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Reading group summary by Thomas Vidick

Starting from Kitaev’s seminal reduction showing QMA-completeness of the 5-local Hamiltonian prob-
lem [3], a number of works have extended that result to more and more specific types of Hamiltonians.
In general, the goal is to understand the crucial properties of a Hamiltonian problem that make it QMA-
complete, or, to the opposite, solvable in P or BQP. In this respect, one can try to restrict the number of
qudits each Hamiltonian acts on, but also their spatial locality, their type (projections or not), and the dimen-
sion of the individual systems.

In order to perform such a reduction, one wishes to approximate a given Hamiltonian H as H ≈ H0 +
. . .+H`, where the Hi are ”simpler” than H: they act on less qubits, or have a simpler algebraic or spatial
structure, etc. The precise sense in which the approximation is required to hold depends on the applications
one has in mind. For the case of QMA, it is only required that the least eigenvalue be preserved, but for
applications to the adiabatic theorem one might also wish for the ground state and gap to be preserved. The
main tool available to prove such decompositions is perturbation theory (see [1]).

Main result and proof overview

The main result in [4] is that the 2-local Hamiltonian problem is QMA-complete, even when the graph of
interactions is restricted to nearest-neighbor interactions on a 2D square lattice.

The proof starts from the 5-local Hamiltonian obtained from Kitaev’s reduction, with a slightly modified
clock which ensures that all interactions are of constant range. The main idea is to organize the clock qubits
around the circuit qubits so that the clock qubit ct is close to the computational qubits on which the circuit
acts at time t.

The resulting graph of interactions has bounded degree and bounded interaction length. To transform it
into a 2D lattice, the authors introduce a number of ”perturbative gadgets” that can be used to manipulate
the locality of a given Hamiltonian. For instance, there is a ”subdivision gadget” which replaces a k-local
Hamiltonian by four dk/2e + 1-local Hamiltonians, acting on the original qubits plus one ancilla, in a way
that is spatially local. There is also a ”fork gadget”, used to reduce the degree of vertices, and a ”cross
gadget”, used to eliminate edge crossings. The appropriate gadgets are applied in parallel to Hamiltonians
acting on different parts of the ground state, transforming the whole interaction graph to a nearest-neighbor
one on a 2D lattice in a small number of sequential steps. This is important as each application of a gadget
induces a blow-up in the norm of the Hamiltonians.

Perturbative gadgets

The correctness of the gadgets is proved through the perturbative framework from [2], based on the use of
resolvents. However, simpler proofs with better parameters can be given using the approach developed later
in [1]. We try to explain briefly the intuition behind those constructions.

Let H = σ1 ⊗ · · · ⊗ σ` a `-local Hamiltonian, with the σi being Pauli operators. Introduce an auxiliary
qubits initialized to |0〉a, and let H0 = |1〉〈1|a. Our goal is to design a V such that H0 + λV ≈ λkH in
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the limit of small λ (how small λ needs to be is a crucial parameter of the construction, since it governs the
size blow-up of the Hamiltonians), and V has a simpler structure than H . As shown in [1], for this special
setting, if we let H` be the lower d-dimensional part of H0 + λV (where d is the dimension of H) then

H` =
∞∑

m=1

A(m) where A(m) = λm
∑

(m−1)

P0V S
l1V Sl2 · · ·V Slm−1V P0 (1)

where P0 is the projector on the ground space of H0, S = −P⊥0 , and S0 = −P0 by convention. The
summation (m) is over all sequences such that l1 + . . .+ lm = m and l1 + . . .+ li ≥ i for all 1 ≤ i ≤ m.
The series converges as long as 4λ‖V ‖ < 1.

In designing V , one tries to have most of the terms in this summation be null, excepted the ones of
interest (or higher-order terms, that are made negligible by taking λ small enough). The idea is to exploit
the interplay between V and the S terms: typically, V will have a component which moves states from the
ground space of H0 to its excited space and vice-versa, so that for instance S0V S0 = S1V S1 = 0.

As an example, we describe the subdivision gadget. The original Hamiltonian is H = A⊗B, where A
and B each act on k/2 qubits. Let H0 = |1〉〈1|a, and V = V1 + V2 = A ⊗ Id ⊗X + Id ⊗B ⊗X , where
X is a bit-flip on the ancilla qubit. Let us look at the first few terms in the expansion (1).

• The term A(1) is λP0V P0, which is 0 since any state which has its ancilla to |0〉 gets it switched to
|1〉 by V , and is set to 0 by P0.

• A(2) = λ2P0V S
1V P0 = −λ2P0V P1V P0. Expanding V = V1 + V2 leads to 4 terms. Of those, the

ones with the same V are (k/2 + 1)-local terms. The other two are identical to A⊗B ⊗ |0〉〈0|.

Setting λ small enough will ensure that terms A(m) for m ≥ 3 are negligible: one can show that their total
norm is bounded by (4‖V ‖λ)3.

More complicated gadgets, such as the fork gadget, follow a lightly more elaborate construction: there
we have H = A⊗B ⊗C, and we take H0 = |0〉〈0|, V = V1 + V2 + V3 = C ⊗ |1〉〈1|+B ⊗X −A⊗X .
The first significant terms will appear at the third order expansion. The general idea is always the same: V
moves the ancilla qubits between the different energy levels ofH0 in a way that ensures that the lowest-order
non-zero terms in (1) involve products of terms that make up the target Hamiltonian.

Applications

As an application, the authors show how the cluster state, which is used in measurement-based computation,
can be written as the ground state of a two-local Hamiltonian. This is important to argue that it is a physically
realizable system; the natural definition of the cluster state has it as the ground state of a 5-local Hamiltonian.

As another application, we can use the subdivision gadget to provide a general k-to-2 reduction, achiev-
ing the same as [1], by proceeding in log k recursive steps. The benefit of this construction is that the
blow-up in norm of the Hamiltonians is smaller (klog k instead of kk). However, the number of ancillas is
larger (roughly k2 instead of k).

An interesting open question that is mentioned in the paper is whether a perturbative theory could be
developed that involves smaller blow-ups in norm, by only focusing on preserving the result of arbitrary
local observable measurements on the ground state of the Hamiltonian, rather than preserving the whole
state itself. This would be sufficient for adiabatic computation.
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