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Showing that a given Hamiltonian can be approximated by another Hamiltonian of smaller locality is
the central step in the proof of the universality of adiabatic quantum computation with 2-local Hamil-
tonians and in proofs of the promise QMA-completeness of computing ground state energies of local
Hamiltonians[KKR06].

Perturbative gadgets, also introduced in [KKR06], provide a way for achieving such reductions. Jordan
and Farhi[JF08] use a perturbative expansion due to Bloch[Blo58] to come up with such an approximate
reduction from a general k-local Hamiltonian to a 2-local Hamiltonian. In this note we briefly describe their
results.

Notation

An arbitrary k-local Hamiltonian Hcomp can be expressed in the Pauli basis as follows:

Hcomp =
r

∑
i=1

ci Hi,

where each Hi = σi,i1 σi,i2 σi,i3 . . . σi,ik acts only on qbits indexed i1, i2, i3, . . . ik. The idea is to augment the
system with some ancilla qbits, and to find two local Hamiltonians Hanc, which acts only on the ancilla
qbits, and V, which acts on both ancilla qbits and the computation bits, so that a perturbation to Hanc by a
small multiple of V produces a Hamiltonian, which when restricted to a suitable state of the ancilla qbits
is close to Hcomp. Intuitively, we want the Hamiltonian Hcomp to occur as one of the higher order terms in
the perturbative expansion of Hgad, and we expect to achieve this by designing V appropriately so that the
form of the perturbative expansion gives rise to the required terms.

Perturbative Expansions

We first describe the general perturbative expansion due to Bloch[Blo58]. Let H(0) be a Hamiltonian with a
d-dimensional degenerate ground space of energy 0, and suppose V is a perturbation to H(0), scaled by a
small real number λ. Let γ be the second smallest eigenvalue of H(0). Suppose we want to estimate Heff(d),
which is H restricted to its d lowest eigenstates. Bloch showed that when λ ||V|| < γ

4 , one can expand
Heff(d) in powers of λ, in terms of the operator A as follows:

Heff = (P0 + O(λ))

(
∞

∑
m=1
A(m)

)
(P0 + O(λ))

A(m) = λm ∑ P0VSl1 VSl2 . . . VSlm−1 VP0 (1)

Here P0 is the projector to the ground space of H(0). S is defined to be the pseudo-inverse of −H(0), and
S0 is taken by convention to be −P0. The sum is over all (m− 1)-tuples satisfying l1 + · · ·+ lm−1 = m− 1,
and l1 + · · ·+ lp ≥ p, for p ∈ {1, 2, . . . , m− 2}.
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Reducing Locality

To illustrate the above ideas, we consider the k-local Hamiltonian Hcomp = σ1σ2σ3 . . . σk. We introduce k
ancilla qbits and introduce a Hamiltonian Hanc whose ground state corresponds to the state where all ancilla
qbits are either in the |0〉 or |1〉 state, and which penalises each disagreement by increasing the energy of
the state by 1. If Zi is the Pauli Z operator on the ith ancilla bit then we can define Hanc as:

Hanc = ∑
1≤i<j≤k

1
2
(I − ZiZj)

Note that the second lowest eigenvalue of Hanc is k − 1. V is designed so that it “bumps” the ground
state into the next state, and can bring it back to the ground only after at least k applications, and also, when
this happens, the product is proportional to Hcomp. V is defined as:

V =
k

∑
i=1

σiXi (2)

We now take Heff to be Hanc + λV, restricted to its lowest 2k states(this is to ensure that the whole of
the spectrum of Hcomp is approximated), and further restricted to the 1√

2

(∣∣∣0k
〉

+
∣∣∣1k
〉)

state of the ancilla

qbits. Notice that the last restriction is legal because Hanc and V commute with X = ∏k
i=1 Xi, and hence

the restriction just corresponds to taking the block corresponding to the +1 eigenvalue of X in the block
diagonalization of Hanc + λV with respect to the eigen-basis of X. The reason for this restriction will become
clear later.

Notice that Vk contains terms of the form ∏k
i=1 σi ∏k

i=1 Xi, which are proportional to Hcomp on the com-
putational qbits and preserve the ground state of Hanc. On the other hand, any lower order application of
V moves the ground state of Hanc. Thus, in the expansion 1, all terms before the k-th order either vanish,
or are just proportional to P0. Also, notice that in the k-th order term, only the terms where li = 1 for each
i survive. This is because if any of the l′i s are 0, the corresponding term vanishes or becomes proportional
to P0, because it has less than k applications of V sandwiched between P0 operators. Taking all this into
account, [JF08] get the following approximation for Heff:

Heff = f (λ)P0 + (−1)k−1 kλk

(k− 1)!
P0(Hcomp ⊗

n

∏
i=1

Xi)P0 + O(λk+1),

Here f is a function known from the calculation. To handle the ∏n
i=1 Xi operator, we recall that we consid-

ered Heff restricted to the 1√
2

(∣∣∣0k
〉

+
∣∣∣1k
〉)

state of the ancilla qbits, and hence we can replace it by just a

projection P+ on that space. Since, Heff is a 2-local Hamiltonian by construction, we have the expression:

Heff = f (λ)P0 + (−1)k−1 kλk

(k− 1)!
(Hcomp ⊗ P+) + O(λk+1),

, which shows that the spectrum of Hcomp is approximated by the spectrum of (−1)k−1 (k−1)!
kλk Heff up to O(λ)

terms.

Results and Comments

When k is constant, the above approximation is quite versatile. Notice that since it approximates the whole
spectrum of Hcomp, we can use it both to reduce locality in QMA-completeness proofs, as well as in proofs
of the universality of Adiabatic Quantum Computation. Typically, a proof would proceed by taking Hamil-
tonians of higher locality(which mush be a constant) for which QMA-completeness, or universality of adia-
batic computation are known, and would then apply this construction to get a Hamiltonian of lower locality
such that the lowest energy(for QMA completeness), or the lowest energy gap(for universality of adiabatic
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quantum computation) blow up only by a constant factor. The latter context is the motivation in the work
of Jordan and Farhi[JF08].

However, when k is not a constant, this method does not work quite well: the blow up in the norm
of the resulting Hamiltonian is exponential in k. This suggests the interesting problem of trying to find
perturbative gadgets which are comparable in their generality to the above construction of Jordan and
Farhi, but lose a smaller factor in the approximation.
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