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Abstract

Given two setsA,B ⊆ R
n, a measure of their correlation is given by the expected squared inner

product between randomx ∈ A andy ∈ B. We prove an inequality showing that no two sets of large
enough Gaussian measure (at leaste−δn for some constantδ > 0) can have correlation substantially
lower than would two random sets of the same size. Our proof isbased on a concentration inequality for
the overlap of a random Gaussian vector on a large set.

As an application, we show how our result can be combined withthe partition bound of Jain and
Klauck to give a simpler proof of a recent linear lower bound on the randomized communication com-
plexity of the Gap-Hamming-Distance problem due to Chakrabarti and Regev.

1 Introduction

Let A,B be two non-empty measurable subsets ofR
n equipped with then-dimensional Gaussian measure

γ. Denote byγ|A×B the probability measure corresponding to the normalized restriction ofγ× γ toA×B,
and let

ν(A,B) := E(x,y)∼γ|A×B

[

(x · y)2
]

.

The quantityν(A,B) can be interpreted as a measure of correlation betweenA andB: a largeν indicates
sets with mostly aligned vectors, while a smallν indicates sets of vectors that are close to being pairwise
orthogonal.

A vectorx ∈ R
n distributed according toγ has squared norm tightly concentrated aroundn (precisely,

it follows a χ2(n) distribution, with expectationn, variance
√
2n and sub-exponential tails). By rotation

invariance ofγ, for any fixed vectory ∈ R
n the inner-productx · y is distributed as a centered Gaussian

with variance‖y‖2. Hence for any non-empty measurable setA it holds thatν(A,Rn) = n = ν(Rn,Rn).
We study the following question: How much smaller than the average valueν(Rn,Rn) canν(A,B)

be for arbitrary setsA,B of given measure? If we allow both setsA, B to be arbitrarily small thenν can
also be arbitrarily small: takeA = {x}, B = {y}, with x, y orthogonal, as the limiting example. If we
allowA to be arbitrarily small, but constrainB to have measureγ(B) ≥ t, wheret is a small constant, then
ν(A,B) can still be quite small. Indeed, for a fixed vectorx (of norm

√
n) chooseB as the fattened equator
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B = {y ∈ R
n : −t

√

π n/2 ≤ y · x ≤ t
√

π n/2}, of measureγ(B) ≈ t. Then forA an infinitesimal ball
centered atx we getν(A,B) ≤ t2n, an arbitrarily small fraction ofν(Rn,Rn) = n.

In this note we show that in case bothA andB are restricted to not being too small, thenν(A,B) cannot
be much lower thanν(Rn,Rn). More precisely we show the following:

Theorem 1. For anyη > 0, there exists aδ > 0 such that for all large enoughn, if A, B both have measure
γ(A), γ(B) ≥ e−δn then

ν(A,B) ≥ (1− η) ν(Rn,Rn) = (1− η)n. (1)

We remark that an analogue of Theorem 1 can also be proved for subsets of the unit sphereSn−1 ⊂ R
n,

with the Haar measure playing the role of the Gaussian measure: indeed, ourproof of Theorem 1 relies on
concentration properties of then-dimensional Gaussian measure which also hold for the Haar measure on
the sphere.

ChoosingA = B = {x ∈ R
n, ‖x‖2 ≤ (1 − δ)n}, of measure at leaste−cδn for some fixedc > 0,

shows that the dependence ofδ on η in Theorem 1 should be at least linear. Our proof only achieves a
weaker dependenceδ = Ω(η4).

Note that one may not hope for such a strong inequality as the one proven inTheorem 1, but in the
opposite direction: the half-spacesA = B = {x ∈ R

n, x1 ≥
√
2δn} have measure approximatelye−δn but

correlationν(A,B) = Ω(δ2n2).

Application: the communication complexity of the Gap-Hamming-Distance problem. The motivation
for, and main application of, Theorem 1 is to give a new, simpler proof of a recent breakthrough result by
Chakrabarti and Regev [2], who proved a linear lower bound on the bounded-error randomized communi-
cation complexity of the Gap-Hamming-Distance (GHD) problem. In this problem, Alice is given ann-bit
stringx, and Bob ann-bit stringy such that either∆(x, y) ≥ n/2 +

√
n or ∆(x, y) ≤ n/2 − √

n, where
∆(x, y) denotes the Hamming distance. The goal is to decide which holds. Proving anΩ(n) lower bound
for this problem was a long-standing open problem in communication complexity (see [2] for a detailed
history of the problem).

Chakrabarti and Regev’s proof is based on a variant of the smooth rectangle bound [4], and at its core is
an inequality similar to the one we prove in Theorem 1, except that it applies to the cosh function, instead
of the square function. More precisely, if one defines

ν̃α(A,B) := E(x,y)∼γ|A×B
[ cosh(αx · y) ]

for anyα > 0, then the key step in the proof of Theorem 3.5 from [2] consists in showingthat, for every
c, η > 0 there is aδ > 0 such that for every0 ≤ α ≤ c/

√
n andA, B of measure at leaste−δn,

ν̃α(A,B) ≥ (1− η) ν̃α(R
n,Rn). (2)

Given that thecosh function has a quadratic behavior around0, coshx = x2

2 + O(x4), our theorem may
not be so surprising once one knows of (2). However, for large values ofαx · y the behavior of the two
functions,x2 andcoshx, is different enough that we do not see how one could deduce Theorem 1 from (2)
or vice-versa.

The proof of (2) is based on a powerful result, Theorem 3.1 in [2], which shows that ifA is large enough
then for almost ally ∈ R

n the distribution of〈x, y〉 for x ∼ γ|A is close to a mixture of translated Gaussians.
Theorem 3.1 can be seen to imply both (2) and our Theorem 1. The proof of Theorem 3.1, though, is quite
involved, and the main contribution of our work consists in giving a direct proof of our Theorem 1, which
we show is strong enough to imply a linear lower bound on the randomized communication complexity of
GHD.
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Related work. After the completion of our work, Sherstov [6] provided yet another proof of Chakrabarti
and Regev’s lower bound for GHD. His proof is shorter and combinatorial, while the one in [2], as well
as ours, uses geometrical arguments and concentration of measure in(Rn, γ). The main innovation of
Sherstov’s proof is to consider a problem equivalent to GHD, calledgap orthogonality, for which a linear
lower bound can be proved using the corruption method [8], while the proof in [2] goes through the more
powerful but also more involved partition bound of Jain and Klauck [4]. We note that key to both Sherstov’s
and Chakrabarti and Regev’s proofs of an anti-concentration resultsimilar to our Theorem 1 is a technical
argument showing that any large enough setA must contain a linear number ofalmost-orthogonalvectors.
We completely avoid that step and instead work directly with a matrix representation of the setA (cf.
Section 3 for a definition).

Organization. We review useful concentration bounds in Section 2. Our main result, Theorem 1, is further
discussed and proved in Section 3. The application to the communication complexity of GHD is detailed in
Section 4.

2 Preliminaries

Distributions. LetN(0, σ2) denote the distribution of a normal random variable with mean0 and variance
σ2. Let χ2 be the distribution of the square of a random variable distributed asN(0, 1), andχ2(k) the
distribution of the sum of the squares ofk independentN(0, 1) random variables.γ is then-dimensional
Gaussian measure onRn, with densityγ(x) = (2π)−n/2e−‖x‖2/2. We sometimes abuse notation and also
denote byγ the2n-dimensional distributionγ × γ. If S ⊆ R

n is measurable with positive measure,γ|S
denotes the normalized restriction ofγ to S: for any measurableA, γ|S(A) = γ(A ∩ S)/γ(S).

Concentration bounds. We will use the following large deviation bounds.

Fact 2 (Gaussian tail bound). LetX be a standard normal random variable. Then for everyt ≥ 0,

Pr
(

|X| ≥ t
)

≤ e−t2/2.

Proof. Bound the upper tail as

Pr
(

X ≥ t
)

=
1√
2π

∫ ∞

t
e−x2/2dx

=
1√
2π

∫ ∞

0
e−(x+t)2/2dx

≤ e−t2/2

√
2π

∫ ∞

0
e−x2/2dx =

1

2
e−t2/2.

A similar bound holds for the lower tail.

Fact 3 (Bernstein’s inequality, see, e.g., Prop. 16 in [7]). LetX1, . . . , XN be independent random variables
such that for everyi, E[Xi] = 0, and there existsK > 0 such that, for alli and t ≥ 0, Pr(|Xi| ≥ t) ≤
e1−t/K . Then for everya = (a1, . . . , aN ) ∈ R

N andt ≥ 0, we have

Pr
(∣

∣

∣

∑

i

aiXi

∣

∣

∣
≥ t

)

≤ 2e
− 1

4e
min

(

t2

2eK2‖a‖2
2

, t
K‖a‖∞

)

.
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As a corollary, one can obtain the following bound for the tail of theχ2 distribution.

Claim 4 (χ2 tail bound). LetN ∈ N, andX1, . . . , XN be i.i.d. standard normal random variables. Then
for everya = (a1, . . . , aN ) ∈ R

N andt ≥ 0,

Pr
(∣

∣

∣

N
∑

i=1

aiX
2
i −

N
∑

i=1

ai

∣

∣

∣
≥ t

)

≤ 2 e
− 1

8e
min

(

t2

4e‖a‖2
2

, t
‖a‖∞

)

.

Proof. By Fact 2, for everyi theXi satisfy that for everyt ≥ 0,

Pr(|X2
i − 1| ≥ t) = Pr(X2

i ≥ t+ 1) + Pr(X2
i ≤ 1− t)

≤ e1−(t+1)/2

where the extra factore ensures that the bound is trivial whenever the second termPr(X2
i ≤ 1 − t) is

nonzero. Hence theYi := X2
i − 1 satisfy the hypothesis of Fact 3 withK = 2, which leads to the claimed

bound.

The bound in Claim 4 becomes very weak as soon as even one of the coefficientsai is large compared
to the others. In the case where theai are non-negative and most are small we can still keep a good control
over thelower tail, as the following claim shows.

Claim 5. Let N ∈ N, let X1, . . . , XN be i.i.d. standard normal random variables,a1 ≥ · · · ≥ aN ≥ 0
non-negative reals sorted in non-increasing order, andM =

∑N
i=1 ai. Then for every integer1 ≤ k ≤ N

andt ≥ 0,

Pr
(

N
∑

i=1

aiX
2
i −M ≤ −

k
∑

i=1

ai − t
)

≤ 2 e−
kt

8eM
min

(

kt

4eM2
,1
)

.

Proof. Since theai are sorted, for everyi > k we haveai ≤ M/k, so that

‖a>k‖22 :=
N
∑

i=k+1

a2i ≤ NM2/k2 and ‖a>k‖∞ := max
i>k

|ai| ≤ M/k.

Hence applying Claim 4 toXk+1, . . . , XN yields that for everyt ≥ 0,

Pr
(
∣

∣

∣

N
∑

i=k+1

aiX
2
i −

N
∑

i=k+1

ai

∣

∣

∣
≥ t

)

≤ 2 e−
1

8e
min

(

k2t2

4eNM2
, kt
M

)

,

which proves the claim since
∑N

i=k+1 aiX
2
i ≤ ∑N

i=1 aiX
2
i .

We will also use the Berry-Esseen theorem.

Fact 6 (Berry-Esseen Theorem, see, e.g., [3], Chapter XVI). LetX1, . . . , XN be i.i.d. such thatE[Xi] = 0,
E[X2

i ] = σ2 andE[|Xi|3] = ρ. DefineY = (X1 + · · ·+XN )/(
√
Nσ) and letZ be distributed asN(0, 1).

Then for allt ≥ 0,
∣

∣Pr(Y ≥ t)− Pr(Z ≥ t)
∣

∣ ≤ 3 ρ

σ3
√
N

.
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Communication complexity. For a partial functionf : X × Y → {0, 1, ⋆}, we letRε(f) be theε-
error randomized communication complexity of the functionf (we refer to [5] for more background on
communication complexity). Here we allowX,Y to be infinite subsets ofRn and measure input size by the
dimensionn alone.

3 Proof of the main inequality

The proof of Theorem 1 is based on a concentration bound for the average squared inner product between
a vectory ∈ R

n and a randomx ∈ S, whereS is a fixed non-empty measurable subset ofR
n. Given

such a set, it will be convenient to work with the positive semidefinite matrixS = Ex∼γ|S

[

xxT
]

, where the
expectation is taken entrywise. This matrix satisfies the following key relation

∀y ∈ R
n yTSy = Ex∼γ|S

[

yTxxT y
]

= Ex∼γ|S

[

(x · y)2
]

. (3)

As we will see, (3) lets us relate the concentration properties ofν({y}, S), for y ∼ γ, to the eigenvalues of
S. The following simple claim will be useful.

Claim 7. Let 0 < δ < 1/2, andS a measurable subset ofRn such thatγ(S) ≥ e−δn. Then for all large
enoughn it holds that

∣

∣TrS− n
∣

∣ ≤ 50e
√
δ n.

Proof. For any measurable setS,

TrS = Ey∼γ

[

yTSy
]

= Ex∼γ|S ,y∼γ

[

(x · y)2
]

= Ex∼γ|S ,y1∼γ

[

‖x‖2y21
]

= Ex∼γ|S

[

‖x‖2
]

,

where the third equality follows from the rotation invariance ofγ, and the last uses independence ofx andy.
Clearly, the setS of fixed measuree−δn which maximizes|TrS−n| is then eitherS = {x ∈ R

n, ‖x‖2 > n+
t} orS′ = {x ∈ R

n, ‖x‖2 < n−t′}, wheret (resp.t′) is chosen so thatγ(S) = e−δn (resp.γ(S′) = e−δn).
By Claim 4, forS or S′ to have measure at leaste−δn it is necessary thatt, t′ ≤ t0 = 6e

√
δ n. Using

E[X] ≤ α+

∫ ∞

u=α
Pr(X ≥ u)du

for any non-negative random variableX and non-negativeα, we can bound
∣

∣TrS− n
∣

∣ ≤ Ex∼γ|S

[∣

∣‖x‖2 − n
∣

∣

]

≤ 8t0 + eδn
∫ ∞

u=8t0

Pr
x∼γ

(∣

∣‖x‖2 − n
∣

∣ > u
)

du

≤ 8t0 + eδn
∫ 4en

u=8t0

2e−u2/(32e2n)du+ eδn
∫ ∞

u=4en
2e−u/(8e)du

≤ 8t0 + 2eδn
∫ ∞

u=2
√
δn

e−u2/2du+
1

4e
e−(1−2δ)n/2

≤ 8t0 + 1 +
√
2πe−δn

≤ 8t0 + 2,
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where the3rd inequality uses the bound from Claim 4, the5th inequality uses the Gaussian tail bound proved
in Fact 2, and the5th and6th inequalities hold for all large enoughn. Finally, the same bound holds for
∣

∣TrS′ − n
∣

∣.

We show the following concentration bound.

Lemma 8. There exists a constantc > 0 such that the following holds. Letδ > 0 andS ⊆ R
n a non-empty

measurable set such thatγ(S) ≥ e−δn. Then for allα > (50e) δ and all large enoughn,

Pr
y∼γ

(

yTSy ≤ TrS− αn
)

≤ e−cα4n. (4)

As shown in Claim 7 above, ifγ(S) ≥ e−δn then TrS is within a factor≈ (1 ± O(
√
δ)) of n, so that for

smallα theαn factor in (4) corresponds to a small fraction of TrS.

Before turning to the proof of the lemma, and showing how it implies our main theorem, we give an
example showing that the constraintα > c′δ is necessary (for somec′ > 0). The same example also shows
that one cannot hope for a similar bound on the probability thatyTSy is greater than TrS + αn, even for
relatively largeα.

Example.Fix a parameterδ > 0 (think of δ as a small constant), and consider the halfspaceSδ = {x ∈
R
n : x1 ≥

√
δn}, which has measureγ(Sδ) ≈ e−δn/2. By definition, the(i, j)-th coefficient of the matrix

Sδ associated toSδ takes the value

(

Sδ

)

i,j
= Ex∼γ|Sδ

[xixj ] =

{

Ex∼γ|Sδ

[

x2i
]

if i = j,
(

Ex∼γ|Sδ
[xi]

)(

Ex∼γ|Sδ
[xj ]

)

= 0 if i 6= j,

since Ex∼γ|Sδ
[xi] = 0wheneveri > 1. HenceSδ is diagonal, with first diagonal entry equal to Ex∼γ|Sδ

[

x21
]

≈
δn, and the remaining(n− 1) each equal to1. In particular the trace ofSδ is

TrSδ ≈ δn+ (n− 1).

Now take a randomy ∈ R
n, distributed according toγ. The distribution ofy21 is standardχ2, which has

constant probability of being less than1/2. Conditioning on this event,

yTSδy ≈ δny21 + (y22 + · · ·+ y2n) ≤ (δ/2)n+ (y22 + · · ·+ y2n),

which is less than TrSδ−(δ/2)n with constant probability. This shows that in (4) it is necessary to allow the
overlapyTSδy to be moderately smaller than its expectation TrSδ, since this can hold even with constant
probability.

To show that one cannot hope to prove a bound similar to (4) for the uppertail of yTSδy, observe that
if y1 ∼ N(0, 1) thenPr(y1 > n1/4) ≈ Ω(n−1/2e−

√
n/2). In case this holds, the overlapyTSδy is at least

δn5/4, which is much larger than TrSδ ≈ (δ + 1)n.

Before proving Lemma 8, we show that it implies Theorem 1.

Proof of Theorem 1.Let η > 0 be given, and letA := Ex∼γ|A

[

xxT
]

. Fix a δ > 0 small enough so that
both the following hold:

1. |TrA− n| ≤ η n/4. This is made possible by Claim 7.
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2. The set ofy for whichyTAy ≤ TrA− ηn/4 has measure less than(η/4)e−δn. This can be obtained
from Lemma 8.

Combining these two estimates, we obtain

Ey∼γ|B

[

yTAy
]

≥ 1

γ(B)
(γ(B)− (η/4)e−δn)(TrA− ηn/4)

≥ (1− η/4)(n− η n/2)

≥ (1− η)n,

which proves the theorem in light of (3).

We turn to the proof of Lemma 8. Letλ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the eigenvalues ofS, sorted in
non-increasing order. For anyy ∈ R

n one can write

yTSy =
∑

i

λi y
2
i ,

where theyi arey’s coefficients in the eigenbasis ofS. Sinceγ is rotation-invariant, theyi are independently
distributed according to the standard normal distribution. However, as shown in the example of the halfspace
S2δ = {x ∈ R

n : x1 ≥
√
2δn} discussed above, some of theλi can be quite large:S2δ has measure

γ(S) ≈ e−δn, but the corresponding matrixS2δ hasλ1 ≈ 2δn. Hence a direct use of Claim 4 would lead
to a rather poor bound. Rather, we will use Claim 5. For this to be effective, we need to show that, while
the largest eigenvalues ofS can be quite large, its spectrum must still be relatively spread out. This is made
precise in the following claim.

Claim 9. For anyδ > 0, letS ⊆ R
n be of measureγ(S) ≥ e−δn, and letλ1, . . . , λn be the eigenvalues of

S sorted in non-increasing order. Let⌈δn⌉ ≤ k ≤ n be an integer. Then for alln large enough,

k
∑

i=1

λi ≤ (25e) k. (5)

Proof. Let λ1 ≥ · · ·λn be the eigenvalues ofS sorted in non-increasing order, andu1, . . . , un the corre-
sponding eigenvectors. Fori ∈ [n] andx ∈ R

n, letxi = x · ui be thei-th coordinate ofx in the basis given
by theui. By definition

k
∑

i=1

λi =
k

∑

i=1

uTi Sui = Ex∼γ|S

[

k
∑

i=1

(x · ui)2
]

= Ex∼γ|S

[

k
∑

i=1

x2i

]

.

For anyβ ≥ 0, Claim 4 gives the bound

Pr
x∼γ

(

x21 + · · ·+ x2k ≥ (1 + β) k
)

≤ 2e−
k
8e

min
(

β2

4e
,β
)

,

so that, lettingβ′ = β − 8e we have that for everyβ′ ≥ −4e,

Pr
x∼γ|S

(

x21 + · · ·+ x2k ≥ (1 + 8e+ β′) k
)

≤ 2 e−
k
8e

(β′+8e)eδn ≤ 2 e−
kβ′

8e ,
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where we used our assumptionk ≥ ⌈δn⌉. Since for any non-negative random variableX, E[X] =
∫∞
β′=0 Pr(X ≥ β′), we get

Ex∼γ|S

[

x21 + · · ·+ x2k − (1 + 8e)k
]

≤ 16e+ 4e k,

which proves the claim.

We finish by showing how Claim 9 implies Lemma 8.

Proof of Lemma 8.Letα be given,β := α/(100e), and letyi ∼ N(0, 1) be i.i.d. By Claim 5, using a crude
bound TrS ≤ 2n (which follows from Claim 7 for all large enoughn), we get that for anyt ≥ 0,

Pr
(

n
∑

i=1

λiy
2
i ≤ TrS− t−

2βn
∑

i=1

λi

)

≤ 2 e−
βt

8e
min

(

βt

8en
,1
)

. (6)

By Claim 9,
∑2βn

i=1 λi ≤ (25e)2βn = αn/2, provided the condition2β ≥ δ is satisfied, which follows from
our assumption thatα > (50e)δ. Choosingt = αn/2 in (6) finishes the proof.

4 Application to communication complexity

In this section we explain how Theorem 1 leads to a lower bound on the communication complexity of the
GHD problem. In fact, we will show a lower bound for its continuous analogue, the Gap-Inner-Product
(GIP) problem, defined onRn × R

n by

GIPn,t,g(x, y) =











1 if x · y ≥ t+ g,

0 if x · y ≤ t− g,

⋆ otherwise.

For us, the parameters of interest (and arguably the most natural1) aret, g = Θ(
√
n). A lower bound on GIP

is easily seen to imply an equivalent lower bound for GHD (see e.g. Proposition 3 in [1] for a proof that the
two problems have essentially the same randomized communication complexity).

The proof of the lower bound is based on a technique introduced in [2], and is closely related to the
“partition bound” of [4]. For the reader’s convenience we cite a “meta-theorem” from [2], which we will
combine with the results of the previous section to re-prove the linear lower bound on the randomized
communication complexity of the GIP problem first proved in [2], also throughthe following meta-theorem,
but using a much more involved technical argument than ours.

Theorem 10 (Theorem 2.2 in [2]). For all α0, α1, α+, ε > 0 such thatε < (α1 − α+)/(α0 + α1), there
existβ ∈ R andε′ > 0 such that the following holds. Letf : X × Y → {0, 1, ⋆} be a partial function. Let
A0 = f−1(0) andA1 = f−1(1). Suppose that there exist distributionsµ0, µ1, µ+ onX × Y , and a real
numberm > 0 such that

1. for i ∈ {0, 1}, µi is mostly supported onAi, i.e.,µi(Ai) ≥ 1− ε, and

2. the following holds for all rectanglesR ⊆ X × Y :

α1µ1(R)− α+µ+(R) ≤ α0µ0(R) + 2−m.

1Note that two random vectors taken according toγ have expected inner product0, with a standard deviation of
√

n.
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ThenRε′(f) ≥ m+ β.

We will apply this theorem tof = GIPn,t,g, with parameterst = −(d+c)
√
n/2 andg = (d−c)

√
n/2,

wherec = 0.5 andd = 0.6 (note that Lemmas 4.1 and 4.2 in [2] show that the exact choice oft andg
does not affect the randomized communication complexity too much, as long as say t, g = Θ(

√
n)). We

instantiateµ1 as the2n-dimensional standard Gaussian distributionγ. For µ0 we choose the distribution
with density

µ0(x, y) =

{

0 if x · y > 0,
2

n(2π)n (x · y)2e−‖x‖2/2e−‖y‖2/2 otherwise,

while µ+ is chosen with densityµ+(x, y) = µ0(−x, y). All these distributions are invariant under arbitrary
simultaneous rotations ofx andy; their densities are represented on Figure 1 for a fixedy = y0, as a function
of x = t y0

‖y0‖ , t ∈ R.

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 mu
0

mu
+

mu
1

Figure 1: The one-dimensional densities obtained fromµ0 (dotted, left),µ+ (dotted, right) andµ1 (plain)
by conditioning ony = y0 and projectingx onRy0.

We first verify Condition 1 of Theorem 10, which intuitively states thatµ0 should be mostly supported
on0-inputs, andµ1 on1-inputs, as one can observe graphically in Figure 1. For this we will use that for large
n, for x, y ∈ R

n distributed independently according toγ, the inner productx · y is essentially distributed
as a Gaussian with standard deviation

√
n. This follows from the Berry-Esseen theorem (Fact 6) applied to

Xi = xi · yi, which are i.i.d. with varianceσ2 = 1 and third momentρ = 2
√

2/π. This lets us write

µ1(A1) = Pr
(x,y)∼γ

(

x · y > −c
√
n
)

≥ 1√
2π

∫ ∞

−c
e−t2/2dt− Ω

( 1√
n

)

≥ 1

2
+

c√
2π

e−c2/2 − Ω
( 1√

n

)

≥ 0.76
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for large enoughn. Similarly, we compute

µ0(A0) = 1− Pr
(x,y)∼µ0

(

x · y > −d
√
n
)

= 1− 2

n(2π)n

∫∫

−d
√
n<x·y≤0

(x · y)2e−‖x‖2/2e−‖y‖2/2 dx dy

≥ 1− 2d2

(2π)n

∫∫

−d
√
n<x·y≤0

e−‖x‖2/2e−‖y‖2/2 dx dy

≥ 1− 2d2
1√
2π

∫ 0

−d
e−t2/2 dt− Ω

( 1√
n

)

= 1− 2d2
1√
2π

∫ d

0
e−t2/2 dt− Ω

( 1√
n

)

≥ 0.78

for large enoughn, so by settingε := 0.3 we make sure that Condition 1. is satisfied. In order to verify
Condition 2., observe that for any rectangleR,

(µ0 + µ+)(R) =
2

n(2π)n

∫∫

(x,y)∈R
(x · y)2e−‖x‖2/2e−‖y‖2/2 dx dy=

2

n
γ(R)E(x,y)∼γ|R

[

(x · y)2
]

,

so that by settingη = 0.05, Theorem 1 implies the existence of aδ > 0 such that that(µ0(R)+µ+(R))/2 ≥
(1 − η)γ(R), as long asγ(R) ≥ e−δn. Choosingα0 = α+ = 1/2, α1 = 0.95 andm = (ln 2) δn,
Condition 2. reads

µ0(R) + µ+(R)

2
≥ 0.95 γ(R)− e−δn,

which is trivially satisfied by anyR with γ(R) < e−δn, and for allR such thatγ(R) ≥ e−δn by the previous
arguments. Note also that with our choice of coefficientsα the inequality onε is satisfied.

As a consequence, Theorem 10 directly implies the existence ofε′ > 0 andβ ∈ R such that

Rε′(GIPn,−.55
√
n,.05

√
n) ≥ (ln 2) δn+ β.
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