
Quantum Correlations in the Two Party Case

Reading Group Summary

Goal: We will show that if two distant parties are locally quantum and the no signaling prin-
ciple is obeyed, all correlations between the two parties can be described using quantum
mechanics.

Assumptions:
(1) Locally Quantum

We assume that Alice can perform all quantum measurements MA = {Qa}a (POVM),

where
∑
a

Qa = 1, on a Hilbert space HA of dimension d. The probability that she

obtains outcome a for measurement MA is given by a function B(HA)→ [0, 1], where
B(HA) is the set of bounded operators acting on HA. The same holds for Bob, and we
denote a possible measurement by MB = {Rb}b.

(2) No Signaling
We make no assumptions about the joint system held by Alice and Bob, so they can
share any function ω such that Pr(a, b|MA,MB) = ω(Qa, Rb). We assume that the no
signaling principle is obeyed - the marginal probability distribution observed by Alice
must be independent of the measurements performed by Bob and vice versa.

Proof Idea: Our goal is to show that there exists a quantum state which reproduces the
function ω shared by Alice and Bob. This is equivalent to showing that there exists a
Hilbert space HAB = HA ⊗ HB, a state ρAB ∈ B(HAB) and measurements M̃A = {Q̃a}a
and MB = {Rb}b for Alice and Bob such that Pr(a, b|MA,MB) = tr((Q̃a ⊗ Rb)ρAB). The
proof will rely on Gleason’s theorem and the Choi-Jamiolkowski isomorphism, which are in-
cluded below. The first step will be to produce a matrix WAB such that Pr(a, b|MA,MB) =
tr((Qa⊗Rb)WAB). Since WAB is only guaranteed to be positive on pure product states, the
second step will use the CJ isomorphism to produce the final quantum state and operators
as mentioned above.

Step 1 Finding WAB: The idea in this step is to create a suitable linear map T to which we
can apply the CJ isomorphism, obtaining the operator WAB. Using the assumption that
marginal probabilites are well defined, we apply Gleason’s theorem to find unnormalized
quantum states corresponding to each POVM element on both sides. These states preserve
information from the shared preparation ω. We can then produce a linear operator ω̂ map-
ping POVM elements on Alice’s side to unnormalized quantum states on Bob’s side. By
altering this linear operator slightly, we obtain T . Applying the CJ isomorphism to T gives
WAB.

Step 2 Quantum Correlation: We obtained WAB in the previous step by using our linear
map T and acting on Bob’s side of the projection on the maximally entangled state |Φ〉.
Now if we can shift the action of T to a POVM element instead, we can set ρAB = |Φ〉〈Φ|.
Because WAB is positive on pure tensor products, T is a positive map. Then if T (1) = 1,
T must map POVM elements to POVM elements. We can shift the action of T to Qa

to obtain Q̃a, and we now have Pr(a, b|MA,MB) = tr((Q̃a ⊗ Rb)ρAB). If T is not unital
(T (1) 6= 1), we can split T into a unital map T1 and another map T2. In this case, we will

obtain ρAB by the action of T2 on |Φ〉〈Φ| and we will obtain Q̃a by the action of T1 on Qa.

1



Open Problems: It would be interesting to understand why locally quantum behavior does
not generally imply quantum correlations — for more than 2 parties, the theorem described
above fails [2]. Another open issue is to understand why there exist no signaling correlations
which cannot be obtained by locally quantum parties — is there a set of principles which
would exactly characterize quantum correlations?

Gleason’s Theorem: A frame function is a function f : P(H)→ [0, 1], where H is a Hilbert
space and P(H) is the set of positive operators acting on H, such that for all X ⊂ P(H), if∑
E∈X

E = 1 then
∑
E∈X

f(E) = 1. Gleason’s theorem states that for all frame functions there

exists a unit trace positive operator W such that for E ∈ P(H), f(E) = tr(WE).

Choi-Jamiolkowski Isomorphism: This is an isomorphism between linear maps T : B(HA)→
B(HB) and operators WAB ∈ B(HAB), where HA and HB are Hilbert spaces of the same
dimension and B(HA) is the set of bounded operators acting on HA. The map used here is
as follows: WAB = 1⊗ T (|Φ〉〈Φ|).
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