
Quantum games and SDPs

We first describe the idea behind Gutoski and Watrous’ “General Theory of Entangled Games’ [GW07]
and show how it gives a very quick proof of Kitaev’s strong coin flippinglower bound. We then briefly go
over the different SDPs that have been proposed for quantum games.

1 Gutoski-Watrous proof of Kitaev’s lower bound on strong coin flipping
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Figure 1: The point vs. hyperplane game: honest (resp. dishonest) strategiesA0, B0 (resp.A,B) for Alice
and Bob.

Consider a game in which Alice’s strategies are matrices in a fixed convex subsetS ⊂ Hn(C) of
then-dimensional Hermitian matricesHn(C) containing the origin, and Bob’s strategies are hyperplanes
HB = {X ∈ Hn(C), 〈X,B〉 = 1} such that〈A,B〉 ≤ 1 for all A ∈ S (i.e Bob can play any hyperplane
that does not cut Alice’s set of possible strategies). In this game, there isa fixed pair of “honest” strategies
A0 for Alice andB0 for Bob. Alice’s goal is to maximize〈A,B0〉, while Bob’s is to maximize〈A0, B〉 (see
Figure 1).

Suppose that〈A0, B0〉 = 1/2. Let p = maxA∈S〈A,B0〉 be the maximum payoff achievable by Alice.
ThenB0/p is automatically a valid strategy for Bob, which earns him a payoff of1/(2p). Hence at least one
of Alice’s or Bob’s payoffs must be larger than1/

√
2: this is a simple consequence of the specific format of

this game.
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Gutoski and Watrous show that any two-player quantum game can be put inthis format. The work is in
showing the following two things:

1. Any fixed strategy for Alice (resp. for Bob) can be represented bya pair of Hermitian matrices
A0, A1 ∈ A (resp.B0, B1 ∈ B) such that〈Ax, By〉 is the probability that the game ends with Alice
outputtingx and Bob outputtingy. The matricesA andB are obtained from Alice and Bob’s strategies
as depicted in Figure 2.

2. The setsS = {X, X ≤ A} for someA ∈ A} andT = {Y, Y ≤ B for someB ∈ B} are dual to

each other, in the sense thatT =
◦

S = {X, 〈X,Y 〉 ≤ 1 ∀Y ∈ T }. This follows from an inductive
characterization of the setsA andB, together with the calculation of the duals of some simple sets
(the key step being Lemma 10 in the paper).

Once these two properties are known to hold, it is straightforward to translate any game into the format
described above, and hence to obtain Kitaev’s lower bound. This givesa nice pictorial way to think about
quantum games, and might even help in designing specific games. A difficulty with that however is that a
priori not all matrices in the setS can be played by Alice — only the extreme points, together with some
interior points. Are all interior points valid strategies? Can the geometry of the setS be understood more
precisely? From the paper we know that it is a “cut” of the set of positive matrices, by a small number of
simple hyperplanes (cf. Theorem 6).
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Figure 2: Constructing Alice’s matrixA (resp. Bob’s matrixB) from her strategy. Alice’s matrix has the
two top lines as “inputs” and the two bottom lines as “outputs”.
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2 Overview of the different SDP approaches to QIP

Broadly, SDPs for QIP can be classified in two groups: those which optimizeover messages exchanged
between the verifier and the prover during their interaction, and those which optimize overthe prover’s
actions, i.e. its unitaries, themselves.

V1

U

V2

P

M

V

ρ1 ρ2 σ

Figure 3: A QIP(3) protocol, together with the “snapshot states” optimized over by some of the SDPs

2.1 Optimization over messages

Let (V1, V2) be a3-round QIP protocol (see Figure 3). Note that the initialization of the verifier’s private
qubits is part ofV1, while the projection of the output qubit on “accept” is part ofV2.

The Kitaev-Watrous SDP. The original SDP, due to Kitaev and Watrous [KW00], is based on the follow-
ing observation:

• If there exists a prover which is accepted with probability1, then there exists density matricesρ1 and
σ such that TrM(V1ρ1V

†
1 ) = TrM(V †

2 σV2).

• If no prover is accepted with probability more than1/3, then for every density matricesρ1, σ, we have
that‖TrM(V1ρ1V

†
1 )− TrM(V †

2 σV2)‖tr ≥ 2/3.

Their idea was then to replace the trace norm with the operator norm, and writethe problem of minimizing
‖TrM(V1ρ1V

†
1 ) − TrM(V †

2 σV2)‖∞ as a semi-definite program. Note that the switch from trace norm to
operator norm means that we are forced to solve the SDP to high accuracyin order to distinguish between
the two cases.

Kitaev’s coin-flipping SDP. Kitaev takes a similar approach in his MSRI slides on coin flipping, except
that he avoids the switch from trace to operator norm by using the following simpler SDP:

max Tr(V2ρ2V
†
2 )

TrM(V1ρ1V
†
1 ) = TrMρ2

Tr(ρ1) = Tr(ρ2) = 1

ρ1, ρ2 ≥ 0
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The QIP=PSPACE SDP. In their original proof that QIP⊆PSPACE, Jain, Ji, Upadhyay and Watrous [JJUW09]
use a SDP for QMAM, which is essentially the following (note that in that case the verifier can be described
by a single procedureV = |0〉〈0| ⊗ V1 + |1〉〈1| ⊗ V2, where the first register is a control on the coin-flip):

maxTr(V ρ)

Tr2(ρ) = Id ⊗σ

Tr(σ) = 1

ρ, σ ≥ 0

Here,ρ is meant to represent the stateρ = |0〉〈0| ⊗ ρ1+ |1〉〈1| ⊗ ρ2, whereρ1 (resp.ρ2) is the message sent
by the prover on a coin flip of0 (resp.1), and is on two registers1 and2, corresponding to the part that is
sent as the first message (supposed to be independent of the coin, hence theσ in the SDP) and the part sent
as the second message.

Xiaodi Wu’s game. Finally, Xiaodi Wu [Wu] shows how the original Kitaev-Watrous SDP can easily
be transformed in a min-max game, which can be solved using the multiplicative weights update method
(leading to a simpler proof of QIP = PSPACE):

max
0≤π≤Id

min
ρ1,σ≥0

Tr(ρ1)=Tr(σ)=1

〈Π,TrM(V1ρ1V
†
1 )− TrM(V †

2 σV2)〉

2.2 Optimizing over the prover’s transformation

By using the Choi-Jamiolkowski isomorphism, one can optimize over the prover’s transformationU through
its representationJ(U), which is positive and satisfies some simple linear constraints wheneverU is a valid
transformation. This is the approach taken by Gutoski and Watrous [GW07] to study general games, and
also by Jain, Upadhyay and Watrous [JUW09] in their proof of QIP(2)⊆ PSPACE.
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