Efficient and Error-Correcting Data Structures
for membership and polynomial evaluation

Victor Chen1 Elena Grigorescu2, Ronald de Wolf3

1MIT & Tsinghua Univ.
2MIT
3CWI

March 4, 2010
Outline

1. Introduction

2. Model of error-correction

3. The data structure problems
Data structure

- a basic question in computer science:

 store data in a space-efficient structure so that

 queries about the data can be answered efficiently
Data structure

- a basic question in computer science:
 store data in a space-efficient structure so that
 queries about the data can be answered efficiently

- a time-space tradeoff
a basic question in computer science: store data in a space-efficient structure so that queries about the data can be answered efficiently

a time-space tradeoff
- time: # bits probed from the storage to answer a query
- space: # bits in the storage representation
vast literature on data structure
Motivation

- vast literature on data structure

 some examples:
 - data set: a subset of integers
 - given x, is x in the collection of integers?
Motivation

- vast literature on data structure

 some examples:
 - data set: a subset of integers
 - given x, what’s the closest predecessor of x?
Motivation

- vast literature on data structure

 some examples:
 - data set: a subset of points in a Euclidean plane
 - given x, what’s the nearest neighbor of x?
Motivation

- vast literature on data structure

 some examples:

 data set: a univariate polynomial

given x, what's evaluation of this polynomial at x?
Motivation

- vast literature on data structure

 some examples:
 - data set: a univariate polynomial
 - given x, what’s evaluation of this polynomial at x?
 - these examples have efficient constructions
Motivation

- vast literature on data structure

 some examples:

 data set: a univariate polynomial

 given x, what’s evaluation of this polynomial at x?

- these examples have efficient constructions but malfunction in the presence of noise
Motivation

- vast literature on data structure

 some examples:
 data set: a univariate polynomial
 given x, what's evaluation of this polynomial at x?

- these examples have efficient constructions but malfunction in the presence of noise

- Goal: construct error-correcting data structure for these problems
vast literature on data structure

some examples:
 data set: a univariate polynomial
 given x, what’s evaluation of this polynomial at x?

these examples have efficient constructions but malfunction in the presence of noise

Goal: construct error-correcting data structure for these problems
Motivation

- vast literature on data structure
 - some examples:
 - data set: a univariate polynomial
 - given x, what’s evaluation of this polynomial at x?
 - these examples have efficient constructions but malfunction in the presence of *noise*
 - Goal: construct *error-correcting* data structure for these *problems*
A data structure is represented by a function

\[f : D \times Q \rightarrow A \]
A data structure is represented by a function

\[f : D \times Q \rightarrow A \]

where \(D \): set of data items

\(f \): function
The data structure problems

A data structure is represented by a function

\[f : D \times Q \rightarrow A \]

\(Q \): set of queries
The data structure problems

A data structure is represented by a function

\[f : D \times Q \rightarrow A \]

\(A \): set of answers
A data structure is represented by a function

\[f : D \times Q \rightarrow A \]
The data structure problems

A data structure is represented by a function

\[f : D \times Q \rightarrow A \]

\((s, n)\)-membership

- \(x \in D \) if \(x \in \{0, 1\}^n \), \(|x| \leq s\)

\[\text{Mem}_{n,s}(x,i) = x_i. \]
A data structure is represented by a function

\[f : D \times Q \rightarrow A \]

(s, n)-membership

- \(x \in D \) if \(x \in \{0, 1\}^n, |x| \leq s \)
- \(Q = [n], A = \{0, 1\} \)
A data structure is represented by a function

\[f : D \times Q \to A \]

\((s, n)\)-membership

- \(x \in D\) if \(x \in \{0, 1\}^n, |x| \leq s\)
- \(Q = [n], A = \{0, 1\}\)
- \(\text{MEM}_{n,s}(x, i) = x_i\).
A data structure is represented by a function

\[f : D \times Q \rightarrow A \]
A data structure is represented by a function

\[f : D \times Q \rightarrow A \]

\((s, n)\)-polynomial evaluation

- \(g \in D \) if \(g \in \mathbb{Z}_n[X] \) and \(\deg(g) \leq s \)
A data structure is represented by a function

\[f : D \times Q \rightarrow A \]

\((s, n)\)-polynomial evaluation

- \(g \in D \) if \(g \in \mathbb{Z}_n[X] \) and \(\deg(g) \leq s \)
- \(Q, A = \mathbb{Z}_n \)
A data structure is represented by a function \(f : D \times Q \rightarrow A \).

\((s, n)\)-polynomial evaluation

- \(g \in D \) if \(g \in \mathbb{Z}_n[X] \) and \(\deg(g) \leq s \)
- \(Q, A = \mathbb{Z}_n \)
- \(\text{POLYEVAL}_{n,s}(g, \alpha) = g(\alpha) \).
Summary of our work

Introduce a new model to study error-correction in data structure
Summary of our work

Introduce a new model to study error-correction in data structure

Theorem (C, Grigorescu, de Wolf)

Obtained error-correcting data structure for

near-optimal: near-linear in the information-theoretic lower bound

drawback: construction is non-explicit
Summary of our work

Introduce a new model to study error-correction in data structure

Theorem (C, Grigorescu, de Wolf)

Obtained error-correcting data structure for

- *Membership: with constant time and near-optimal space*
Introduce a new model to study error-correction in data structure

Theorem (C, Grigorescu, de Wolf)

Obtained error-correcting data structure for

- *Membership*: with constant time and near-optimal space
- *Poly Evaluation*: with “efficient” time and near-optimal space
Summary of our work

Introduce a new model to study error-correction in data structure

Theorem (C, Grigorescu, de Wolf)

Obtained error-correcting data structure for

- **Membership**: with constant time and near-optimal space
- **Poly Evaluation**: with “efficient” time and near-optimal space
 \[\text{polylog } s \cdot \log n \]
Introduce a new model to study error-correction in data structure

Theorem (C, Grigorescu, de Wolf)

- Obtained error-correcting data structure for
 - Membership: with constant time and near-optimal space
 - Poly Evaluation: with “efficient” time and near-optimal space
 polylog $s \cdot \log n$
Summary of our work

Introduce a new model to study error-correction in data structure

Theorem (C, Grigorescu, de Wolf)

Obtained error-correcting data structure for

- *Membership*: with constant time and *near-optimal* space
- *Poly Evaluation*: with “efficient” time and *near-optimal* space
 \[\text{polylog } s \cdot \log n \]

near-optimal: near-linear in the information-theoretic lower bound \(s \log n \)
Summary of our work

Introduce a new model to study error-correction in data structure

Theorem (C, Grigorescu, de Wolf)

Obtained error-correcting data structure for

- **Membership**: with constant time and near-optimal space
- **Poly Evaluation**: with “efficient” time and near-optimal space
 \[\text{polylog } s \cdot \log n\]

near-optimal: near-linear in the information-theoretic lower bound \(s \log n\)

drawback: construction is non-explicit
Outline

1 Introduction

2 Model of error-correction

3 The data structure problems
Related work: pointer-based model

- Aumann & Bender 96
Related work: pointer-based model

- Aumann & Bender 96
- A directed graph where nodes store data, and edges represent pointers.
Aumann & Bender 96

A directed graph where nodes store data, and edges represent pointers
e.g., linked lists, stacks, trees
Related work: pointer-based model

- Aumann & Bender 96
- a directed graph where nodes store data, and edges represent pointers
e.g., linked lists, stacks, trees
- achieved fault-tolerant data structures with constant overhead
Related work: pointer-based model

- Aumann & Bender 96
- a directed graph where nodes store data, and edges represent pointers
e.g., linked lists, stacks, trees
- achieved **fault-tolerant** data structures with constant overhead
Related work: pointer-based model

- Aumann & Bender 96
- a directed graph where nodes store data, and edges represent pointers
e.g., linked lists, stacks, trees
- achieved fault-tolerant data structures with constant overhead
 - against adversarial, detectable faults
Related work: pointer-based model

- Aumann & Bender 96
 - a directed graph where nodes store data, and edges represent pointers
 - e.g., linked lists, stacks, trees
 - achieved fault-tolerant data structures with constant overhead
 - against adversarial, detectable faults
 - not all data can be recovered
Related work: faulty RAM model

- introduced by Finocchi & Italiano 04
Related work: faulty RAM model

- introduced by Finocchi & Italiano 04
- many subsequent works with optimal, fault-tolerant (some dynamic) data structures
Related work: faulty RAM model

- introduced by Finocchi & Italiano 04
- many subsequent works with optimal, fault-tolerant (some dynamic) data structures
 - against adversarial, undetectable faults
 - hardware assumption: $O(1)$ locations are unaffected by faults
 - faults can occur inside decoding

Chen, Grigorescu, de Wolf (2010)
Related work: faulty RAM model

- introduced by Finocchi & Italiano 04
- many subsequent works with optimal, fault-tolerant (some dynamic) data structures
 - against adversarial, undetectable faults
 - hardware assumption: $O(1)$ locations are unaffected by faults
 - faults can occur inside decoding
Related work: faulty RAM model

- introduced by Finocchi & Italiano 04
- many subsequent works with optimal, fault-tolerant (some dynamic) data structures
 - against adversarial, undetectable faults
 - hardware assumption: $O(1)$ locations are unaffected by faults
 - faults can occur inside decoding
- ex. for sorting n keys, with up to $\tilde{O}(\sqrt{n})$ faults,
 - the subsequence of *uncorrupted* keys can be sorted
Related work: faulty RAM model

- introduced by Finocchi & Italiano 04
- many subsequent works with optimal, fault-tolerant (some dynamic) data structures
 - against adversarial, undetectable faults
 - hardware assumption: $O(1)$ locations are unaffected by faults
 - faults can occur inside decoding
- ex. for sorting n keys, with up to $\tilde{O}(\sqrt{n})$ faults,
 - the subsequence of uncorrupted keys can be sorted
 - cannot guarantee performance on corrupted keys
data representation viewed as a bit-string
Related work: locally decodable model (de Wolf 09)

- data representation viewed as a bit-string
- model generalizes the concept of locally decodable code (LDC)
data representation viewed as a bit-string

model generalizes the concept of locally decodable code (LDC)

LDC is equiv. to $\text{MEM}_{n,n}$

data representation viewed as a bit-string

model generalizes the concept of locally decodable code (LDC)

- LDC is equiv. to $\text{MEM}_{n,n}$
- tolerates adversarial, undetectable bit-error (up to a constant fraction)
Related work: locally decodable model (de Wolf 09)

- data representation viewed as a bit-string
- model generalizes the concept of locally decodable code (LDC)
 - LDC is equiv. to $\text{MEM}_{n,n}$
 - tolerates adversarial, undetectable bit-error (up to a constant fraction)
 - studied static data structures: membership, inner product
data representation viewed as a bit-string

model generalizes the concept of locally decodable code (LDC)

- LDC is equiv. to $\text{MEM}_{n,n}$
- tolerates adversarial, undetectable bit-error (up to a constant fraction)
- studied static data structures: membership, inner product
- requires every query to be answered successfully (whp)
Related work: locally decodable model (de Wolf 09)

- data representation viewed as a bit-string
- model generalizes the concept of locally decodable code (LDC)
 - LDC is equiv. to $\text{MEM}_{n,n}$
 - tolerates adversarial, undetectable bit-error (up to a constant fraction)
 - studied static data structures: membership, inner product
 - requires every query to be answered successfully (whp)

Drawback: known LDC constructions with $O(1)$ time have super-polynomial space
Our model

- similar to de Wolf’s, but allows failure for a few queries
Our model

- similar to de Wolf’s, but allows failure for a few queries
 - for most queries, decoder gives correct answers
 - for remaining queries, decoder either gives correct answer or declares “don’t know”
Our model

- similar to de Wolf’s, but allows failure for a few queries

 for *most* queries, decoder gives correct answers

 for remaining queries, decoder either gives correct answer or declares “don’t know”

- generalization of relaxed LDC (RLDC) from the PCP literature
Our model

similar to de Wolf’s, but allows failure for a few queries

for *most* queries, decoder gives correct answers

for remaining queries, decoder either gives correct answer or declares “don’t know”

generalization of relaxed LDC (RLDC) from the PCP literature

Upshot: RLDC has near-optimal space
Our model

A formal defn

Formal definition:

\[D \times Q \to A \]

has a \((t, \delta, \epsilon, \lambda)\)-error-correcting d.s. if there exist encoder \(E\) and decoder \(D\) such that for every \(x \in D\), \(w\) such that \(\delta(E(x), w) \leq \delta\), \(D\) makes \(t\) bit-probes into \(w\) for every \(q \in Q\),

\[\Pr[D(q) \in \{f(x,q), \perp\}] \geq 1 - \epsilon \]

the set \(G = \{q : \Pr[D(q) = f(x,q)] \geq 1 - \epsilon\}\) has size \(\geq (1 - \lambda)|Q|\) if \(w = E(x)\), then \(G = Q\).
A formal defn

\[f : D \times Q \rightarrow A \text{ has a } (t, \delta, \epsilon, \lambda)\)-error-correcting d.s. \]
Our model

A formal defn

\(f : D \times Q \rightarrow A \) has a \((t, \delta, \epsilon, \lambda)\)-error-correcting d.s.

if there exist encoder \(E \) and decoder \(D \) such that

the set \(G = \{ q : \Pr[D(q) = f(x, q)] \geq 1 - \lambda \} \)

has size \(\geq (1 - \lambda) |Q| \)

if \(w = E(x) \), then \(G = Q \)

\(\epsilon, \delta, \lambda \) are positive constants
Our model

A formal defn

\[f : D \times Q \rightarrow A \] has a \((t, \delta, \epsilon, \lambda)\)-error-correcting d.s.

if there exist encoder \(E\) and decoder \(D\) such that

for every \(x \in D\), \(w\) such that \(\delta(E(x), w) \leq \delta\)
A formal defn

\(f : D \times Q \rightarrow A \) has a \((t, \delta, \epsilon, \lambda)\)-error-correcting d.s.

if there exist encoder \(E \) and decoder \(D \) such that

for every \(x \in D \), \(w \) such that \(\delta(E(x), w) \leq \delta \)

- \(D \) makes \(t \) bit-probes into \(w \)
Our model

A formal defn

Let \(f : D \times Q \to A \) have a \((t, \delta, \epsilon, \lambda)\)-error-correcting d.s. if there exist encoder \(E \) and decoder \(D \) such that:

1. for every \(x \in D \), \(w \) such that \(\delta(E(x), w) \leq \delta \)
 - \(D \) makes \(t \) bit-probes into \(w \)
2. for every \(q \in Q \), \(\Pr[D(q) \in \{f(x, q), \perp\}] \geq 1 - \epsilon \)

where \(\epsilon, \delta, \lambda \) are positive constants.
A formal defn

\[f : D \times Q \rightarrow A \text{ has a } (t, \delta, \epsilon, \lambda)\text{-error-correcting d.s.} \]

if there exist encoder \(E \) and decoder \(D \) such that

for every \(x \in D, w \) such that \(\delta(E(x), w) \leq \delta \)

- \(D \) makes \(t \) bit-probes into \(w \)
- for every \(q \in Q \), \(\Pr[D(q) \in \{f(x, q), \perp\}] \geq 1 - \epsilon \)
- the set \(G = \{q : \Pr[D(q) = f(x, q)] \geq 1 - \epsilon\} \)
 has size \(\geq (1 - \lambda)|Q| \)
Our model

A formal defn

\(f : D \times Q \to A \) has a \((t, \delta, \epsilon, \lambda)\)-error-correcting d.s. if there exist encoder \(E \) and decoder \(D \) such that

for every \(x \in D \), \(w \) such that \(\delta(E(x), w) \leq \delta \)

- \(D \) makes \(t \) bit-probes into \(w \)
- for every \(q \in Q \), \(\Pr[D(q) \in \{f(x, q), \perp\}] \geq 1 - \epsilon \)
- the set \(G = \{q : \Pr[D(q) = f(x, q)] \geq 1 - \epsilon\} \) has size \(\geq (1 - \lambda)|Q| \)
- if \(w = E(x) \), then \(G = Q \)
Our model

A formal defn

\[f : D \times Q \rightarrow A \] has a \((t, \delta, \epsilon, \lambda)\)-error-correcting d.s. if there exist encoder \(E \) and decoder \(D \) such that

for every \(x \in D, w \) such that \(\delta(E(x), w) \leq \delta \)

- \(D \) makes \(t \) bit-probes into \(w \)
- for every \(q \in Q \), \(\Pr[D(q) \in \{f(x, q), \bot\}] \geq 1 - \epsilon \)
- the set \(G = \{q : \Pr[D(q) = f(x, q)] \geq 1 - \epsilon\} \) has size \(\geq (1 - \lambda)|Q| \)
- if \(w = E(x) \), then \(G = Q \)

this talk: \(\epsilon, \delta, \lambda \) are positive constants
Outline

1. Introduction

2. Model of error-correction

3. The data structure problems
RLDC: error-correcting d.s. for $\text{MEM}_{n,n}$
RLDC: basic building block

- RLDC: error-correcting d.s. for $\text{MEM}_{n,n}$

- Thm (BGHSV): for every t, there exists a RLDC making t probes and has space $n^{1+1/t}$.
RLDC: basic building block

- RLDC: error-correcting d.s. for $\text{MEM}_{n,n}$
- Thm (BGHSV): for every t, there exists a RLDC making t probes and has space near-linear in n.

Chen, Grigorescu, de Wolf ()

Data Structures

Mar 2010
RLDC: basic building block

- RLDC: error-correcting d.s. for $\text{MEM}_{n,n}$
- Thm (BGHSV): for every t, there exists a RLDC making t probes and has space near-linear in n.
- Construction is existential, based on PCP machinery

 sends message m into three pieces:

 $\begin{array}{|c|c|c|}
 m & \text{Enc}(m) & \text{PCP “proofs”} \\
 \end{array}$
Basic principle: Compose RLDC with an appropriate noiseless d.s.
Design overview

Basic principle: Compose RLDC with an appropriate noiseless d.s.

pseudorandom property

The decoder D is pseudorandom if for a random $q \in Q$, the bits probed by D also “behave” as if these are chosen uniformly at random.
Basic principle: Compose RLDC with an appropriate noiseless d.s.

pseudorandom property

The decoder D is pseudorandom if for a random $q \in Q$, the bits probed by D also “behave” as if these are chosen uniformly at random.

- meta-theme: noiseless d.s. with a pseudorandom decoder can be made error-correcting
 - ex. membership, poly. evaluation
Design overview

Basic principle: Compose RLDC with an appropriate noiseless d.s.

pseudorandom property

The decoder D is pseudorandom if for a random $q \in Q$, the bits probed by D also “behave” as if these are chosen uniformly at random.

- meta-theme: noiseless d.s. with a pseudorandom decoder can be made error-correcting
 - ex. membership, poly. evaluation

- many d.s. do not have this property
 - e.g. those involving tree traversals
information-theoretic lower bounds: $s \log n$ space, 1 bit-probe
Membership: overview

- information-theoretic lower bounds: $s \log n$ space, 1 bit-probe

- summary of noiseless constructions:

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[FKS]</td>
<td>$O(s \log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>[BMRV]</td>
<td>$O(s \log n)$</td>
<td>1</td>
</tr>
</tbody>
</table>

Chen, Grigorescu, de Wolf
Membership: overview

- Information-theoretic lower bounds: $s \log n$ space, 1 bit-probe
- Summary of noiseless constructions:

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[FKS]</td>
<td>$O(s \log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>[BMRV]</td>
<td>$O(s \log n)$</td>
<td>1</td>
</tr>
</tbody>
</table>

- Trivial attempt at error correction
 - Compose BMRV with RLDC encoding
 - Near-linear in $O(s \log n)$ space, $O(1)$ time
Membership: our contribution

- a **modified** construction with $O(s^{1+\epsilon} \log n)$ space, $O(1)$ bit-probes
Membership: our contribution

- a modified construction with $O(s^{1+\epsilon} \log n)$ space, $O(1)$ bit-probes
- analysis relies on pseudorandomness of BMRV
 - fraction of lost data $\frac{s}{100n}$
Membership: our contribution

- a modified construction with $O(s^{1+\epsilon} \log n)$ space, $O(1)$ bit-probes
- analysis relies on pseudorandomness of BMRV

BMRV

- a bipartite expander: n left nodes, $\approx s \log n$ right nodes
Membership: our contribution

- a modified construction with $O(s^{1+\epsilon} \log n)$ space, $O(1)$ bit-probes
- analysis relies on pseudorandomness of BMRV

BMRV

- a bipartite expander: n left nodes, $\approx s \log n$ right nodes
- encoding: 0, 1 assignment to the right side
Membership: our contribution

- a modified construction with $O(s^{1+\epsilon} \log n)$ space, $O(1)$ bit-probes
- analysis relies on pseudorandomness of BMRV

BMRV

- a bipartite expander: n left nodes, $\approx s \log n$ right nodes
- encoding: 0, 1 assignment to the right side
- decoding: for $i \in [n]$, pick a random neighbor
Membership: our contribution

- a modified construction with \(O(s^{1+\epsilon} \log n) \) space, \(O(1) \) bit-probes
- analysis relies on pseudorandomness of BMRV

BMRV

- a bipartite expander: \(n \) left nodes, \(\approx s \log n \) right nodes
- encoding: 0, 1 assignment to the right side
- decoding: for \(i \in [n] \), pick a random neighbor
- edges from a large left subset cannot be localized in a small right subset
Given a polynomial $g \in \mathbb{Z}_n[X]$, $\deg(g) \leq s$
Given a polynomial $g \in \mathbb{Z}_n[X]$, $\deg(g) \leq s$

information-theoretic lower bounds: $s \log n$ space, $\log n$ bit-probes
Given a polynomial $g \in \mathbb{Z}_n[X]$, $\deg(g) \leq s$

- information-theoretic lower bounds: $s \log n$ space, $\log n$ bit-probes

- Trivial constructions:

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>trivial 1</td>
<td>$n \log n$</td>
<td>$\log n$</td>
</tr>
<tr>
<td>trivial 2</td>
<td>$s \log n$</td>
<td>$s \log n$</td>
</tr>
</tbody>
</table>
Polynomial evaluation: overview

- Given a polynomial $g \in \mathbb{Z}_n[X]$, $\deg(g) \leq s$
- Information-theoretic lower bounds: $s \log n$ space, $\log n$ bit-probes
- Trivial constructions:

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>trivial 1</td>
<td>$n \log n$</td>
<td>$\log n$</td>
</tr>
<tr>
<td>trivial 2</td>
<td>$s \log n$</td>
<td>$s \log n$</td>
</tr>
</tbody>
</table>
Polynomial evaluation: overview

- Given a polynomial $g \in \mathbb{Z}_n[X]$, $\deg(g) \leq s$
- Information-theoretic lower bounds: $s \log n$ space, $\log n$ bit-probes
- Trivial constructions:

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>trivial 1</td>
<td>$n \log n$</td>
<td>$\log n$</td>
</tr>
<tr>
<td>trivial 2</td>
<td>$s \log n$</td>
<td>$s \log n$</td>
</tr>
</tbody>
</table>

- [Miltersen]: If $\log n \geq s$, trivial 2 is essentially optimal in cell-probe
Polynomial evaluation: overview

- Given a polynomial \(g \in \mathbb{Z}_n[X], \deg(g) \leq s \)
- Information-theoretic lower bounds: \(s \log n \) space, \(\log n \) bit-probes
- Trivial constructions:

<table>
<thead>
<tr>
<th></th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>trivial 1</td>
<td>(n \log n)</td>
<td>(\log n)</td>
</tr>
<tr>
<td>trivial 2</td>
<td>(s \log n)</td>
<td>(s \log n)</td>
</tr>
</tbody>
</table>

- [Miltersen]: If \(\log n \geq s \), trivial 2 is essentially optimal in cell-probe
- [Kedlaya+Umans]: Near-linear in \(O(s \log n) \) space and \(O(polylog s \log n) \) time
Theorem (CRT)

Let \(P \) be a collection of distinct primes. Then \(m < \prod_{p \in P} p \) is uniquely specified by its residue \([m]_p\).
Theorem (CRT)

Let P be a collection of distinct primes. Then $m < \prod_{p \in P} p$ is uniquely specified by its residue $[m]_p$.

Consider eval. table of g over \mathbb{Z}:

\[
\begin{array}{cccc}
g(a_1) & g(a_2) & \ldots & g(a_n) \\
\end{array}
\]
Theorem (CRT)

Let P be a collection of distinct primes. Then $m < \prod_{p \in P} p$ is uniquely specified by its residue $[m]_p$.

Consider eval. table of g over \mathbb{Z}:

$$
\begin{array}{|c|c|c|c|}
\hline
 g(a_1) & g(a_2) & \ldots & g(a_n) \\
\hline
\end{array}
$$

- maximum evaluation of g is n^{s+2}
Theorem (CRT)

Let P be a collection of distinct primes. Then $m < \prod_{p \in P} p$ is uniquely specified by its residue $[m]_p$.

Consider eval. table of g over \mathbb{Z}:

| $g(a_1)$ | $g(a_2)$ | ... | $g(a_n)$ |

- maximum evaluation of g is n^{s+2}
- Take P to be the first $\log n^{s+2}$ primes
Theorem (CRT)

Let P be a collection of distinct primes. Then $m < \prod_{p \in P} p$ is uniquely specified by its residue $[m]_p$.

Consider eval. table of g over \mathbb{Z}:

<table>
<thead>
<tr>
<th>$g(a_1)$</th>
<th>$g(a_2)$</th>
<th>\ldots</th>
<th>$g(a_n)$</th>
</tr>
</thead>
</table>

- maximum evaluation of g is n^{s+2}
- Take P to be the first $\log n^{s+2}$ primes
- reduced polynomial $g_p := g \mod p$
Theorem (CRT)

Let P be a collection of distinct primes. Then $m < \prod_{p \in P} p$ is uniquely specified by its residue $[m]_p$.

Consider eval. table of g over \mathbb{Z}:

\[\begin{array}{cccc}
g(a_1) & g(a_2) & \ldots & g(a_n) \\
\end{array}\]

- maximum evaluation of g is n^{s+2}
- Take P to be the first $\log n^{s+2}$ primes
- reduced polynomial $g_p := g \mod p$
- Store, for each $p \in P$, eval. table of g_p
Complications from encoding eval. tables by RLDC:
Complications from encoding eval. tables by RLDC:

- each table entry is over a non-binary alphabet
Complications from encoding eval. tables by RLDC:

- each table entry is over a non-binary alphabet

solution: a RLDC for large alphabet (code concatenation)
Complications from encoding eval. tables by RLDC:

- each table entry is over a non-binary alphabet
 solution: a RLDC for large alphabet (code concatenation)

- CRT reconstruction needs all residues to be correct
Error-correction with reduced polynomials

Complications from encoding eval. tables by RLDC:

- each table entry is over a non-binary alphabet
 solution: a RLDC for large alphabet (code concatenation)

- CRT reconstruction needs all residues to be correct
 solution: use a larger set of primes (CRT codes)
Error-correction with reduced polynomials

Complications from encoding eval. tables by RLDC:

- each table entry is over a non-binary alphabet
 solution: a RLDC for large alphabet (code concatenation)

- CRT reconstruction needs all residues to be correct
 solution: use a larger set of primes (CRT codes)

The extra redundancies do not affect the asymptotics
Reducing the bit-probe complexity

Culprit: max. value of g over \mathbb{Z} is $\approx n^s$, too high
Reducing the bit-probe complexity

Culprit: max. value of g over Z is $≈ n^s$, too high

multi-linear extension

- write $s = d^m$, $d = \text{polylog } s$
- for $i \in [s]$, write $i = (i_0, i_1, \ldots, i_{s-1})$ in base d
Reducing the bit-probe complexity

Culprit: max. value of g over \mathbb{Z} is $\approx n^s$, too high

multi-linear extension

- write $s = d^m$, $d = \text{polylog } s$
- for $i \in [s]$, write $i = (i_0, i_1, \ldots, i_{s-1})$ in base d
- $\psi_{s,m} : \mathbb{Z}_n[X] \rightarrow \mathbb{Z}_n[X_0, \ldots, X_{m-1}]$

 sends X^i to $X_0^{i_0} \cdots X_{m-1}^{i_{m-1}}$;
Reducing the bit-probe complexity

Culprit: max. value of g over \mathbb{Z} is $\approx n^s$, too high

multi-linear extension

- write $s = d^m$, $d = \text{polylog } s$
- for $i \in [s]$, write $i = (i_0, i_1, \ldots, i_{s-1})$ in base d
- $\psi_{s,m} : \mathbb{Z}_n[X] \rightarrow \mathbb{Z}_n[X_0, \ldots, X_{m-1}]$

 sends X^i to $X_0^{i_0} \cdots X_{m-1}^{i_{m-1}}$; extends multi-linearly
Reducing the bit-probe complexity

Culprit: max. value of g over \mathbb{Z} is $\approx n^s$, too high

multi-linear extension

- write $s = d^m$, $d = \text{polylog } s$
- for $i \in [s]$, write $i = (i_0, i_1, \ldots, i_{s-1})$ in base d
- $\psi_{s,m} : \mathbb{Z}_n[X] \rightarrow \mathbb{Z}_n[X_0, \ldots, X_{m-1}]$
 - sends X^i to $X_0^{i_0} \cdots X_{m-1}^{i_{m-1}}$; extends multi-linearly

- max. value of $\psi(g)$ is $\approx n^{dm}$
Reducing the bit-probe complexity

Culprit: max. value of g over \mathbb{Z} is $\approx n^s$, too high

multi-linear extension

- write $s = d^m$, $d = \text{polylog } s$
- for $i \in [s]$, write $i = (i_0, i_1, \ldots, i_{s-1})$ in base d
- $\psi_{s,m} : \mathbb{Z}_n[X] \rightarrow \mathbb{Z}_n[X_0, \ldots, X_{m-1}]$

 sends X^i to $X_0^{i_0} \cdots X_{m-1}^{i_{m-1}}$; extends multi-linearly

- max. value of $\psi(g)$ is $\approx n^{dm}$
- for $a \in \mathbb{Z}_n$, $g(a) = \psi(g)((a)_n, [a^d]_n, \ldots, [a^{d^{m-1}}]_n)$
Reducing the bit-probe complexity

Culprit: max. value of g over \mathbb{Z} is $\approx n^s$, too high

multi-linear extension

- write $s = d^m$, $d = \text{polylog } s$
- for $i \in [s]$, write $i = (i_0, i_1, \ldots, i_{s-1})$ in base d
- $\psi_{s,m} : \mathbb{Z}_n[X] \to \mathbb{Z}_n[X_0, \ldots, X_{m-1}]$

 sends X^i to $X_0^{i_0} \cdots X_{m-1}^{i_{m-1}}$; extends multi-linearly

- max. value of $\psi(g)$ is $\approx n^{dm}$
- for $a \in \mathbb{Z}_n$, $g(a) = \psi(g)([a]_n, [a^d]_n, \ldots, [a^{dm-1}]_n)$
- use eval. tables of reduced polynomials of $\psi(g)$
Polynomial evaluation: summary

- reducing space to $s \log n$:

 solution: recurse and apply CRT for a second time
Polynomial evaluation: summary

- reducing space to $s \log n$:
 - solution: recurse and apply CRT for a second time
- final encoding: eval. tables of reduced multivariate polynomials
 - protected by layers of coding: CRT, concatenation, repetition
Polynomial evaluation: summary

- reducing space to $s \log n$:
 - solution: recurse and apply CRT for a second time
- final encoding: eval. tables of reduced multivariate polynomials
 - protected by layers of coding: CRT, concatenation, repetition
- decoding analysis: exploits CRT
Polynomial evaluation: summary

- reducing space to $s \log n$:
 - solution: recurse and apply CRT for a second time
- final encoding: eval. tables of reduced multivariate polynomials
 - protected by layers of coding: CRT, concatenation, repetition
- decoding analysis: exploits CRT

pseudorandomness

Because of the one-to-one CRT reconstruction, to evaluate g on a random entry, random entries in the reduced polynomials are read.
Open problems

- space-efficient, error-correcting representation for other data structures?
Open problems

- space-efficient, error-correcting representation for other data structures?

 - e.g., nearest neighbor, predecessor search

 - reducing error probability of RLDC to be sub-constant?
Open problems

- space-efficient, error-correcting representation for other data structures?
 - e.g., nearest neighbor, predecessor search
 - reducing error probability of RLDC to be sub-constant?

- a constructive encoding for RLDC?
Open problems

- space-efficient, error-correcting representation for other data structures?
 - e.g., nearest neighbor, predecessor search
 - reducing error probability of RLDC to be sub-constant?

- a constructive encoding for RLDC?

- exist data structures that are succinct and error-correcting?