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Abstract

Given two setsA, B C R™, a measure of their correlation is given by the expectedrsguianer
product between random € A andy € B. We prove an inequality showing that no two sets of large
enough Gaussian measure (at least® for some constani > 0) can have correlation substantially
lower than would two random sets of the same size. Our prdzsed on a concentration inequality for
the overlap of a random Gaussian vector on a large set.

As an application, we show how our result can be combined thighpartition bound of Jain and
Klauck to give a simpler proof of a recent linear lower boumdtiee randomized communication com-
plexity of the Gap-Hamming-Distance problem due to Cha&réiland Regev.

1 Introduction

Let A, B be two non-empty measurable subset®bfequipped with the:-dimensional Gaussian measure
7. Denote byy 4 p the probability measure corresponding to the normalized restrictign«of to A x B,
and let

V(A7 B) = E(Z’y)N'Y\AxB [(I ) y)z] .

The quantityv(A, B) can be interpreted as a measure of correlation betwleand B: a larger indicates
sets with mostly aligned vectors, while a smalindicates sets of vectors that are close to being pairwise
orthogonal.

A vectorz € R" distributed according te has squared norm tightly concentrated arour(grecisely,
it follows a x2(n) distribution, with expectatiom, variancey/2n and sub-exponential tails). By rotation
invariance ofy, for any fixed vectory € R"™ the inner-product: - y is distributed as a centered Gaussian
with variancel|y||?. Hence for any non-empty measurable 4ét holds thatv (A4, R") = n = v(R", R").

We study the following question: How much smaller than the average vglRé R") canv(A, B)
be for arbitrary sets!, B of given measure? If we allow both sets B to be arbitrarily small thew can
also be arbitrarily small: takd = {z}, B = {y}, with x,y orthogonal, as the limiting example. If we
allow A to be arbitrarily small, but constraii to have measurg(B) > t, wheret is a small constant, then
v(A, B) can still be quite small. Indeed, for a fixed vectofof norm/n) chooseB as the fattened equator
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B={yeR": —t\/mn/2 <y- -z <t\y/mn/2}, of measurey(B) ~ t. Then forA an infinitesimal ball
centered at we getv(A, B) < t?n, an arbitrarily small fraction of (R”, R") = n.

In this note we show that in case botrand B are restricted to not being too small, thef, B) cannot
be much lower tham(R™, R™). More precisely we show the following:

Theorem 1. For anyn > 0, there exists @ > 0 such that for all large enough, if A, B both have measure
7(A),7(B) > e~ then
V(A7 B) > (1 - 77) V(anRn) = (1 - 77) n. (1)

We remark that an analogue of Theorem 1 can also be proved fortsuifgbe unit spher&™~! ¢ R”,

with the Haar measure playing the role of the Gaussian measure: indegapofiof Theorem 1 relies on
concentration properties of thedimensional Gaussian measure which also hold for the Haar measure on
the sphere.

ChoosingA = B = {x € R", ||z||?> < (1 — §)n}, of measure at least " for some fixedc > 0,
shows that the dependencedbn n in Theorem 1 should be at least linear. Our proof only achieves a
weaker dependende= Q(n*).

Note that one may not hope for such a strong inequality as the one provérearem 1, but in the
opposite direction: the half-spacds= B = {z € R", z; > v/26n} have measure approximately®™ but
correlationv(A, B) = Q(6*n?).

Application: thecommunication complexity of the Gap-Hamming-Distance problem. The motivation
for, and main application of, Theorem 1 is to give a new, simpler proof etcant breakthrough result by
Chakrabarti and Regev [2], who proved a linear lower bound on thedexd-error randomized communi-
cation complexity of the Gap-Hamming-Distance (GHD) problem. In this probldioe As given am-bit
stringz, and Bob am-bit stringy such that eitheA(x,y) > n/2 + \/n or A(z,y) < n/2 — \/n, where
A(z,y) denotes the Hamming distance. The goal is to decide which holds. Proving:arower bound
for this problem was a long-standing open problem in communication complesagy [@] for a detailed
history of the problem).

Chakrabarti and Regev’s proof is based on a variant of the smod#ngge bound [4], and at its core is
an inequality similar to the one we prove in Theorem 1, except that it applieg togh function, instead
of the square function. More precisely, if one defines

va(A, B) :== E(

for anya > 0, then the key step in the proof of Theorem 3.5 from [2] consists in shothiaig for every
¢,n > 0there is & > 0 such that for every < o < ¢/y/n and A, B of measure at least ",

Ua(A,B) > (1 —n) v, (R™,R"™). 2

cosh(az - y)]

T,Y)~Y|Ax B [

Given that thecosh function has a quadratic behavior around:osh x = % + O(x4), our theorem may
not be so surprising once one knows of (2). However, for largeegatia = - y the behavior of the two
functions,z? andcosh z, is different enough that we do not see how one could deduce Tiebfeom (2)
or vice-versa.

The proof of (2) is based on a powerful result, Theorem 3.1 in [2]ciwbhows that ifA is large enough
then for almost ally € R" the distribution of(x, y) for = ~ |4 is close to a mixture of translated Gaussians.
Theorem 3.1 can be seen to imply both (2) and our Theorem 1. The grdbkorem 3.1, though, is quite
involved, and the main contribution of our work consists in giving a direabpof our Theorem 1, which
we show is strong enough to imply a linear lower bound on the randomized cacatian complexity of
GHD.



Related work. After the completion of our work, Sherstov [6] provided yet anotheppod Chakrabarti
and Regev’s lower bound for GHD. His proof is shorter and combindtoxiaile the one in [2], as well
as ours, uses geometrical arguments and concentration of meaqRg, in). The main innovation of
Sherstov’s proof is to consider a problem equivalent to GHD, cagzorthogonality for which a linear
lower bound can be proved using the corruption method [8], while thef pmd@] goes through the more
powerful but also more involved partition bound of Jain and Klauck [4¢. nite that key to both Sherstov’s
and Chakrabarti and Regev’s proofs of an anti-concentration r&suilar to our Theorem 1 is a technical
argument showing that any large enough4ehust contain a linear number afmost-orthogonavectors.
We completely avoid that step and instead work directly with a matrix representattithe setA (cf.
Section 3 for a definition).

Organization. We review useful concentration bounds in Section 2. Our main resulty&eb, is further
discussed and proved in Section 3. The application to the communication caympfe®HD is detailed in
Section 4.

2 Preiminaries

Distributions. Let N (0, o2) denote the distribution of a normal random variable with mgand variance
o2. Let x2 be the distribution of the square of a random variable distributed¥ @s 1), and y?(k) the
distribution of the sum of the squares oindependentiV (0, 1) random variablesy is the n-dimensional
Gaussian measure @&, with densityy(z) = (2r)~"/2¢~1=I°/2, We sometimes abuse notation and also
denote byy the 2n-dimensional distributiony x . If S C R" is measurable with positive measuses
denotes the normalized restriction-pfo S: for any measurabld, v g(A) = v(A N S)/7(S).

Concentration bounds. We will use the following large deviation bounds.
Fact 2 (Gaussian tail bound)Let X be a standard normal random variable. Then for eviey 0,
Pr(|X|>1t) < e /2,

Proof. Bound the upper tail as

Pr (X > t) = \/12?/t e~ /2dx

_ 1 /00 (40?2 g

V2T Jo

—t2/2 o)

< e/ / e~ /2dx = 1e‘t2/2.

V2m Jo 2
A similar bound holds for the lower tail. O
Fact 3 (Bernstein’s inequality, see, e.g., Prop. 16 in [1]et X1, ..., Xy be independent random variables
such that for every, E[X;] = 0, and there existd( > 0 such that, for all; and¢ > 0, Pr(|X;| > ¢) <
e!~t/K_ Then for every, = (a1, ...,ay) € RY andt > 0, we have

_1 i (% 4)
9’
> t) < e de 2€K2\|a|\2 Kllalloo .

Pr (‘ ZazXl =
%




As a corollary, one can obtain the following bound for the tail of {Redistribution.

Claim 4 (x? tail bound) Let N € N, and Xy,..., Xy be i.i.d. standard normal random variables. Then
for everya = (ay,...,ayx) € RY andt > 0,

C1min (.t
> t) < %e¢ 8e mln(4e|\aH%’Ha|oo).

N N
Pr (’ZaiXiz — Zai
i=1 i=1

Proof. By Fact 2, for every the X; satisfy that for every > 0,

Pr(| X7 —1|>t) =Pr(X? >t +1)+Pr(X? <1—1t)
< el—(t+1)/2

where the extra factor ensures that the bound is trivial whenever the second frfX? < 1 — t) is
nonzero. Hence thE; := X? — 1 satisfy the hypothesis of Fact 3 wifi = 2, which leads to the claimed
bound. O

The bound in Claim 4 becomes very weak as soon as even one of theieoesfi; is large compared
to the others. In the case where theare non-negative and most are small we can still keep a good control
over thelower tail, as the following claim shows.

Claim 5. Let N € N, let X1,..., Xy be i.i.d. standard normal random variables, > --- > ay > 0
non-negative reals sorted in non-increasing order, add= Zf\il a;. Then for every integer < k£ < N
andt > 0,
N k kt : kt
Pr (Za@'XiQ -M< _Za@' —t) < 26_Wmln(4ew12’1).
=1 =1
Proof. Since thes; are sorted, for every> k we havea; < M/, so that
N
laskl3 == > a2 < NM*/K*  and  lasi]e = max|a;| < M/k.
i=k+1 >k
Hence applying Claim 4 tXj. 4, ..., X Yields that for every > 0,
N N . 2,2
Pe(| 3 wxt— 3 afze) < 2ot (i),
i=k+1 i=k+1
which proves the claim sincg> , ., a; X? < S | a; X2. O

We will also use the Berry-Esseen theorem.

Fact 6 (Berry-Esseen Theorem, see, e.g., [3], Chapter XYt X, ..., Xy be i.i.d. such thaE[X;] = 0,
E[X?] = 02 andE[| X;|?] = p. DefineY = (X; +---+ Xx)/(v/No) and letZ be distributed asv (0, 1)
Then for allt > 0,

3p
Pr(Y >¢t)—Pr(Z >1t) < .
[Pr(y > ) - Pr(Z 2 1) < 0o



Communication complexity. For a partial functionf : X x Y — {0,1,x}, we let R.(f) be thee-
error randomized communication complexity of the functipwe refer to [5] for more background on
communication complexity). Here we allal, Y to be infinite subsets d"™ and measure input size by the
dimensionn alone.

3 Proof of the main inequality

The proof of Theorem 1 is based on a concentration bound for thageequared inner product between
a vectory € R™ and a randomx € S, whereS is a fixed non-empty measurable subselR6f Given
such a set, it will be convenient to work with the positive semidefinite m8teix E,..-, . [z27], where the
expectation is taken entrywise. This matrix satisfies the following key relation

Vy € R™ yTSy - EIEN’Y‘S [ywaTy] - Exw’y‘s [(:K ’ y)Q] : (3)

As we will see, (3) lets us relate the concentration propertieg o}, S), for y ~ v, to the eigenvalues of
S. The following simple claim will be useful.

Claim 7. Let0 < § < 1/2, and S a measurable subset &"* such thaty(S) > ¢~9". Then for all large
enoughn it holds that
| TrS — n| < 50e Vén.

Proof. For any measurable s8{
TrS =Ey, [yTSy}
= EﬂCNW\S,yN’Y [(a: : y)Q]
= EIN’Y\SJAN’Y [||50||2?/%]
= EﬂCN’Y\s [HxHQ] )

where the third equality follows from the rotation invarianceypfind the last uses independence ahdy.
Clearly, the sef of fixed measure " which maximize$TrS —n| is then eithelS = {z € R”, ||z||> > n+
tyorS' = {z € R", ||lz||?> < n—t'}, wheret (resp.t’) is chosen so that(S) = e~9" (resp.y(S’) = e~™).
By Claim 4, forS or S’ to have measure at least’” it is necessary that t' < t, = 6ev/d n. Using

E[X] < a—i—/oo Pr(X > u)du

U=
for any non-negative random variabeand non-negative, we can bound
TS — n| < Eayy [[ll2]* —nl]
o0
§8to+e5”/ Pr (’||:):H2—n‘ > u)du
u=8

=8ty T~

den o
< 8ty + 66”/ 9e~u /(32 n) g4y ¢ 65"/ 26—/ (8¢) 4y
u=8to

u=4en

<ttt [T dus e (mom
u=2vn de
< 8ty + 1+ V2me "

< 8ty + 2,



where the3rd inequality uses the bound from Claim 4, itk inequality uses the Gaussian tail bound proved
in Fact 2, and théth and6th inequalities hold for all large enough Finally, the same bound holds for
|Trs’ —n. O

We show the following concentration bound.

Lemma 8. There exists a constant> 0 such that the following holds. Lét> 0 and.S C R" a non-empty
measurable set such thatS) > e¢~9". Then for alla > (50¢) § and all large enough,

Pr (yTSy <TrS — om,) < e—ca'n, 4)
Y~y

As shown in Claim 7 above, if(S) > e~°" then TrS is within a factor~ (1 + O(V/$)) of n, so that for
smalla the an factor in (4) corresponds to a small fraction ofSir

Before turning to the proof of the lemma, and showing how it implies our main ¢éneowe give an
example showing that the constraint> ¢4 is necessary (for somé > 0). The same example also shows
that one cannot hope for a similar bound on the probability $h&y is greaterthan TrS + an, even for
relatively largen.

Example.Fix a parameted > 0 (think of 6 as a small constant), and consider the halfsgice- {z €
R” : x; > /dn}, which has measurg(S;) ~ e~9"/2. By definition, the(i, j)-th coefficient of the matrix
S associated t®; takes the value
Eon 2 if i = 7,
(85)2‘]' = Bony, [rizg] = { o - : Z ]
’ (Egcmfls(S ;] ) (EQCNWS(s 5] ) =0 ifi#y,

since B, [zi] = 0whenevet > 1. HenceS; is diagonal, with first diagonal entry equal to E, (23] ~
on, and the remainingn — 1) each equal td. In particular the trace d; is

TrSs; ~ dn+ (n—1).

Now take a randony € R", distributed according tg. The distribution ofy? is standardy?, which has
constant probability of being less thayi2. Conditioning on this event,

y"Ssy ~ Snyt + (5 + -+ yp) < (6/2)n+ (v + -+ y2),

which is less than T8 — (6 /2)n with constant probability. This shows that in (4) it is necessary to allow the
overlapy”'Ssy to be moderately smaller than its expectatior8rsince this can hold even with constant
probability.

To show that one cannot hope to prove a bound similar to (4) for the ugipef y”'Ssy, observe that
if y1 ~ N(0,1) thenPr(y; > n'/4) ~ Q(n~'/2e=v"/2). In case this holds, the overlag Ssy is at least
6n®/*, which is much larger than Bs ~ (6 + 1) n.

Before proving Lemma 8, we show that it implies Theorem 1.

Proof of Theorem 1Letn > 0 be given, and leA := E,.,, [zz”]. Fixad > 0 small enough so that
both the following hold:

1. |TrA — n| < nn/4. Thisis made possible by Claim 7.
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2. The set of) for whichy” Ay < Tr A — nn/4 has measure less thém/4)e=°". This can be obtained
from Lemma 8.

Combining these two estimates, we obtain

By [T AY] = 7(13) (V(B) — (n/4)e="")(TrA — yn/4)
> (1-n/4)(n —nn/2)
> (1—-n)n,

which proves the theorem in light of (3). O

We turn to the proof of Lemma 8. Le; > Ay > --- > A\, > 0 be the eigenvalues &, sorted in
non-increasing order. For agy< R™ one can write

yTSy="> Ny,
)

where they; arey’s coefficients in the eigenbasis 8f Since is rotation-invariant, thg; are independently
distributed according to the standard normal distribution. However, agsindhe example of the halfspace
Sos = {x € R™ : x; > +/26n} discussed above, some of thecan be quite largeS,s has measure
7(S) ~ e~°", but the corresponding matrBy; has); ~ 26n. Hence a direct use of Claim 4 would lead

to a rather poor bound. Rather, we will use Claim 5. For this to be effestigeneed to show that, while

the largest eigenvalues 8fcan be quite large, its spectrum must still be relatively spread out. This is made
precise in the following claim.

Claim 9. Foranyd > 0, let S C R™ be of measure/(S) > e~ and let\, ..., \, be the eigenvalues of
S sorted in non-increasing order. Lédn| < k& < n be an integer. Then for alt large enough,

Ai < (25e) k. (5)

N

i=1

Proof. Let A\; > --- A, be the eigenvalues & sorted in non-increasing order, ang, . . ., u,, the corre-
sponding eigenvectors. FOE [n] andz € R", letz; = z - u; be thei-th coordinate of: in the basis given
by thew,;. By definition

k k
Soa = S TS = B
i=1 =1

For anys > 0, Claim 4 gives the bound

(2 uz)Q] = By { x; }
1 i=1

k
1=

Pr(zi+--+ap>(1+pB)k) < 9o min (529)
1 k= = ’

T~y
so that, letting3’ = 3 — 8¢ we have that for everg’ > —4e,

Pr (zi+-+a2p>(1+8e+p8)k) < 92 5 (B8 < 9K

T~y 5




where we used our assumptiéan > [on|. Since for any non-negative random variabife E[X] =
Jar—o Pr(X > '), we get

Evmnys [27 4+ + 27 — (1 +8e)k] < 16e + dek,
which proves the claim. O
We finish by showing how Claim 9 implies Lemma 8.

Proof of Lemma 8Let « be given,3 := «/(100¢), and lety; ~ N(0, 1) bei.i.d. By Claim 5, using a crude
bound TrS < 2n (which follows from Claim 7 for all large enough), we get that for any > 0,

n 26n 5 -(Bt 1)
Pr(E:AiyngrS—t—E:)\i) < 2e~ 8 min(al) (6)
i=1 i=1

By Claim 9,2?57{ Ai < (25€)2pn = an/2, provided the conditioS > 4 is satisfied, which follows from
our assumption that > (50e)d. Choosingt = an/2 in (6) finishes the proof. O

4 Application to communication complexity

In this section we explain how Theorem 1 leads to a lower bound on the comationicomplexity of the
GHD problem. In fact, we will show a lower bound for its continuous anatpdhe Gap-Inner-Product
(GIP) problem, defined oR™ x R™ by

1 fz-y>t+g,
GlPyig(x,y) =40 ifz-y<t—g,
* otherwise.

For us, the parameters of interest (and arguably the most nigtaret, g = ©(/n). A lower bound on GIP
is easily seen to imply an equivalent lower bound for GHD (see e.g. Rtimpo3 in [1] for a proof that the
two problems have essentially the same randomized communication complexity).

The proof of the lower bound is based on a technique introduced in fjd]jsaclosely related to the
“partition bound” of [4]. For the reader’s convenience we cite a “mettbm” from [2], which we will
combine with the results of the previous section to re-prove the linear lowardoon the randomized
communication complexity of the GIP problem first proved in [2], also thrabgHollowing meta-theorem,
but using a much more involved technical argument than ours.

Theorem 10 (Theorem 2.2 in [2]) For all «g, a1, ay, € > 0 such thate < (a1 — a4)/(ap + 1), there
exist3 € R ande’ > 0 such that the following holds. L¢t: X x Y — {0, 1, x} be a partial function. Let
Ay = f~1(0) and A; = f~1(1). Suppose that there exist distributions, 11, u on X x Y, and a real
numberm > 0 such that

1. fori € {0,1}, u; is mostly supported oA, i.e.,u;(A;) > 1 — ¢, and
2. the following holds for all rectangleB C X x Y:

ar 1 (R) — aqpg (R) < aopo(R) +277.

"Note that two random vectors taken according foave expected inner produgtwith a standard deviation gfn.
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ThenRE/(f) >m+ ,8

We will apply this theorem t¢f = GIP, ; 4, with parameters = —(d+c)y/n/2 andg = (d—c)\/n/2,
wherec = 0.5 andd = 0.6 (nhote that Lemmas 4.1 and 4.2 in [2] show that the exact choic¢eaofl ¢
does not affect the randomized communication complexity too much, as loray asys= O(y/n)). We
instantiateu; as the2n-dimensional standard Gaussian distributionFor 1o we choose the distribution

with density
0 if x-y >0,
/‘LO(:’Ua y) = 2

(T y)2el=l*/2¢=18*/2  otherwise,

while i is chosen with density, (z, y) = po(—x,y). All these distributions are invariant under arbitrary
simultaneous rotations afandy; their densities are represented on Figure 1 for a fixedy, as a function

— 4 Yo
ofx_t”yOH,te]Ri.

0.7

0.6

0.5¢

0.4¢
0.3
0.2
0.1

Figure 1: The one-dimensional densities obtained fygntdotted, left),. (dotted, right) and:; (plain)
by conditioning ory = yy and projectinges on Ryy.

We first verify Condition 1 of Theorem 10, which intuitively states thatshould be mostly supported
on0-inputs, andu; on 1-inputs, as one can observe graphically in Figure 1. For this we will usétharge
n, for x,y € R™ distributed independently accordingothe inner product - y is essentially distributed
as a Gaussian with standard deviatign. This follows from the Berry-Esseen theorem (Fact 6) applied to
X; = x; - y;, which are i.i.d. with variance? = 1 and third momenp = 2./2/x. This lets us write

pi(A) = Pr (z-y>—cvn)

(CE,y)N’y
1 o0 2 1
> “2dt— Q(—=
o \/27'(' /—c ¢ (\/ﬁ)
1 c 2 1
P 2 _0(—) > 0.76
> 5+ =¢ (\/ﬁ) >



for large enough. Similarly, we compute

po(Ag) =1— Pr (z-y>—dyn)

(@,y)~po
2 // 2~ |le)2/2,,~llylI?/2
=1-— T-y)e e dx dy
n(27r)n —d\/ﬁ<z~y§0( )
2
> 24 // e~ le12/2e= 10172 gy gy
(27T)n —dy/n<z-y<0
>1oad L /O 2 gt — ()
N Vam J_q N
—1 o /d e /2 dt - Q(i) > 0.78
V271 Jo vn'

for large enough, so by settings := 0.3 we make sure that Condition 1. is satisfied. In order to verify
Condition 2., observe that for any rectandie

__ 2 o Ze—llzl2/2 ~lyli? /2 _2 )2
(o + p14)(R) = @) //(x’y)eR(w y)’e e dxdy = ~(R)E(y)ms [(@-9)°]

so that by setting = 0.05, Theorem 1 implies the existence of a 0 such that thaty.o(R) +x+(R))/2 >
(1 — n)v(R), as long asy(R) > e~°". Choosingag = a; = 1/2, a; = 0.95 andm = (In2)in,
Condition 2. reads

po(R) + p (R)

2
which is trivially satisfied by any? with v(R) < e, and for allR such thaty(R) > e~°" by the previous
arguments. Note also that with our choice of coefficienthe inequality ore is satisfied.
As a consequence, Theorem 10 directly implies the existengeof) ands € R such that

> 0.957(R) — e,
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