a reference
frame area is used to compute weights for a particular target
location. Tab. 5 suggests that as the attention block size in-
creases, the reconstruction quality (LPIPS) improves for the
average and worst frames in the corpus. As we move from
6×6 blocks to 24×24 blocks, we observe an improvement
of 0.54 dB in PSNR, 0.49 dB in SSIM and 0.02 in LPIPS
for the average frame. Though we anticipate some improve-
ments from increased reference information at higher block
sizes, attention with 48×48 blocks becomes prohibitively
expensive to the point of not being able to incorporate mul-
tiple reference frames. At such large blocks, the attention
weights also tend to average out more causing blurring ef-
fects similar to “Coarse Attention”. As a result, for 8× up-
sampling, we use 24×24 blocks.

5.4. Results on a More Diverse Dataset

To show the benefits from multiple references on a more
diverse dataset, we evaluate our ideas on a different dataset
consisting of individuals in front-facing positions. Unlike
TCDTimit [8], this dataset does not consist of actors with
scripts with minimal head movement. In contrast, the in-
dividuals in this harder dataset tend to move around more
and exhibit variety in their poses. Their backgrounds also
differ across videos and do not consist of a single green
screen. However, the videos are not of such high quality
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Figure 6. Visual quality on a more diverse dataset with increasing number of references. We see diminishing returns as the number of
references is increased, but over 1 dB improvement in PSNR and 20% reduction in LPIPS in going from 1 to even 10 references.

and tend to be close to a few Mbps in their bitrates. In an
effort to show results at higher numbers of references ( ∼
60), we only use the “Coarse Attention” mechanism without
multi-resolution attention or the skip connections described
in §4.4. This is because running attention at multiple reso-
lutions incurs prohibitively high memory overheads as the
number of references is increased.

Fig. 6 shows the improvement in visual quality on the
above described dataset as the number of references is
increased when upsampling 8× to a final resolution of
384×384. Specifically, on this dataset, we observe a nearly
1 dB improvement in both SSIM and PSNR and a 20% de-
crease (0.01) in LPIPS in going from 1 to even 10 refer-
ences. This is in contrast to the 4× upsampling case with
TCDTimit shown in Tab. 2 that sees very slight improve-
ments in going from 1 to 10 references. Further, we see di-
minishing returns from increasing the references all the way
to 60 with this dataset. While there is a big improvement in
going from 1 to about 20 references, subsequent increases
from 20 to 30 or 45 references show far less improvement in
video quality. Note that these reference frames are consec-
utive and we run attention only at one-resolution, yet there
are significant improvements from using more references
when compared to TCDTimit [8]. We anticipate more gains
with attention at multiple resolutions and reference frames
that are further apart.

6. Limitations and Future Work
Though Gemino (Attention) addresses the issue of be-

ing constrained to a single reference frame in Gemino, the
solution comes at significant compute costs. Specifically,
the attention-based architecture involves many more matrix
multiplication operations on large multi-dimensional ma-
trices. This results in an increase in FLOPs and conse-
quently, inference time as the number of references is in-
creased. However, unlike Gemino, its attention counter-

part has not been optimized to use depthwise-convolutions,
knowledge distillation or minimal number of kernels and
filters for optimal reconstruction. These standard model
compression techniques can be applied to Gemino (Atten-
tion) as well to improve its reconstruction time across the
hardware spectrum. Recent developments such as FlashAt-
tention [4] can further be employed to align the attention
mechanism with IO bottlenecks in a way that reduces mem-
ory overheads. Additionally, methods such as those dis-
cussed in [36, 14, 26] can be leveraged to compress the
key-value pairs calculated from reference frames or to cre-
ate approximations of the attention mechanism. Given that
reference frames tend to remain fixed throughout the entire
inference process and often contain substantial redundancy,
both compression and approximation techniques are highly
relevant in this context.

7. Conclusion

In this paper, we develop an alternate design for the high-
frequency conditional super-resolution technique proposed
by Gemino [29] that leverages attention for motion estima-
tion. Our approach is able to utilize high-frequency infor-
mation from a diverse set of references to better predict the
target frame than with one single reference. The scaled-dot
product attention layer also allows flexibility in picking the
exact number of references at inference time even though
the model is trained for only one reference frame. This flex-
ibility allows for the design of new adaptation algorithms
that dynamically choose the number and specific reference
frames that trade off accuracy for compute when deployed
on the receiver side in settings such as video conferencing.
We leave the design of such algorithms as well as optimiza-
tions to speed up our attention-based model architecture to
future work.
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izadeh, Frédo Durand, and Vivienne Sze. Gemino: Practical
and robust neural compression for video conferencing, 2022.
1, 2, 3, 7, 9, 12

[30] Libin Sun and James Hays. Super-resolution from internet-
scale scene matching. In 2012 IEEE International confer-
ence on computational photography (ICCP), pages 1–12.
IEEE, 2012. 3

[31] Radu Timofte, Vincent De Smet, and Luc Van Gool.
Anchored neighborhood regression for fast example-based
super-resolution. In Proceedings of the IEEE international
conference on computer vision, pages 1920–1927, 2013. 3

[32] Marc Comino Trinidad, Ricardo Martin Brualla, Florian
Kainz, and Janne Kontkanen. Multi-view image fusion.
2019. 2

[33] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 3

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1, 3, 4, 5, 6

[35] Anna Volokitin, Stefan Brugger, Ali Benlalah, Sebastian
Martin, Brian Amberg, and Michael Tschannen. Neural face
video compression using multiple views, 2022. 1, 2

[36] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity,
2020. 2, 12

[37] Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-shot
free-view neural talking-head synthesis for video conferenc-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 10039–
10049, June 2021. 1, 2

[38] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 7

[39] Xiaoyu Xiang, Jon Morton, Fitsum A Reda, Lucas D Young,
Federico Perazzi, Rakesh Ranjan, Amit Kumar, Andrea Co-
laco, and Jan P Allebach. Hime: Efficient headshot image
super-resolution with multiple exemplars. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 1694–1704, 2023. 1, 2, 3

[40] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Bain-
ing Guo. Learning texture transformer network for image
super-resolution. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
5791–5800, 2020. 3

[41] Huanjing Yue, Xiaoyan Sun, Jingyu Yang, and Feng Wu.
Landmark image super-resolution by retrieving web images.
IEEE Transactions on Image Processing, 22(12):4865–4878,
2013. 3

[42] Egor Zakharov, Aleksei Ivakhnenko, Aliaksandra Shysheya,
and Victor S. Lempitsky. Fast bi-layer neural synthesis

of one-shot realistic head avatars. CoRR, abs/2008.10174,
2020. 1, 2

[43] Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie
Fan. Flow-guided one-shot talking face generation with
a high-resolution audio-visual dataset. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3661–3670, June 2021. 1, 2

[44] Zhifei Zhang, Zhaowen Wang, Zhe Lin, and Hairong Qi. Im-
age super-resolution by neural texture transfer. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 7982–7991, 2019. 3

[45] Haitian Zheng, Mengqi Ji, Haoqian Wang, Yebin Liu, and Lu
Fang. Crossnet: An end-to-end reference-based super reso-
lution network using cross-scale warping. In Proceedings of
the European conference on computer vision (ECCV), pages
88–104, 2018. 3

[46] Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xi-
aochen Lian, Zihang Jiang, Qibin Hou, and Jiashi Feng.
Deepvit: Towards deeper vision transformer. arXiv preprint
arXiv:2103.11886, 2021. 2, 3

[47] Hang Zhou, Yasheng Sun, Wayne Wu, Chen Change Loy,
Xiaogang Wang, and Ziwei Liu. Pose-controllable talking
face generation by implicitly modularized audio-visual rep-
resentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
4176–4186, June 2021. 1, 2

[48] Shangchen Zhou, Kelvin CK Chan, Chongyi Li, and
Chen Change Loy. Towards robust blind face restora-
tion with codebook lookup transformer. arXiv preprint
arXiv:2206.11253, 2022. 2, 3

[49] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Ma-
lik, and Alexei A Efros. View synthesis by appearance flow.
In Computer Vision–ECCV 2016: 14th European Confer-
ence, Amsterdam, The Netherlands, October 11–14, 2016,
Proceedings, Part IV 14, pages 286–301. Springer, 2016. 2

[50] Yang Zhou, Xintong Han, Eli Shechtman, Jose Echevar-
ria, Evangelos Kalogerakis, and Dingzeyu Li. Makelttalk:
Speaker-aware talking-head animation. 39(6), nov 2020. 1,
2

14


