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ABSTRACT
We introduce a protocol through which a pair of quantum
mechanical devices may be used to generate n bits that are
ε-close in statistical distance from n uniformly distributed
bits, starting from a seed of O(log n log 1/ε) uniform bits.
The bits generated are certifiably random based only on a
simple statistical test that can be performed by the user,
and on the assumption that the devices do not communi-
cate in the middle of each phase of the protocol. No other
assumptions are placed on the devices’ inner workings. A
modified protocol uses a seed of O(log3 n) uniformly random
bits to generate n bits that are poly−1(n)-indistinguishable
from uniform even from the point of view of a quantum ad-
versary who may have had prior access to the devices, and
may be entangled with them.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Random number gen-
eration—complexity measures, performance measures
; F.1.2 [Computation by Abstract Devices]: Modes of
Computation—Probabilistic Computation

General Terms
Theory
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1. INTRODUCTION
A source of independent random bits is a basic resource

in many modern-day computational tasks, such as cryp-
tography, game theoretic protocols, algorithms and physi-
cal simulations. However, constructing a physical source of
randomness is an unexpectedly tricky task 1 — one that
touches on fundamental questions about the nature of ran-
domness. What makes this task particularly challenging is
this: how can one even test whether one has succeeded? In
other words, suppose someone was to claim that a given box
outputs uniformly random bits; is there a practical test to
verify that claim?

The root of the difficulty in carrying out such a test is the
following: a uniform random generator must output every
n-bit sequence with equal probability 1/2n, and there seems
to be no basis on which to reject any particular output in
favor of any other. On the face of it, testing the output of
the box amounts to classifying a single n-bit string x (or a
very small sample of the exponentially many n-bit strings)
as being random or not random.

Starting in the mid-80’s, computer scientists explored a
different approach to the question of designing a uniform
random number generator: they assumed that they already
had access to a physical device that was guaranteed to out-
put random strings, except that the randomness was of “low
quality”. They modeled such devices as adversarially con-
trolled sources of randomness, starting with the semi-random
source [24], and weak random sources [31]. This sequence
of papers has culminated in sophisticated algorithms called
randomness extractors that are guaranteed to output a se-
quence that is arbitrarily close to truly random bits from
physical sources of low-quality randomness (see [25] for a
survey). It was clear, in a classical World, that these results
were the best one could hope for — since it was necessary
to assume that randomness in some form was output by
the device in the first place, the only progress could be in
minimizing the assumptions placed on the quality of that
randomness.

1The quest for good hardware number generators goes as
far back as the first commercially available computer, the
Ferranti Mark I, and continues through Intel’s recently an-
nouncement of the first digital such generator, as part of its
new “Ivy bridge” microprocessor [28].



Quantum nonlocality and a test for randomness.
Unlike classical physics, where randomness is implicitly

an assertion about our lack of knowledge or computational
ability, quantum mechanics offers a source of intrinsic ran-
domness, ensconced in the Born rule, one of the fundamen-
tal axioms of the theory. So in principle, it is very simple
to design a quantum device that outputs a sequence of in-
dependent unbiased bits: simply pass a sequence of qubits
in state |0〉 through a Hadamard gate and measure. This
brings us back to the main question addressed in this pa-
per: is it possible to certify that the output of a randomness
generating device (based on quantum mechanics) is “really
random” even though the user does not trust the experi-
mental skills of the manufacturer, the calibration of the de-
vice, the manufacturer’s motivations (particularly in cryp-
tographic settings), or even the correctness of quantum me-
chanics? We describe the construction of a specific kind of
quantum random number generator for which the answer to
these questions is affirmative. This construction builds upon
a proposal of Colbeck [6] and follow up work by Pironio et
al. [21] that provides a link between randomness certifica-
tion and quantum non-locality. Before we can describe the
actual construction, we must introduce some basic ideas be-
hind quantum non-locality.
Non-locality is one of the most interesting features of quan-

tum mechanics, and was famously explored in the work of
Einstein, Podolski and Rosen [11], and later in the work of
Bell [2, 3]. We focus here on a concrete realization of an ex-
periment inspired by Bell’s work, that is best phrased as a
game, the CHSH game (illustrated in Figure 1), named after
its inventors Clauser, Horne, Shimony and Holt [5]. In this
game two non-communicating parties, represented by spa-
tially separated boxes A, B, are given inputs x, y ∈ {0, 1}
respectively. Their task is to produce outputs a, b ∈ {0, 1}
such that the CHSH condition a ⊕ b = x ∧ y holds. Let
pCHSH be the probability that a certain pair of boxes pro-
duces outputs satisfying this condition, when the inputs x, y
are chosen uniformly at random.

A B

x ∈ {0, 1} y ∈ {0, 1}

a ∈ {0, 1} b ∈ {0, 1}
Check: a⊕ b = x ∧ y

Figure 1: The CHSH game. Any pair of boxes A,B is
characterized by a distribution p(a, b|x, y) which is re-
quired to be no-signaling : the marginal distribution
of b is independent of x, and that of a is independent
of y.

While classical players can achieve a success probability
at most pCHSH ≤ 3/4 in this game, there is a simple quantum
strategy that succeeds with pCHSH = cos2 π/8 ≈ 0.85. Hence
we may define a quantum regime corresponding to success
probability 3/4 < pCHSH ≤ cos2 π/8 ≈ 0.85. For any value

in that range there is a simple quantum-mechanical pair
of boxes, still obeying the condition of no communication,
which achieves that success probability.

These well-known facts have a striking consequence: any
boxes producing correlations that fall in the quantum regime
must be randomized ! Indeed, deterministic boxes are inher-
ently classical, so that their success probability must fall in
the classical regime pCHSH ≤ 3/4. Hence a simple statistical
test guaranteeing the presence of randomness, under a sin-
gle assumption on the process that produced the bits: that
it obeys the no-communication condition.2 This powerful
observation was first made in Colbeck’s Ph.D. thesis [6] (see
also [7] for an expanded version). The idea was then de-
veloped in [21], in which the authors showed that Colbeck’s
idea could be used to device a procedure that expands an
initial seed of

√
n bits into n bits that are guaranteed to con-

tain a linear amount of min-entropy.3 (An extractor could
then be applied to produce linearly many near-uniform bits.)
Pironio et al. even reported an experimental realization of
their scheme, demonstrating the generation of 42 new ran-
dom numbers, in addition to the randomness used to execute
the protocol.

Our results.
Let n be an integer, and ε > 0 a parameter such that ε is

at least an inverse polynomial in n. We introduce a very sim-
ple protocol which uses a random seed of length O(log3 n) to
generate an n-bit string that is ε-close to uniformly random
in statistical distance. This exponentially improves upon the
quadratic expansion of [21]. Moreover, the procedure comes
with a test which guarantees that the bits produced are ε-
close to being indistinguishable from uniform bits even from
the point of view of an arbitrary quantum adversary. Estab-
lishing such a strong security guarantee was an important
open question left open in previous works.

The protocol to achieve this prescribes the interaction of
a trusted user with an untrusted physical device which we
assume is made of two separate boxes, A and B. The boxes
may have been tampered with by the adversary, who could
for instance have decided to initialize them in an entangled
quantum state that extends into her own laboratory.

The protocol consists of m = poly(n) phases. Each phase
lasts for k = O(log n+log 1/ε) rounds, during each of which
the user inputs a single bit to each box and collects a single
bit as output. This sequence of mk interactions is non-
adaptive: the user can generate the 2mk input bits in ad-
vance from his O(poly log(n, 1/ε))-bit random seed before
the interaction. It is of critical importance that he reveals
the input bits of phase i + 1 to the boxes only after the
completion of phase i. In each phase the user also performs
a very simple statistical test (which simply checks that a
large fraction of rounds satisfy a CHSH-like condition). If
the test is passed in all phases, then the output of box B,
say, is efficiently (and classically) post-processed to produce
the final output, an-n bit string. If the test is failed in any
phase, then the user outputs a special “fail” symbol.

2By this we mean that the probability distribution
p(a, b|x, y) describing the distribution of the boxes’ outputs,
as a function of their inputs, should be no-signaling : the
marginal distribution of either box’s outputs should be in-
dependent from inputs to the other.
3The paper [21] contained an error that was later fixed in
work of Fehr et. al. [12].



We show that, however the adversary may have prepared
the physical boxes, provided the bits they produce in the
protocol are accepted in the user’s test, the maximum suc-
cess probability with which the adversary can guess the n
bits output at the end of the protocol is exponentially small
in n. This condition is stronger than the mere fact that the
bits produced contain a linear amount of min-entropy: it
implies that no outside adversary can have gained any infor-
mation about them, and in particular they may be securely
used in subsequent post-quantum cryptographic primitives.4

This conclusion is guaranteed to hold provided the following
conditions are met:

1. The user’s private random bits are uniformly random.

2. The simple statistical test is passed in all m phases of
the protocol.

3. Boxes A and B are arbitrary, but their functioning
must admit a description consistent with quantum me-
chanics. In addition, there must not be any communi-
cation between A and B throughout the duration of
any given phase of the protocol. Formally, this last
requirement states the following: for each phase i, the
marginal distribution of outputs produced by A (resp.
B) during phase i is independent of all inputs to B
(resp. A) in phase i.

As we shall see, it is possible to implement using very sim-
ple quantum mechanics a pair of boxes A and B that pass
the statistical tests in all m phases with high probability.
However, the key point established by our results is that by
using such a device as prescribed by the protocol, its out-
puts can be trusted based only on a belief in the correctness
of quantum mechanics (and even that assumption will be
relaxed in our second result) and in the fact that there is
no communication between the devices — it is not required
to, say, believe that the device’s manufacturer is trustwor-
thy, experimentally skilled, or that the device is always well
calibrated.

We state informally our main result, referring to Section 5
for a precise statement.

Theorem 1 (Informal). Let n be an integer, and ε =
n−α for some α > 0. Let (A,B) be an arbitrary pair of
boxes, and assume that the physical behavior of A and B can
be described by two isolated but possibly entangled quantum-
mechanical systems (and in particular there is no possibility
for communication in-between the boxes). Suppose Proto-
col B, as described in Figure 3, is executed with A and B.
This execution requires the use of Õ(log2 n log 1/ε) random
bits, and results in an output string B of poly(n) bits. Let
CHSH be the event that the boxes’ outputs pass the test per-
formed by the user at the end of an execution of Protocol B,
as described in Figure 3, and suppose that Pr

(
CHSH

) ≥ ε.
Then no adversary can guess B with success probability

greater than 2−n. More precisely, if E denotes an arbitrary
quantum system, possibly entangled with A and B (but such

4It may also be worth emphasizing that the bits eventually
produced, after application of an extractor, will be guar-
anteed to be statistically indistinguishable from uniform, a
much stronger condition that the computational indistin-
guishability that is the criterion for cryptographic pseudo-
random generators [26, 4, 30].

that no communication occurs between A,B and E during
the execution of the protocol), then

Hε
∞(B|E) ≥ n,

where Hε
∞ is the smooth quantum conditional min entropy.

We note that the assumption Pr
(
CHSH

) ≥ ε is necessary,
as there is always an unavoidable chance that the boxes suc-
cessfully guess their whole inputs, and deterministically pro-
duce matching outputs. While the theorem as stated only
guarantees that the bits output by the device have large
(smooth) min-entropy, one can obtain bits that are (close
to) uniformly random by applying an extractor. In order
to preserve the security against quantum adversaries, one
should use a construction that is also secure against quan-
tum adversaries. Such constructions exist: for instance an
efficient classical extractor due to Trevisan [29], which only
requires an additional O(log2 n) bits of seed, has been shown
secure even against quantum adversaries [27, 9].

In case one is not concerned with the possibility of quan-
tum adversaries, but solely with the production of high-
entropy bits, we introduce a simplified protocol that gen-
erates n bits that are ε-close to being uniformly random
(after application of an efficient extractor, such as the one
in [14]), starting from a seed of only O(log n log 1/ε) uni-
formly random bits. The protocol consists of m = O(n)
phases, each lasting for k = O(log n+log 1/ε) rounds. More-
over, the output sequence of n bits is ε-close to uniformly
random provided there is no communication between A and
B in the middle of any phase (a condition enforced, say, by
the speed of light limit imposed by special relativity). For
the conclusion to hold, it is unnecessary to assume that the
boxes are described by quantum mechanics.5

We note that a dependence of the initial seed on log(1/ε)
is clearly necessary to guarantee that the output is ε-close to
uniform in statistical distance. This is because a malicious
device could attempt to guess the user’s private random bits,
and behave accordingly. If the user only uses log 1/ε random
bits, the device’s guess will be successful with probability ε,
and in that case it can deterministically satisfy all the user’s
requirements (since they are known in advance). One can
also argue (perhaps a little less emphatically) that logn bits
may be necessary, since at best the device acts like a weak
random source, and a random seed of log n bits is necessary
to extract that randomness.

Theorem 2 (Informal). Let ε > 0 be given, and n an
integer. Let (A,B) be an arbitrary pair of non-communicating
boxes. Suppose Protocol A, described in Figure 2, is ex-
ecuted with A and B. This execution requires the use of
Õ(log n log(1/ε)) random bits, and results in an output string
B of O(n) bits. Let CHSH be the event that the boxes’ out-
puts are accepted in the final test described in the protocol,
and suppose that Pr

(
CHSH

) ≥ ε. Then

Hε
∞(B|CHSH) ≥ n.

In the simplified setting of Theorem 2 we are able to ex-
plicitly work through the constants involved in our bounds,

5One might say that the randomness is“Einstein certifiable”,
in the sense that the tests should convince even a quantum
skeptic — viz, Einstein’s famous quote from his 1926 let-
ter to Max Born expressing his unhappiness with quantum
mechanics as “God does not play dice with the Universe”.



and obtain actual estimates for the amount of randomness
produced. For example, if one sets an error tolerance pa-
rameter ε = 10−5, 15Kb of seed are necessary to produce
roughly 15Kb of min-entropy: a shorter seed will only pro-
duce less entropy than it contained. Once that threshold
is passed, however, the exponential expansion kicks in very
quickly, and 30Kb of seed are already sufficient to generate
one Terabyte of min-entropy!

Techniques.
The proofs of both our results proceed by contradiction.

Suppose given a pair of boxes (A,B) that violate either the-
orem’s conclusions: when subjected to an interaction as pre-
scribed by Protocol A or Protocol B, the boxes produce bits
that pass the user’s test with good probability, but still con-
tain little min-entropy. Our goal is to show that such boxes
must violate the theorems’ assumptions: they must be sig-
naling.
In order to demonstrate this we introduce two ingredients.

The first is a decomposition of the protocol into phases,
which are consecutive sequences of a fixed number k =
O(log n+ log 1/ε) of rounds of interaction between the user
and the boxes. Each box always receives identical inputs
throughout all rounds in a given phase. The purpose of the
decomposition into phases is to enable the user to perform a
robust verification of the CHSH condition: his final test will
enforce that in every phase, a significantly larger than 3/4
fraction of pairs of outputs satisfy the CHSH condition (with
respect to the corresponding pair of outputs). This lets us
argue about the Hamming distance between Alice and Bob’s
k-bit outputs in any phase: if the CHSH constraint was of
the form a⊕ b = 0 then the outputs should be close in Ham-
ming distance, whereas if it had the form a ⊕ b = 1 then
they should be far apart.
The second ingredient builds upon the first. Consider the

following simple guessing game: two players, Alice and Bob,
each get a uniformly random bit as input. They win the
game if Alice outputs a bit that equals Bob’s input. Clearly,
any strategy with success probability larger than 1/2 must
involve communication between Alice and Bob. Ignoring
quantum adversaries for now, suppose given a pair of boxes
violating the conclusion of Theorem 2. Then such boxes
can be used to devise a successful strategy in the guessing
game: a contradiction of the no-signaling assumption. The
main point is that if box B’s output is not random enough,
then in a certain block of the protocol it is likely to output
a particular k-bit string almost deterministically. In that
case, by using the CHSH condition Alice, given access to A,
can guess B’s input y ∈ {0, 1} based on whether A’s k-bit
output in that block is “close” or “far” in Hamming distance
from that particular string. This provides a way for Alice to
guess B’s input with probability greater than 1/2, violating
the no-signaling condition placed on the boxes. This style
of reasoning can be used to establish that B’s output must
have high min-entropy, thus yielding Theorem 6.

Proving security in the presence of a quantum adversary
involves additional challenges. Indeed, indication that deal-
ing with such adversaries may present substantial new diffi-
culties may already be found in the area of strong extractor
constructions: there are examples of such constructions, se-
cure against classical adversaries, that dramatically fail in
the presence of quantum adversaries with even smaller prior

information [13]. We need to rule out the following catas-
trophic scenario: the adversary Eve inserted an undetectable
“back-door” by entangling A and B together with her own,
private, laboratory. Eve knows how the protocol proceeds,
and how the boxes will behave (her only unknown are the
poly log n random bits of seed used by the user). Based on
this she repeatedly makes a specific measurement on her sys-
tem, which reliably produces the same output bits as A and
B: while B’s outputs may appear random in isolation, they
are totally insecure!6

Interestingly, the proof of Theorem 1 makes crucial use of
the properties of a specific construction of a quantum-proof
extractor, based on Trevisan’s construction and the t-XOR
code, that was first outlined in [10]. This construction is
used to prove a key information-theoretic lemma, which we
state informally below. The lemma gives an operational
interpretation to a random variable having small smooth
min-entropy conditioned on a quantum system, and may be
of independent interest.

Lemma 3 (Informal). Let X be a random variable dis-
tributed over m-bit strings, and for every x ∈ {0, 1}m, ρx a
quantum state. Let ε = Ω(poly−1(m)), and suppose that the
smooth min-entropy of X, given ρX , is K = Hε

∞(X|ρX).
Then there exists a collection of O(K logm) subsets of O(logm)
positions of X each, and a measurement on ρX , depending
on the parities of the bits of X in each of those subsets, that
produces a string Y such that with inverse-polynomial prob-
ability, Y agrees with X in a fraction at least 1 − 1

logm
of

positions.

Lemma 3 formalizes the intuition that if Hε
∞(X|ρX) = K,

then given access to ρX one is only “missing” roughly K
bits of information about X: there exists specific “advice
bits” (the parities of the bits of X in each of the O(K logm)
subsets) such that, given these advice bits, one can measure
ρX and recover most of X with inverse-polynomial success
probability.7 The proof of Lemma 3 is based directly on the
proof of security of Trevisan’s extractor against quantum
adversaries presented in [9]. Since however it does not follow
as a black-box, we give a detailed outline of the proof of the
lemma in Appendix A.

Finally, note that while the proof of Lemma 3 requires the
use of a specific construction of an extractor secure against
quantum adversaries, as a result we can show that the bits
output in Protocol B contain a large amount of conditional
min-entropy — and hence any good quantum-proof extrac-
tor can be applied to those bits in order to obtain near-
uniform bits.

Related work.
Two concurrent and independent papers, the first by Fehr,

Gelles and Schaffner [12] and the second by Pironio and
Massar [22], consider the problem of randomness expansion
in the presence of classical adversaries. Both papers give a

6This is so even after the application of the extractor by the
user, as if Eve knows the whole input to the extractor, but
not the seed, she still has about n − O(poly log n) bits of
information on the n output bits.
7Note that in the range of large K (at least inverse-
polynomial in m), an inverse-polynomial success is much
higher than the inverse-exponential probability of guessing
correctly the whole of X that one would get by measuring
ρX directly, without using any “advice” bits.



more rigorous proof of the results originally presented in [21],
in particular concluding that the protocol introduced in that
paper is composable, provided the adversary only possesses
classical side information. Using this they are able to obtain
a protocol with exponential randomness expansion; however
their protocol requires the use of at least two pairs of boxes
that are not entangled (in contrast, our protocol requires
a single pair of boxes, and is secure even in the presence
of arbitrary entanglement between them and any potential
adversary).
Recent work by Colbeck and Renner [8] studies a related

question, that of improving the quality of a given source
of weak randomness. Specifically, they show that if one is
given access to a so-called Santha-Vazirani source then one
can produce bits that are guaranteed to be statistically close
to uniform by using the violation of a specific Bell inequality
by a pair of untrusted no-signaling devices.

Organization of the paper.
We begin with some preliminaries in Section 2. In Sec-

tion 3 we introduce the guessing game, an important con-
ceptual tool in the proofs of both Theorem 6 and Theorem 8.
In Section 4 we prove Theorem 6, while Theorem 8 is proven
in Section 5. The proof of Lemma 3 mostly follows from
known results, and is given in Appendix A.

2. PRELIMINARIES

Notation.
Given two n-bit strings x, y we let dH(x, y) = 1

n

∑n
i=1 |xi −

yi| denote their relative Hamming distance. For i ∈ [n], we
let xi be the i-th bit of x, and x<i its (i− 1)-bit prefix.

Classical random variables.
Given a random variable X ∈ {0, 1}n, its min-entropy is

H∞(X) = − logmax
x

Pr(X = x).

For two distributions p, q on a domain D, their statistical
distance is

‖p− q‖1 := (1/2)
∑
x∈D

|p(x)− q(x)|1.

This notion of distance can be extended to random variables
with the same range in the natural way. Given ε > 0, the
smooth min-entropy of a random variable X is

Hε
∞(X) = sup

Y, ‖Y −X‖1≤ε

H∞(Y ).

The following simple and well-known claim will be useful.

Claim 4. Let α, ε > 0 and X a random variable such that
Hε

∞(X) ≤ α. Then there exists a set B such that Pr(X ∈
B) ≥ ε and for every x ∈ B, it holds that Pr(X = x) ≥ 2−α.

Proof. LetB be the set of x such that Pr(X = x) ≥ 2−α,
and suppose Pr(X ∈ B) < ε. Define Y so that Pr(Y = x) =
Pr(X = x) for every x /∈ B, Pr(Y = x) = 0 for every x ∈ B.
In order to normalize Y , introduce new values z such that
Pr(X = z) = 0, and extend Y by defining Pr(Y = z) =
2−α−1 until it is properly normalized. Then ‖Y − X‖1 <
ε and H∞(Y ) > α, contradicting the assumption on the
smooth min-entropy of X.

Quantum states.
Let X be a register containing a classical random variable,
which we also call X, and E a register containing a quan-
tum state, possibly correlated to X. Then the whole system
can be described using the cq-state (cq stands for classical-
quantum) ρXE =

∑
x pX(x)|x〉〈x| ⊗ ρx, where for every x

ρx is a density matrix, i.e. a positive matrix with trace 1.
Given such a state, the guessing entropy pguess(X|E) is the
maximum probability with which one can predict X, given
access to E. Formally, it is defined as

pguess(X|E)ρ = sup
{Mx}

∑
x

pX(x)Tr
(
Mxρx

)
,

where the supremum is taken over all projective operator-
valued measurements (POVMs) on E.8 The conditional
min-entropy can be defined through the guessing entropy
as H∞(X|E)ρ = − log pguess(X|E)ρ [18]. We will often
omit the subscript ρ, when the underlying state is clear.
The appropriate distance measure on quantum states is the
trace distance, which derives from the trace norm ‖A‖tr =

Tr
(√

A†A
)
. This lets us define a notion of smooth condi-

tional min-entropy:

Hε
∞(X|E)ρ = sup

σXE , ‖σXE−ρXE‖tr≤ε

H∞(X|E)σ,

where here the supremum is taken over all sub-normalized
cq-state σXE . As in the purely classical setting, it is known
that this measure of conditional min-entropy is the appropri-
ate one from the point of view of extracting uniform bits [23]:
if Hε

∞(X|E) = K then K−O(log 1/ε) bits can be extracted
from X that are ε-close to uniform, even from the point of
view of E.

The CHSH game.
The following game was originally introduced by Clause,
Horne, Shimony and Holt [5] to demonstrate the non-locality
of quantum mechanics. Two collaborating but non com-
municating parties, Alice and Bob, are each given a bit
x, y ∈ {0, 1} distributed uniformly at random. Their goal
is to produce bits a, b respectively such that a ⊕ b = x ∧ y.
It is not hard to see that classical parties (possibly using
shared randomness) have a maximum success probability
of 3/4 in this game. In contrast, quantum mechanics pre-
dicts that the following strategy, which we will sometimes
refer to as the “honest” strategy, achieves a success probabil-
ity of cos2(π/8) ≈ 0.85. Alice and Bob share an EPR pair
|Ψ〉 = 1√

2
|00〉+ 1√

2
|11〉. Upon receiving her input, Alice mea-

sures either in the computational (x = 0) or the Hadamard
(x = 1) basis. Bob measures in the computational basis ro-
tated by either π/8 (y = 0) or 3π/8 (y = 1). One can verify
that for every pair of inputs (x, y) this strategy produces
correct outputs with probability exactly cos2(π/8).

3. THE GUESSING GAME
Consider the following simple guessing game. In this game,

there are two cooperating players, Alice and Bob. At the
start of the game Bob receives a single bit y ∈ {0, 1} cho-
sen uniformly at random. The players are then allowed to

8A POVM {Mx} is given by a set of positive matrices which
sum to identity. We refer the reader to the standard text-
book [20] for more details on the basics of quantum infor-
mation theory.



perform arbitrary computations, but are not allowed to com-
municate. At the end of the game Alice outputs a bit a, and
the players win if a = y.
Clearly, any strategy with success probability larger than

1
2
indicates a violation of the no-communication assumption

between Alice and Bob. At the heart of the proofs of both
Theorem 6 and Theorem 8 is a reduction to the guessing
game. Assuming there existed a pair of boxes violating the
conclusions of either theorem, we will show how these boxes
may be used to devise a successful strategy in the guessing
game, contradicting the no-signaling assumption placed on
the boxes.

To illustrate the main features of the strategies we will
design later, consider the following simplified setting. Let
A,B be a given pair of boxes taking inputs X,Y ∈ {0, 1}
and producing outputs A,B ∈ {0, 1}k respectively, where k
is a parameter. Assume the following two properties hold.
First, if the input to B is Y = 0 then its output B is es-
sentially deterministic, in the sense that B = b0 with high
probability. Second, whatever their inputs, the boxes’ out-
puts satisfy the CHSH constraint on average with a slightly
higher probability than could any classical boxes: there is a
fixed δ > 0 such that a fraction at least 3/4 + δ of i ∈ [k]
are such that Ai ⊕ Bi = X ∧ Y . Then we claim that there
is a strategy for Alice and Bob in the guessing game, using
A and B, that succeeds with probability strictly larger than
1/2.
Alice and Bob’s strategy is the following. Alice is given

access to A and Bob to B. Upon receiving his secret bit
y, Bob inputs it to B, collecting outputs b ∈ {0, 1}k. Alice
chooses an x ∈ {0, 1} uniformly at random, and inputs it
to A, collecting outputs a ∈ {0, 1}k. Let b0 be the k-bit
string with the highest probability of being output by B,
conditioned on y = 0. Alice makes a decision as follows:
she computes the relative Hamming distance d = dH(a, b0).
If d < 1/4 she claims “Bob’s input was 0”. Otherwise, she
claims “Bob’s input was 1”.
By assumption, if Bob’s secret bit was y = 0, then his

output is almost certainly b0. By the CHSH constraint, in-
dependently of her input Alice’s output a lies in a Hamming
ball of radius 1/4−δ around b0. So in this case she correctly
claims “Bob’s input was 0”.
In the case that Bob’s secret bit was y = 1, the anal-

ysis is more interesting. Let b be the actual output of B.
Let a0 and a1 be A’s output in the two cases x = 0 and
x = 1 respectively. We claim that the Hamming distance
dH(a0, a1) ≥ 1/2 + 2δ. This is because by the CHSH con-
straint, dH(a0, b) ≤ 1/4 − δ, while dH(a1, b) ≥ 3/4 + δ.
Applying the triangle inequality

dH(a0, a1) ≥
∣∣dH(a1, b)− dH(a0, b)

∣∣ ≥ 1/2 + 2δ,

as claimed. Hence both a0 and a1 cannot lie in the Hamming
ball of radius 1/4 around the fixed string b0 (observe that
this argument makes no use of the actual location of b!).
Thus in the case y = 1, Alice correctly claims “Bob’s input
was 1” with probability at least 1/2.
Overall Alice and Bob succeed in the guessing game with

probability at least 3/4, implying the boxes A, B allowed
them to communicate, and hence do not satisfy the no-
signaling condition.

Clearly there is a lot of slack in the above reasoning, since
for contradiction it suffices to succeed in the guessing game

with any probability strictly greater than 1/2. By being
more careful it is possible to allow Bob’s output on y = 0 to
not be fully deterministic, as well as allow for a small prob-
ability that the boxes’ outputs may not satisfy the CHSH
constraint:

Lemma 5. Let β, γ > 0 be such that γ/2 + 3β < 1/4,
and k an integer. Suppose given a pair of boxes A,B, taking
inputs X,Y ∈ {0, 1} and producing outputs A,B ∈ {0, 1}k
each. Suppose the following conditions hold:

1. When given input 0, the distribution of outputs of B
has low min-entropy: there exists a b0 ∈ {0, 1}k such
that Pr(B = b0|Y = 0) ≥ 1− γ,

2. The boxes’ outputs fall in the “quantum regime” of the
CHSH inequality: there exists a constant δ > 0 such
that

Pr
(
dH

(
A⊕B, (X ∧ Y, . . . , X ∧ Y )

)
> 1/4− δ

) ≤ β,

where the probability is taken over the choice of uni-
formly random X,Y , and the boxes’ internal random-
ness.

Then there is a strategy for Alice and Bob, using A and B,
which gives them success probability strictly greater than 1/2
in the guessing game.

Proof. Alice and Bob’s strategy in the guessing game is
as described above. Let b0 be the k-bit string that is most
likely to be output by B, conditioned on y = 0.

We first show that, if Bob’s input was y = 0, then Alice
claims that Bob had a 0 with probability at least 1 − γ −
2β. By the first condition in the lemma, Bob obtains the
output b0 with probability at least 1− γ. Moreover, by the
second condition the CHSH constraint will be satisfied with
probability at least 1 − 2β on average over Alice’s choice
of input, given that Bob’s input was y = 0. Given y = 0,
whatever the input to A the CHSH constraint implies that
dH(a, b) < 1/4. Hence by a union bound Alice will obtain
an output string a at relative Hamming distance at most
1/4 from b0 with probability at least 1− γ − 2β.

Next we show that, in case Bob’s input in the guessing
game is y = 1, Alice claims that Bob had a 1 with probabil-
ity at least 1

2

(
1 − 8β). The second condition in the lemma

implies that for any of the two possible choices for Alice’s
input X = x ∈ {0, 1}, it holds that

Pr
ABY

(
dH

(
A⊕B, (X ∧ Y ), . . . , X ∧ Y )

)
>

1

4
− δ |X = x

)
≤ 2β. (1)

Let b′ be Bob’s output, and suppose that b′ is such that
for every x ∈ {0, 1}, (1) holds conditioned on B = b′, with
the 2β replaced by a 4β. It follows from (1) and Markov’s
inequality that this condition holds with probability at least
1− 4β over b′.

If Alice chooses x = 0 then the CHSH constraint indicates
that the corresponding a0 should be such that dH(a0, b

′) <
1/4−δ, while in case she chooses x = 1 her output a1 should
satisfy dH(a1, b

′) > 3/4 + δ. By the triangle inequality,

dH(a0, a1) ≥
∣∣dH(a1, b

′)− dH(a0, b
′)
∣∣ > 1/2 + 2δ,

so that whatever the value of b′, at most one of a0 or a1 can
be at distance less than 1/4 from b0. Since Alice’s input is



chosen uniformly at random, taking into account the choice
of b′ we have shown that with probability at least (1−8β)/2
Alice will choose an input that will make her correctly claim
that Bob had a 1.

The two bounds proven above together show that Alice’s
probability of correctly guessing Bob’s input in the guessing
game is at least

psucc ≥ 1

2

(
1− γ − 2β

)
+

1

2

1− 8β

2
=

1

2
+

(1
4
− 3β − γ

2

)
,

which is greater than 1/2 whenever 3β+γ/2 < 1/4, proving
Lemma 5.

4. A PROTOCOL WITH EXPONENTIAL RAN-
DOMNESS EXPANSION

In this section we prove Theorem 2, which can be stated
formally as follows.

Theorem 6. Let ε > 0 be given, and n an integer. Let
(A,B) be an arbitrary pair of no-signaling boxes used to ex-
ecute Protocol A, as described in Figure 2, B the random
variable describing the bits output by B, and CHSH the event
that the boxes’ outputs are accepted in the final test described
in the protocol. Then for all large enough n at least one of
the following holds :

• Either Hε
∞(B|CHSH) ≥ n,

• Or Pr
(
CHSH

) ≤ ε.

Moreover, inputs in Protocol A can be generated using
Õ(log n log(1/ε)) uniformly random bits, and it makes
O(n(log n+ log(1/ε))) uses of the boxes.

Protocol A is described in Figure 2. It uses two main ideas
in order to save on the randomness used by the user to select
inputs to the boxes. The first idea is to restrict the inputs to
(0, 0) most of the time.9 Only a few randomly placed checks
(the Bell blocks) are performed in order to verify that the
boxes are generating their inputs honestly. There are about
O(log 1/ε) such blocks. Note that the boxes usually do not
know when they are being checked: for instant, if the input
is (0, 1) then even though box B knows that it is in a Bell
round, box A by itself cannot differentiate that particular
round from one in which both inputs are 0. This implies in
particular that the strategy it uses to determine its output
cannot be different from what it would have been had the
inputs been the more frequent (0, 0).
The second main idea, as already explained in the intro-

duction, consists in decomposing the protocol into phases
(we also use blocks when specifically referring to the sequence
of inputs or outputs in a given phase), which are consecu-
tive sequences of a fixed number k = O(log n + log 1/ε) of
rounds of interaction between the user and the boxes, and
whose purpose of the decomposition in phases is to enable
the user to perform a robust verification of the CHSH con-
dition.
Altogether, Protocol A only requires the use of random

bits in order to select the position of the Bell blocks, as
well as to select inputs in these blocks. The O(log 1/ε)
Bell blocks can be chosen among the O(n) rounds using

9This idea was already used in [21], and led to their protocol

with quadratic
√

n log 1/ε→ n expansion of randomness.

Protocol A

1. Let n, ε be parameters given as input. Set m = 500n,
Δ = 200�ln(1/ε)�, 
 = m/Δ and k = 100�log n +
log 1/ε�.

2. Choose T ⊆ [m] uniformly at random by selecting each
position independently with probability 1/
.

3. Repeat, for i = 1, . . . ,m:

3.1 If i /∈ T , then

3.1.1 Set x = y = 0 and choose x, y as inputs for
k consecutive steps. Collect outputs a, b ∈
{0, 1}k.

3.1.2 If a ⊕ b has more than �0.2k� 1’s then reject
and abort the protocol. Otherwise, continue.

3.2 If i ∈ T ,

3.2.1 Pick x, y ∈ {0, 1} uniformly at random, and
set x, y as inputs for k consecutive steps. Col-
lect outputs a, b ∈ {0, 1}k.

3.2.2 If a⊕ b differs from x∧ y in more than �0.2k�
positions then reject and abort the protocol.
Otherwise, continue.

4. If all steps accepted, then accept.

Figure 2: Protocol A uses O(log n log 1/ε) bits of ran-
domness and makes O(n(log n + log 1/ε)) uses of the
boxes. Theorem 6 (in Section 4) shows that n bits
of randomness are produced with confidence 1 − ε.
The threshold 0.2k in steps 3.1.2 and 3.2.2 is arbi-
trary, and any value strictly lower than k/4 would
work.



Õ(log n log 1/ε) random bits (see e.g. [17]), and correspond-
ing uniformly distributed inputs may be generated using an
additional O(log 1/ε) random bits.

Before proceeding, we should verify that “honest” boxes,
which play the optimal quantum strategy for the CHSH
game independently in every round, are accepted by the
user with high probability. Indeed, we have seen that such
boxes will satisfy the CHSH constraint independently with
probability cos2 π/8 in each round. Hence when one consid-
ers a block of k successive rounds, the probability that the
CHSH constraint is not satisfied in more than 20% of those
rounds will be exponentially small in k. Precisely, a simple
Chernoff bound shows that the probability that the honest
strategy satisfies the CHSH condition in less than 80% of any
k successive rounds is at most exp

(−(cos2 π/8−0.80)2k/2
)
.

Given our choice of k = 100�log n + log 1/ε�, it can be ver-
ified that for large enough n this expression is smaller than
ε/m, where m = 500n is the total number of blocks in the
protocol. By a union bound, such boxes will fail to pro-
duce correlations satisfying the user in even just one of these
blocks with probability at most ε.

Modeling events in the protocol.
Let x = (xi), y = (yi), a = (ai), b = (bi) ∈

({0, 1}k)m de-
note the boxes’ respective input and output strings in an exe-
cution of Protocol A, as described in Figure 2. LetX,Y,A,B
be the corresponding random variables. The boxes’ behavior
is characterized by a probability distribution pAB|XY (a, b|x, y).
The iterative structure of the protocol implies that pAB|XY

can be factored as follows:

pAB|XY (a, b|x, y) =

mk∏
i=1

pAiBi|XiYiHi
(ai, bi|xi, yi, hi),

where for any i ∈ [mk], Hi = (A<i, B<i, X<i, Y<i) and hi =
(a<i, b<i, x<i, y<i). We impose a single additional condition
on pAB|XY : that it obeys the no-signaling condition in every

block, that is for every k-round block Si ⊆ {0, 1}mk, where
i ∈ [m], aSi , xSi , ySi , y

′
Si

and hSi , it holds that∑
bSi

∈{0,1}k
pASi

BSi
|Zi

(aSi , bSi |zi)

=
∑

bSi
∈{0,1}k

pASi
BSi

|Zi
(aSi , bSi |z′i),

where we used Zi = X(k−1)i+1Y(k−1)i+1H(k−1)i+1 and zi =
x(k−1)i+1, y(k−1)i+1, h(k−1)i+1 and
z′i = x(k−1)i+1, y

′
(k−1)i+1, h(k−1)i+1 as shorthands, and a

symmetric condition holds when marginalizing over aSi . For
i ∈ [m], let CHSHi be the event that dH(ASi ⊕ BSi , XSi ∧
YSi) ≤ 0.2, and CHSH =

∧
i CHSHi. We will also use

the shorthand CHSH<i =
∧

j<i CHSHj . Finally, we let

Tj ∈ [m] be a random variable denoting the j-th Bell block,
i.e. the j-th element of the set T chosen by the user in step
2. of Protocol A.

Claim 7. Let n be an integer, and 2−n/10 < ε < 1/100.
Suppose that both conditions (i) Hε

∞(B|CHSH) ≤ n, and
(ii) Pr(CHSH) ≥ ε hold. Then for all large enough n there
exists an index j0 and a subset G of output strings satisfying
Pr(B ∈ G) ≥ ε3 such that the following hold.

• Conditioned on B’s input in the j0-th Bell block Tj0

being 0, its output in that block is essentially deter-
ministic: ∀b ∈ G,

Pr(BTj0
=bTj0

|CHSH<Tj0
,

B<Tj0
= b<Tj0

, YTj0
= 0) ≥ 0.92, (2)

• The CHSH condition is satisfied with high probability
in the j0-th Bell block Tj0 : ∀b ∈ G,

Pr(CHSHTj0
|CHSH<Tj0

, B<Tj0
= b<Tj0

) ≥ 0.95.
(3)

Proof. As in Protocol A, set m = 500n, 
 = m/Δ
and Δ = 200�ln(1/ε)�. Let BAD be the set of strings
b ∈ ({0, 1}k)m such that Pr(B = b|CHSH) > 2−n. Assump-
tion (i) together with Claim 4 show that Pr(BAD|CHSH) ≥
ε. Using (ii) and Baye’s rule we get that for every b =
(b1, . . . , bm) ∈ BAD,

Pr(B = b,CHSH)

=

m∏
i=1

Pr(Bi = bi,CHSHi|CHSH<i, B<i = b<i)

> 2−nε.

Taking logarithms on both sides,

m∑
i=1

− log Pr(Bi = bi,CHSHi|CHSH<i, B<i = b<i)

< n+ log(1/ε)

≤ (1 + 1/10)n,

assuming as in the statement of the claim that ε is not too
small. By an averaging argument at least 9/10 of all i ∈ [m]
are such that a fraction at least 6/10 (in probability) of all
b ∈ BAD are such that

Pr(Bi = bi|CHSH<i, B<i = b<i)

≥ 2−(100/4)(1+1/10)(n/m)

≥ 2−28/500 ≥ 0.96. (4)

Since in the protocol Bob’s input is a 0 with probability at
least 1/2 irrespective of the type of block, we may ensure
that (4) holds (with a slightly smaller probability) condi-
tioned on Yi = 0, an event that is independent from both
CHSH<i and B<i = b<i (for any b<i):

Pr(Bi = bi|CHSH<i, B<i = b<i, Yi = 0) ≥ 0.92. (5)

Let S be the set of i ∈ [m] such that (5) holds for a fraction
at least 6/10 of b ∈ BAD. S is a random variable of size
|S| ≥ 9m/10.

We apply the same reasoning once more, focusing on the
CHSH constraint being satisfied in a Bell block. Let T be
a random variable containing the indices of the blocks that
have been designated as Bell blocks in the protocol. Let
N = |T ∩ S|. We may write N as the sum of Boolean
random variables Nj , where Nj = 1 if and only if the j-th
element of S falls in T . Since for every i the i-th block is
chosen to be a Bell block independently with probability 1/

(independently of past events such as CHSH<i and B<i =
b<i), the random variables Nj , for j ≤ |S|, are independent.



Recall that |S| ≥ 9m/10, and by a Chernoff bound

Pr
(
N1+ · · ·+N9m/10 ≥ 9m/10 · 1/(2
))

≥ 1− e−(9m/10�)(1/2)2/2

≥ 1− e−Δ/10 ≥ 1− ε3,

given that m/
 = Δ. Let K denote the event that this
bound holds: Pr(K) ≥ 1 − ε3, and conditioned on K it
holds that N = |S∩T | ≥ 9m/(20
) ≥ 9Δ/20. Starting from
Pr(CHSH|BAD) ≥ ε2, further conditioning on K gives

Pr(CHSH|BAD,K) =
Pr(CHSH,K|BAD)

Pr(K|BAD)

≥ ε2 − ε3 ≥ ε2/2.

Using Baye’s rule as before we then obtain∑
i∈T∩S

− log Pr(CHSHi|CHSH<i,BAD<i,K)

≤ 2 log(2/ε).

Using the lower bound on N this implies that there exists
an i ∈ T ∩ S such that

Pr(CHSHi|CHSH<i,BAD<i,K) ≥ 2−2 log(2/ε)/N

≥ 0.978, (6)

given the choice of Δ made in the claim. Given our assump-
tion on ε, removing the conditioning on K in this equation
at most decreases the lower bound to 0.975. Let i ∈ T ∩ S
be a Bell block for which (6) holds. By Markov’s inequality,
for a fraction at least 1/2 of b ∈ BAD it holds that

Pr(CHSHi|CHSH<i, B<i = b<i) ≥ 0.95. (7)

By the union bound, at iteration i (7) will hold simultane-
ously with (5) for a subset G of BAD of size at least

Pr(G) = Pr(G|BAD) Pr(BAD) ≥ (
6/10− 1/2

)
ε2 ≥ ε3,

given our choice of parameters. Eq. (7) implies (3) in the
claim, and (5) implies (2).

In order to conclude the proof of Theorem 6 it remains to
show how the special block identified in Claim 7 can lead to
a successful strategy in the guessing game.
Consider the following strategy for Alice and Bob in the

guessing game. In a preparatory phase (before Bob receives
his secret bit y), Alice and Bob run the protocol with the
boxes A and B, up to the Tj0 -th block (excluded). Bob com-
municates B’s outputs up till that block to Alice. Together
they check that the CHSH constraint is satisfied in all blocks
preceding the Tj0 -th; if not they abort. They also verify that
Bob’s outputs are the prefix of a string b ∈ G; if not they
abort. The guessing game can now start: Alice and Bob are
separated and Bob is given his secret input y.
Given the conditioning that Alice and Bob have performed,

once they are ready to start the game boxes A and B sat-
isfy both conditions of Lemma 5. Condition 1. in Lemma 5
holds with γ = 0.08 as a consequence of item 1 in Claim 7
and condition 2 in Lemma 5 follows from item 2 in Claim 7
with β = 0.05. Since γ/2 + 3β = 0.19 < 1/4, Lemma 5 lets
us conclude that the boxes A and B must be signaling in
the Tj0 -th block, a contradiction. This finishes the proof of
Theorem 6.

5. SECURITY IN THE PRESENCE OF A
QUANTUM ADVERSARY

In this section we prove our main theorem, which can be
formally stated as follows.

Theorem 8. Let n and α > 0 be given, and set ε = n−α.
Let (A,B) be an arbitrary pair of no-signaling boxes used
to execute Protocol B, described in Figure 3, and assume
that A and B can be described by two isolated but possibly
entangled quantum-mechanical systems. Let CHSH be the
event that the boxes’ outputs are accepted in the protocol,
and B′ the random variable describing the bits output by B,
conditioned on CHSH. Let E denote an arbitrary quantum
system, possibly entangled with A and B, but such that no
communication occurs between A,B and E once the proto-
col starts. Then for all large enough n at least one of the
following holds:

• Either Hε
∞(B′|E) ≥ n,

• Or Pr
(
CHSH

) ≤ ε.

Moreover, inputs in Protocol B may be generated using only
Õ(log3 n) bits of randomness.

We first give an overview of the proof, describing the main
steps, in the next section. The formal proof is given in Sec-
tion 5.3.

5.1 The protocol
Theorem 8 is based on Protocol B, a variant of Protocol A

which replaces the use of the CHSH game by the following
“extended”variant. In this game each box may receive one of
four possible inputs, which we label as (A, 0), (A, 1), (B, 0),
(B, 1). An input such as “(A, 1)” to either box means: “per-
form the measurement that A would have performed in the
honest CHSH strategy, in case its input had been a 1”. The
advantage of working with this game is that there exists an
optimal strategy (the one directly derived from the honest
CHSH strategy) in which both players always output iden-
tical answers when their inputs are equal.

Protocol B follows the same structure as Protocol A. In-
puts are divided into groups of k = O(log2 n) identical in-
puts. There are m = O(n10+8α log2 n) successive blocks.
Each round of the protocol selects inputs to the boxes com-
ing from the “extended CHSH” game. That game has four
questions per party: (A, 0), (A, 1), (B, 0), (B, 1). We expect
honest boxes to apply the following strategy. They share
a single EPR pair, and perform the same measurement if
provided the same input. On input (A, 0) the measure-
ment is in the computational basis {|0〉, |1〉}, and on in-
put (A, 1) it is in the Hadamard basis {|+〉, |−〉}, with the
outcome |+〉 being associated with the output ’0’. On in-
put (B, 0) the measurement is in the basis {cos2(π/8)|0〉 +
sin2(π/8)|1〉, sin2(π/8)|0〉−cos2(π/8)|1〉}, with the first vec-
tor being associated with the outcome ’0’.

5.2 Proof overview
As in the proof of Theorem 6 we prove Theorem 8 by

contradiction, through a reduction to the guessing game.
In the non-adversarial case the crux of the reduction con-
sisted in identifying a special block j0 ∈ [m] in which B’s
output B was essentially deterministic, conditioned on past
outputs. In the adversarial setting, however, B may be per-
fectly uniform, and such a block may not exist. Instead,



Protocol B

1. Let n and α > 0 be given as input. Set 
 = n10+8α,
k = 100�log 
 + log 1/ε� and m = �C
 log2 
�, where
C > 0 is a large constant.

2. Choose T ⊆ [m] uniformly at random by selecting each
position independently with probability 1/
.

3. Repeat, for i = 1, . . . ,m:

3.1 If i /∈ T , then

3.1.1 Set x = y = (A, 0) and choose x, y as inputs
for k consecutive steps. Collect outputs a, b ∈
{0, 1}k.

3.1.2 If a �= b then reject and abort the protocol.
Otherwise, continue.

3.2 If i ∈ T ,

3.2.1 Pick x ∈ {(A, 0), (A, 1)} and y ∈
{(A, 0), (B, 0)} uniformly at random, and set
x, y as inputs for k consecutive steps. Collect
outputs a, b ∈ {0, 1}k.

3.2.2 If either a = b and x = y, or dH(a, b) ≤
0.16 and y = (B, 0), or dH(a, b) ∈ [0.49, 0.51]
and x = (A, 1) and y = (A, 0) then continue.
Otherwise reject and abort the protocol.

4. If all steps accepted, then accept.

Figure 3: Protocol B uses Õ(log3 n) bits of random-
ness and makes poly(n) uses of the boxes. Theorem 8
shows that n bits of randomness are produced, with
confidence ε = n−α.

we start by assuming for contradiction that the min-entropy
of Bob’s output conditioned on Eve’s information is small:
Hε

∞(B|E) ≤ n.
Previously in the guessing game Alice tried to guess Bob’s

secret input y ∈ {0, 1}. She did so by using her prediction for
B’s outputs, together with the CHSH constraint and her own
box A’s outputs. Here we team up Alice and Eve. Alice will
provide Eve with some information she obtained in previous
blocks of the protocol, and based on that information Eve
will attempt to make an accurate prediction for B’s outputs
in the special block. Alice will then use that prediction to
guess y, using as before the CHSH constraint and her own
box A’s outputs.

The reconstruction paradigm.
We would like to show that, under our assumption on

Hε
∞(B|E), Eve can perform the following task: accurately

predict (part of) B, given auxiliary information provided
by Alice. We accomplish this by using the “reconstruction”
property of certain extractor constructions originally intro-
duced by Trevisan [29]. Recall that an extractor is a function
which maps a string B with large min-entropy (conditioned
on side information contained in the quantum register E)
to a (shorter) string Z that is statistically close to uniform
even from the point of view of an adversary holding E. The
reconstruction proof technique proceeds as follows: Suppose
an adversary breaks the extractor. Then there exists an-
other adversary who, given a small subset of the bits of the
extractor’s input as “advice”, can reconstruct the whole in-
put. Hence the input’s entropy must have been at most the
number of advice bits given.

For the purposes of constructing extractors, one would
then take the contrapositive to conclude that, provided the
input has large enough entropy, the extractor’s output must
be indistinguishable from uniform, thereby proving security.
Here we work directly with the reconstruction procedure.
Suppose that B has low min-entropy, conditioned on Eve’s
side information. If we were to apply an extractor to B in
order to extract more bits than its conditional min-entropy,
then certainly the output would not be secure: Eve would be
able to distinguish it from a uniformly random string. The
reconstruction paradigm states that, as a consequence, there
is a strategy for Eve that successfully predicts the entire
string B, given a subset of its bits as advice — exactly what
is needed from Eve to facilitate Alice’s task in the guessing
game.

The t-XOR extractor.
At this stage we are faced with two difficulties. The first is

that the reconstruction paradigm was developed in the con-
text of classical adversaries, who can repeat predictive mea-
surements at will. Quantum information is more delicate,
and may be modified by the act of measuring. The second
has to do with the role of the advice bits: since they come
from B’s output B we need to ensure that, in the guessing
game, Alice can indeed provide this auxiliary information to
Eve, without communicating with Bob.

In order to solve both problems we focus on a specific
extractor construction, the t-XOR extractor Et (here t is an
integer such that t = O(log2 n)). For our purposes it will
suffice to think of Et as mapping the mk-bit string B to a
string of r � n bits, each of which is the parity of a certain
subset of t out of B’s mk bits. Which parities is dictated by



an extra argument to the extractor, its seed, based on the
use of combinatorial designs. Formally,

Et : {0, 1}mk × {0, 1}s → {0, 1}r

(b, y) �→ (
C1

t (b, y), . . . , C
r
t (b, y)

)
,

where Ci
t(b, y) is the parity of a specific subset of t bits of x,

depending on both i and y.
Suppose that Eve can distinguish the output of the ex-

tractor Z = Et(B, Y ) from a uniformly random string with
success probability ε. In the first step of the reconstruction
proof, a hybrid argument is used to show that Eve can pre-
dict the parity of t bits of B chosen at random with success
ε/r, given access to the parities of O(r) other subsets of t
bits of B as advice. This step uses specific properties of the
combinatorial designs.
The next step is the most critical. One would like to argue

that, since Eve can predict the parity of a random subset of
t of B’s bits, she can recover a string that agrees with most
of the t-XORs of B. One could then appeal to the approx-
imate list-decoding properties of the t-XOR code in order
to conclude that Eve may deduce a list of guesses for the
string B itself. Since, however, Eve is quantum, the fact
that she has a measurement predicting any t-XOR does not
imply she has one predicting every t-XOR: measurements
are destructive and distinct measurements need not be com-
patible. This is a fundamental difficulty, which arises e.g. in
the analysis of random access codes [1]. To overcome it one
has to appeal to a subtle argument due to Koenig and Ter-
hal [19]. They show that without loss of generality one may
assume that Eve’s measurement has a specific form, called
the pretty-good measurement. One can then argue that this
specific measurement may be refined into one that predicts
a guess for the whole list of t-XORs of B, from which a guess
for B can be deduced by list-decoding the t-XOR code.
The security of the t-XOR extractor against quantum ad-

versaries was first shown by Ta-Shma [27], and later im-
proved in [10, 9]. As such, the argument above is not new.
Rather, our contribution is to observe that it proves more
than just the extractor’s security. Indeed, summarizing the
discussion so far we have shown that, if Hε

∞(B|E) ≤ n, then
there is a measurement on E which, given a small amount
of information about B as advice, reconstructs a good ap-
proximation to the whole string B with success probabil-
ity poly(ε/r). This fact is what we already described in
Lemma 3 in the introduction, and it can be formally stated
as follows.

Lemma 9. Let ρXE be a state such that X is a classi-
cal random variable distributed over m-bit strings, and E is
an arbitrarily correlated quantum system. Let ε = Ω(m−c),
where c > 0 is an arbitrary constant, and K = Hε

∞(X|E).
Then there exists a subset V ⊆ [m] of size v = |V | =
O(K log2 m), and for every v-bit string z a measurement
Mz on E such that, with probability at least Ω(ε6/m6), MXV

produces a string Y that agrees with X in a fraction at least
1− 1

logm
of positions.

The lemma is proved in Appendix A. Crucially, the bits of
information required as advice are localized to a small subset
of bits of B, of the order of the number of bits of information
Eve initially has about that string. This property holds
thanks to the specific extractor we are using, which is local :
every bit of the output only depends on few bits of the input.

Completing the reduction to the guessing game.
In the guessing game it is Alice who needs to hand the

advice bits to Eve. Indeed, if Bob, holding box B, was to
hand them over, they could leak information about his se-
cret input y: some of the advice bits may fall in blocks of
the protocol that occur after the special block j0 in which
Bob is planning to use his secret y as input. This leak of
information defeats the purpose of the guessing game, which
is to demonstrate signaling between A and B.

Hence the “extended” variant of the CHSH game intro-
duced in Protocol B: since in most blocks the inputs to both
A and B are identical, by the extended CHSH constraint en-
forced in the protocol their outputs should be identical. The
relatively few advice bits needed by Eve occupy a fixed set
of positions, and with good probability all Bell blocks will
fall outside of these positions, in which case Alice can obtain
the advice bits required by Eve directly from A’s outputs.

The proof of Theorem 8 is now almost complete, and one
may argue as in Lemma 5 that Alice and Eve together will be
able to successfully predict Bob’s secret input in the guessing
game, contradicting the no-signaling assumption placed on
A and B. A more detailed proof of the theorem is given in
the next section.

5.3 Proof of Theorem 8
We proceed to formally prove Theorem 8, performing a

reduction to the guessing game through the use of Lemma 9.
Let n and α > 0 be given, ε = n−α, and 
,m, k as specified
in Protocol B (described in Figure 3.)

Modeling.
Let x = (xi), y = (yi), a = (ai), b = (bi) ∈

({0, 1}k)m de-
note the boxes’ respective input and output strings in Pro-
tocol B, and denote the corresponding random variables by
X = (Xi), Y = (Yi), A = (Ai), B = (Bi) ∈

({0, 1}k)m. In
contrast to Section 4, here we require the behavior of the
boxes A,B to follow the laws of quantum mechanics. Let
ρABE denote the state of the system at the start of the pro-
tocol. Here A,B denote registers held by A,B respectively,
while E denotes a register held by the environment (the po-
tential eavesdropper Eve). We could take ρABE to be pure,
but this will not be necessary.

At every step i ∈ [km] of the protocol, Alice and Bob
each make a binary-outcome measurement {A0

i,x, A
1
i,x} and

{B0
i,y, B

1
i,y} respectively. In general their measurement may

also depend on past inputs and outputs, but without loss
of generality we may assume that those are recorded in
the post-measurement state ρhi

ABE resulting from A and B’s
measurements in previous rounds (here, as in Section 4,
hi = (a<i, b<i, x<i, y<i) denotes the protocol history). For
every i ∈ [km] we may then write

pAiBi|XiYiHi
(ai, bi|xi, yi, hi)

= Tr
(
(Aai

i,xi
⊗Bbi

i,yi
⊗ IE) ρ

hi
ABE

)
. (8)

Assuming the conditions of Lemma 9 are met, let V be
the fixed subset of {0, 1}mk, of size v, whose existence is
guaranteed in its conclusion. For every v-bit string z let
{Me

v}e∈{0,1}mk be the measurement on register E whose
existence is also guaranteed in the lemma. V and M de-
pend on the state ρXYE and the measurements performed
by A and B, but not on the specific execution of the pro-
tocol performed by the user: as long as A and B are fixed



they are, too. We introduce two new random variables to
model the outcomes obtained from performing the measure-
ment {Me

z } on register E, for different choices of z. We
use EA = (EA

i ) ∈ ({0, 1}k)m to denote the outcome when
the string z is the string aV taken from A’s outputs, and
EB = (EB

i ) ∈ ({0, 1}k)m to denote its outcome when it is
the string bV taken from B’s output.
Let GA be the event that dH(EA, B) < fe, and GB the

event that dH(EB , B) < fe, where fe > 0 is a parameter to
be specified later. Let j ∈ T be an index that runs over the
blocks that have been designated as Bell blocks in Step 2.
of the protocol (T itself is a random variable). Given a Bell
block j, let GA

j be a boolean random variable such that

GA
j = 1 if and only if either dH(EA

j , B) < 0.01 and Yj =

(A, 0), or dH(EA
j , B) < 0.17 and Yj = (B, 0). Define GB

j

symmetrically with respect to EB instead of EA.
Finally, for i ∈ [m], let CHSHi be the following event:

CHSHi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ai = Bi if Xi = Yi,

dH(Ai, Bi) ≤ 0.16 if Yi = (B, 0),

dH(Ai, Bi) ∈ [0.49, 0.51] if Xi = (A, 1)

and Yi = (A, 0).

Honest CHSH boxes as described above satisfy CHSHi with
probability 1− 2−Ω(k). Let CHSH =

∧
i CHSHi.

We prove Theorem 8 by contradiction. Assume that the
theorem’s conclusions are violated, so that (i) Hε

∞(B′|E) ≥
n, where B′ is a random variable describing the distribution
of B’s outputs conditioned on CHSH, and Pr

(
CHSH

) ≤ ε.

Here ε = n−α, where α > 0 is a parameter.

The first step is to apply Lemma 9 with X = B′. The con-
clusion of the lemma is that there exists a subset V ⊆ [km]
of size |V | = O(n log2 n) such that, letting fe = 1/(logmk),
we have ps := Pr(GB |CHSH) = Ω(ε7/n6) = Ω(n−6−7α),
where GB denotes the event that Eve correctly predicts B
on a fraction at least 1−fe of positions. Since in Protocol B
the Bell blocks form only a very small fraction of the total, a
priori it could still be that Eve’s prediction is systematically
wrong on all Bell blocks, preventing us from successfully
using them in the guessing game.
The following claim shows Eve’s errors cannot be concen-

trated in the Bell blocks. The intuition is the following. If
B’s input in a Bell block is (A, 0) then nothing distinguishes
this block from most others, so that Eve’s prediction has no
reason of being less correct than average. However, blocks in
which its input is (B, 0) are distinguished. We rule out the
possibility that Eve’s errors are concentrated in such blocks
by appealing to the no-signaling condition between Eve and
A. Indeed, about half of Bell blocks in which B’s input is
(B, 0) are such that A’s input for the same block is (A, 0):
looking only at A’s inputs they are indistinguishable from
most other blocks. We will argue that, as long as the CHSH
constraint is satisfied, Eve might as well have been given the
advice bits by Alice, in which case there is no reason for her
to make more errors than average in those blocks.

Claim 10. Let T be the set of Bell blocks selected in Pro-
tocol B. Then there exists a constant ce < 10−3 such that
the following holds.

Pr
(
Ej∈T

[
GA

j

]
> 1− ce

log n
, CHSH

)

= Ω(psε) = Ω
(
n−6−8α).

Proof. By definition, Pr
(
GB

) ≥ ps Pr(CHSH) ≥ psε.

Conditioned on GB , by Markov’s inequality it must be that
dH(EB , B) < 0.01 on a fraction at least 1− 100fe of blocks
in which the input to B was (A, 0). Let f ′

e = 100fe. Let

η = 2−10−5f ′
e|T |/(2·1002), and assume C chosen large enough

so that η ≤ psε/6 = Ω(n−6−8α). This is possible since |T | is
sharply concentrated around C log2 
 and f ′

e = Ω(1/ log 
).
Among the blocks in which Eve’s prediction is correct,

nothing distinguishes those Bell blocks in which B’s input is
(A, 0): indeed, we may think of those only being designated
as Bell blocks after Eve has made her prediction. By a
Chernoff bound the probability that more than a fraction
2f ′

e of such blocks fall into those for which GB
j does not hold

is upper-bounded by η. Hence the following holds

Pr
(
Ej∈T :Yj=(A,0) G

B
j > 1− 2f ′

e|GB) ≥ 1− η. (9)

Since V is a fixed subset of [km] of size |V | = O(n log2 m),
the probability that any of the randomly chosen O(log2 
)

Bell blocks intersects it is at most O(n2−(10+8α) log4 n) for
large enough n. This quantity is much smaller than (our
upper bound on) η, and for the remainder of the proof we
will neglect the chance of this happening.

Conditioning further on CHSH can only blow-up the error
by a factor 1/Pr(CHSH|GB) ≤ 1/(psε). In that case GA =
GB (Eve’s prediction only depends on the advice bits she is
given, and these bits are the same when taken from either
A and B’s outputs whenever the CHSH condition holds), so
we obtain:

Pr
(
Ej∈T :Yj=(A,0) G

A
j > 1− 2f ′

e,CHSH|GA
)

Pr
(
CHSH|GA

)
= Pr

(
Ej∈T :Yj=(A,0) G

A
j > 1− 2f ′

e|GA,CHSH
)

≥ 1− η/(psε). (10)

Suppose Eve makes more than a fraction 5f ′
e of errors in

predicting A’s output on those Bell blocks in which its in-
put is (A, 0). By a Chernoff bound with probability at least
1 − η the input to B will also be (A, 0) in at least 40%
of those blocks. Indeed, since Eve now receives her advice
bits from A’s outputs, by the no-signaling condition we may
think of the choice of B’s inputs as being made after both
Alice and Eve have completed their measurements. When-
ever this condition holds, Eve’s prediction will be wrong
on a total fraction more than 2f ′

e of B’s (A, 0)-input Bell
blocks, contradicting (10). Indeed, whenever CHSH holds,
if the input to both boxes is (A, 0) then Eve being correct
in predicting B’s output is equivalent to her being correct in
predicting A’s output. Hence the following holds:

Pr
(
Ej∈T :Xj=(A,0) G

A
j > 1− 5f ′

e,CHSH|GA)
≥ Pr

(
Ej∈T :Yj=(A,0) G

A
j > 1− 2f ′

e,CHSH|GA)− η

≥ (1− η/(psε)) Pr
(
CHSH|GA)− η

≥ (1− 2η/(psε)) Pr
(
CHSH|GA), (11)

where the second inequality follows from(10) and the last
uses Pr(CHSH|GA) ≥ psε. As previously, sinceGA∧CHSH =
GB ∧CHSH, (11) implies the following:

Pr
(
Ej∈T :Xj=(A,0) G

B
j > 1− 5f ′

e|GB ,CHSH
)

≥ 1− 2η/(psε). (12)



Next, suppose Eve makes a prediction that is wrong on a
fraction at least 14f ′

e of the Bell blocks, irrespective of Bob’s
inputs. Then again with high probability at least 40% of the
inputs to A in those blocks will be (A, 0), implying that Eve
is wrong on more than a fraction 5f ′

e of A’s (A, 0) inputs,
contradicting (12). Hence the following is proven just as (11)
was:

Pr
(
Ej∈T GB

j > 1−14f ′
e|GB ,CHSH

) ≥ 1−3η/(psε). (13)

Hence

Pr
(
Ej∈T GA

j > 1− 14f ′
e|GA,CHSH

) ≥ 1− 3η/(psε),

which is greater than 1/2 given our choice of η. Removing
all conditioning, whenever Eve is given advice bits by Alice,
it holds that

Pr
(
Ej∈T GA

j > 1− 14f ′
e,CHSH

) ≥ Ω(psε).

Based on Claim 10 we can show an analogue of Claim 7
which will let us complete the reduction to the guessing
game. Claim 10 shows that with probability Ω(psε) Eve’s
prediction will be correct on a fraction at least 1− ce/ log n
of Bell blocks. Since there are O(log2 n) such blocks in Pro-
tocol B, with the same probability Eve only makes errors
on a total number we = O(log n) of Bell blocks. Group the
Bell blocks in groups of 20we successive blocks, and let k be
an index that runs over such groups; there are O(log n) of
them. Let GA

k be the event that Eve’s prediction is correct
in at least 99% of the Bell blocks in group k: GA

k = 1 if and
only if Ej∼kG

A
j ≥ 0.99, where the average is taken over the

Bell blocks comprising group k. By Markov’s inequality, it
follows from Claim 10 that Pr(∧kG

A
k , CHSH) = Ω(psε).

Claim 11. For all large enough n there exists a Bell block
j0 ∈ T such that, in that block, it is highly likely that both
Eve’s prediction (when given advice bits from A’s output) is
correct and the CHSH constraint is satisfied, conditioned on
this being so in past iterations:

Pr(GA
j0 , CHSHj0 |CHSHj<j0 , G

A
k<k0

) ≥ 0.98, (14)

where k0 is the index of the group containing the j0-th Bell
block.

Proof. By the chain rule, since there are O(log n) groups
there will exist a group k0 in which Eve’s prediction is cor-
rect, and the CHSH condition is satisfied, with probability
at least 0.99, when conditioned on the same holding of all
previous groups. Since by definition Eve being correct in
the group means that she is correct in 99% of that group’s
blocks, there is a specific block j0 in which she is correct
with probability at least 0.98.

The reduction to the guessing game should now be clear,
and follows along the same lines as the proof of Theorem 6
given in Section 4. Alice and Bob run protocol B, including
the selection of all Bell blocks T , with the boxes A and B,
up to the j0-th Bell block (excluded). Bob communicates
B’s outputs up till that block to Alice. They check that
the CHSH constraint is satisfied in all blocks previous to
the j0-th; if not they abort. The guessing game can now
start: Alice and Bob are separated and Bob is given his
secret input y. If y = 0 then he chooses (A, 0) as input
to B in the j0-th block; otherwise he chooses (B, 0). He

then completes the protocol honestly. Alice chooses an input
x ∈ {(A, 0), (A, 1)} at random for the j0-th block, and then
completes the protocol honestly.

In order to help her guess Bob’s input, Alice has access to
the eavesdropper Eve. Alice gives the bits aV taken fromA’s
output string a as advice bits to Eve. Eve makes a prediction
e for Bob’s output. Alice checks that the event GA

<k0
is

satisfied. If not she aborts. If so, by Claim 11 we know that
both CHSHj0 and GA

j0 are satisfied with probability at least
0.98, so this must be so with probability at least 0.92 for
each of the four possible pair of inputs (x, y) given to A and
B in the j0-th block.

Alice makes her prediction as follows: if either A’s input
was (A, 0) and its output agrees with Eve’s prediction on at
least a 0.99 fraction of positions (in the j0-th block), or A’s
input was (A, 1) and its output agrees with Eve’s prediction
on a fraction of positions that is between 0.48 and 0.52 she
claims “Bod had a 0”. Otherwise she claims “Bob had a 1”.

Clearly if Bob is using (A, 0) as his input then Alice will
predict correctly with probability at least 0.92, since in that
case GA

j0 implies that Eve predicts B’s output with at most

1% of error. If he is using (B, 1) then GA
j0 implies that Eve’s

prediction will be within 0.17 relative Hamming distance of
B’s output in block j0. By the CHSH constraint A’s output
must also be within 0.16 of B’s output, whatever input Alice
chooses. Hence A’s output is always within 0.43 < 0.49 of
B’s, meaning Alice will correctly claim Bob had a 1 whenever
her input is (A, 1). Hence in that case she correctly predicts
Bob’s input with probability at least 0.92/2.

Overall, conditioned on Alice not aborting her prediction
is correct with probability at least 0.69 over the choice of
a random input for Bob, indicating a violation of the no-
signaling assumption on the boxes and proving Theorem 8.
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APPENDIX

A. PROOF OF LEMMA 9
In this appendix we give the proof of Lemma 9. The proof

crucially uses properties of a specific extractor construction
based on Trevisan’s construction paradigm [29]. A specific
construction based on this paradigm was first shown to be
secure in the presence of quantum bounded-storage adver-
saries in [27]. The construction we use here was shown secure
in the more general setting of quantum bounded-information
adversaries in [9]. We first describe the extractor.

A.1 The t-XOR extractor
The t-XOR extractor Et, parametrized by an integer t,

follows Trevisan’s general construction paradigm [29]. It is
based on two main ingredients, the t-XOR code and a com-
binatorial design construction due to Hartman and Raz [15].
For us, only the details of the t-XOR code will be important.

The t-XOR code.
Given integers m and t ≤ m, let Ct : {0, 1}m → {0, 1}(mt )
map an m-bit string to the string of parities of all subsets
of t out of its m bits. Two properties of this encoding will
be relevant for us. The first is that it is locally computable:
each bit of the codeword only depends on t bits of the input.
The second is that it is approximately list-decodable (see
Lemma 16 below).

Combinatorial designs.
Given integers s,m, r and ρ > 0, a collection of subsets
S1, . . . , Sr ⊆ [s] is called a (s,m, r, ρ) weak design if for all

i ∈ [r], |Si| = m and for all j,
∑

i<j 2
|Si∩Sj | ≤ ρ(r − 1).

For our purposes it will suffice to note that Hartman and



Raz [15] proved the existence of a (s,m, r, 1 + γ) design for

every m, 0 < γ < 1/2, s = O(m2 log 1/γ) and r > sΩ(log s).

The t-XOR extractor.
We define the extractor that we will use in the proof of

Lemma 9.

Definition 12. Let m, r, t, s be given integers such that
t = O(logm) and s = O(log4 n). Then Et : {0, 1}m ×
{0, 1}s → {0, 1}r maps (x, y) ∈ {0, 1}m × {0, 1}s to
Ct(x)yS1

, . . . , Ct(x)ySr
, where (S1, . . . , Sr) is a

(s, t logm, r, 5/4) design and ySi designates the bits of y in-
dexed by Si, interpreted as a t-element subset of [m].

While, as shown in Corollary 5.11 in [9], Et is a strong
extractor with good parameters, we will not use this fact
directly. Rather, we will use specific properties that arise
from the “reconstruction paradigm”-based proof that it is
an extractor secure against quantum adversaries. Indeed,
one may argue that Lemma 9 is implicit in the proof of
security of Et given in [9]. Since it does not follow directly
from the mere statement that Et is an extractor, we give
more details here. We will show the following lemma, which
is more general than Lemma 9.

Lemma 13. Let m, r, t be integers, ε > 0, and suppose
that t = O(log2 m). Let ρXE be a cq-state such that X is
a random variable distributed over m-bit strings. Let Ur be
uniformly distributed over r-bit strings, and suppose that

‖ρExt(X,Y )E − ρUr ⊗ ρE
∥∥
tr

> ε, (15)

i.e. an adversary Eve holding register E can distinguish
the output of the extractor from a uniformly random r-bit
string. Then there exists a fixed subset V ⊆ [m] of size
|V | = O(tr) such that, given the string XV as advice, with
probability at least Ω(ε2/r2) over the choice of x ∼ pX and
her own randomness Eve can output a list of 
 = O(r4/ε4)
strings x̃1, . . . , x̃� such that there is an i ∈ [
], dH(x̃i, x) ≤
(2/t) ln(4r/ε).

It is not hard to see why Lemma 13 implies Lemma 9.
First note that if r is chosen in Lemma 13 so that r >
2Hε

∞(X|E) then the assumption (15) is automatically sat-
isfied as a consequence of the data processing inequality.10

The conclusion of Lemma 9 then follows from that of Lemma 13
by having Eve output a random string out of her 
 predic-
tions, and choosing t = Ω(log2 m) to ensure that the bound
(2/t) ln(4r/ε) ≤ 1/ logm holds.

In the remainder of this section we sketch the proof of
Lemma 13. The first step, explained in Section A.2, consists
in using a hybrid argument to show that, given (15), Eve can
predict a random t-XOR of X’s bits with reasonable success
probability, given sufficiently many “advice bits” about X.
In the second step, detailed in Section A.3, we show using
an argument due to Koenig and Terhal [19] that this implies
the adversary can in fact recover most t-XORs of X, simul-
taneously. Finally, in Section A.4 we use the list-decoding
properties of the XOR code to show that as a consequence
the adversary can with good probability produce a string
that agrees with X on a large fraction of coordinates.

10The extra randomness coming from the seed of the extrac-
tor will be small, as its size can be taken to be s = O(log4 m).

A.2 The hybrid argument
Suppose that (15) holds. Proposition 4.4 from [9] shows

that a standard hybrid argument, together with properties of
Trevisan’s extractor (specifically the use of the seed through
combinatorial designs), can be used to show the following
claim.

Claim 14. There exists a subset V ⊆ [m] of size |V | =
O(tr) such that, given the bits XV , Eve can predict a random
t-XOR of the bits of X with advantage ε/r. Formally,

∥∥ρCt(X)Y Y V E − ρU1 ⊗ ρY ⊗ ρV E

∥∥
tr

>
ε

r
, (16)

where Y is a random variable uniformly distributed over[(
m
t

)]
and V is a register containing the bits of X indexed

by V .

A.3 Recovering all t-XORs.
The next step in the proof of Lemma 13 is to argue that

Eq. (16) implies that an adversary given access to E′ =
V E can predict not only a random XOR of X, but a string
Z of length

(
m
t

)
such that Z agrees with the string Ct(X)

of all t-XOR’s of X in a significant fraction of positions.
Classically this is trivial, as one can just repeat the single-
bit prediction procedure guaranteed by (16) for all possible
choices Y of the t bits whose parity one is trying to compute.
In the quantum setting it is more subtle. We will follow
an argument from [19] showing that (16) implies that there
is a single measurement, independent of Y , that one can
perform on E and using the (classical) result of which one
can predict the bits Ct(X)Y with good success on average
(over the measurement’s outcome and the choice of Y ).

Claim 15. Suppose (16) holds. Then there exists a mea-
surement F , with outcomes in {0, 1}m, such that

Pr
x∼pX , y∼Ut log m

(
Ct(x)Y = Ct(F(V E))y

) ≥ 1

2
+

ε2

4r2
, (17)

where F(V E) denotes the outcome of F when performed on
the cq-state ρV E.

Proof. Our argument closely follows the proof of Theo-
rem III.1 from [19]. Given an arbitrary cq-state ρZQ, define
the non-uniformity of Z given Q as

d(Z ← Q) :=
∥∥ρZQ − ρUz ⊗ ρQ

∥∥
tr
.

Let ρx denote the state contained in registers V E, condi-
tioned on X = x. For a fixed string y, define two states

ρy0 :=
∑

x:Ct(x)y=0

pX(x) ρx,

ρy1 :=
∑

x:Ct(x)y=1

pX(x) ρx.

Then, by definition d
(
Ct(X)y ← V E

)
=

∥∥ρy0 − ρy1
∥∥
tr

is the
adversary’s maximum success probability in distinguishing
those states ρx which correspond to an XOR of 0 from those
which correspond to an XOR of 1. Let Ey =

{
E0

y , E
1
y

}
be

the pretty good measurement corresponding to the pair of
states

{
ρy0 , ρ

y
1

}
:

E0
y = ρ

−1/2
V E ρy0 ρ

−1/2
V E and E1

y = ρ
−1/2
V E ρy1 ρ

−1/2
V E ,



where ρV E =
∑

x PX(x)ρx. Lemma 2 from [19] (more pre-
cisely, Eq. (19)), shows that the following holds as a conse-
quence of (16):√

Ey

[
2 d

(
Ct(X)y ← Ey(V E)

)]
+ d(Ct(X)Y ← Y ) >

ε

r
,

(18)
where Ey(V E) is the result of the POVM Ey applied on ρV E ,
and d(Ct(X)Y ← Y ) is the distance from uniform of the one-
bit extractor’s output, in the absence of the adversary. We
may as well assume this term to be small: indeed, if it is
more than ε/(2r) then (17) is proved without even having
to resort to the quantum system E. Hence (18) implies

Ey

[
d
(
Ct(X)y ← Eypgm(V E)

) ]
>

ε2

2r2
,

which can be equivalently re-written as

Ey

[
Tr

(
E0

y ρ
0
y

)
+Tr

(
E1

y ρ
1
y

) ]
>

1

2
+

ε2

4r2
. (19)

Following the argument in [19], we define a new measure-
ment F with outcomes in {0, 1}m and POVM elements F x =

PX(x)ρ
−1/2
V E ρx ρ

−1/2
V E . The important point to notice is that

for z ∈ {0, 1} we have Ez
y =

∑
x:Ct(x)y=z F

x, hence (19) can

be re-written as

Ey

[ ∑
b:Ct(b)y=0

Tr
(
F x ρ0y

)
+

∑
b:Ct(b)y=1

Tr
(
F x ρ1y

) ]

>
1

2
+

ε2

4r2
,

which is exactly (17).

A.4 List-decoding the XOR code.
The following lemma (for a reference, see [16], Lemma 42)

states the list-decoding properties of the t-XOR code Ct that
are important for us.

Lemma 16. For every η > 2t2/2m and z ∈ ({0, 1}m)t,
there is a list of 
 ≤ 4/η2 elements x1, . . . , x� ∈ {0, 1}m
such that the following holds: for every z′ ∈ {0, 1}m which
satisfies

Pr
{y1,...,yt}∈(mt )

[z(y1,...,yt) = ⊕t
i=1z

′
yi ] ≥

1

2
+ η,

there is an i ∈ [
] such that

Pr
y∼UN

[xi
y = z′y] ≥ 1− δ,

with δ = (1/t) ln(2/η).

Claim 15 implies that, with probability at least ε2/(8r2)
over the choice of x and over Eve’s own randomness, when
measuring her system with F she will obtain a string z̃ whose
t-XORs agree with those of x with probability at least 1/2+
ε2/(8r2). Lemma 16 shows that in that case she can recover
a list of at most 28r4/ε4 “candidate” strings z̃i such that
there exists at least one of these strings which agrees with x
at a (possibly adversarial) fraction 1− δ of positions, where
δ = (2/t) ln(4r/ε) given our choice of parameters. Hence
Lemma 13 is proved.


