
Positivstellensatz, SDPs and Entangled Games

Today we are going to talk about an infinite hierarchy of semidefinite programmings which
attempts to approximate the entangled value of multi-prover games [1]. This work is based on
a recent result called non-commutative Positivstellensatz [2] about the representation of positive
polynomials.

In a one-round two-prover cooperative game, a verifier asks questions to two provers, Alice and
Bob, who cooperate with each other. A game G = G(π, V ) is specified by the set of questions S, T

and answers A,B for Alice and Bob, a probability distribution π : S × T → [0, 1], and a predicate
V : A×B×S × T → {0, 1}. The referee samples (s, t) ∈ S × T according to π, and sends question
s to Alice and questions t to Bob. Alice replies with an answer a ∈ A, and Bob replies with an
answer b ∈ B. The provers win if and only if V (a, b|s, t) = 1. The provers are allowed to agree on
a strategy before the game starts, but not allowed to communicate with each other after receiving
their questions. The classical value of this game, denoted by ωc(G), is the maximum probability
with which the provers can win.

In the entangled version of this game, we allow the provers to share arbitrary prior entanglement
and perform arbitrary local quantum operations. We use ω∗(G) to denote the maximum probability
with which any entangled provers can win.

For example, CHSH game is a two-prover game in which A = B = S = T = {0, 1} and
V (a, b|s, t) = 1 if a ⊕ b = s ∧ t, and 0 otherwise. For this game, any classical provers can win
with probability at most ωc(G) = 3/4, but entangled provers can win with probability ω∗(G) =
cos2(π/8) ≈ 0.85.

Without loss of generality, we can assume the entangled prover’s strategy as follows. They share
a pure state |ψ〉 ∈ Cd×d for some d ≥ 1. If Alice receives question s, then she performs a POVM
{Aa

s} on her part of |ψ〉, (i.e.
∑

a Aa
s = I, Aa

s ≥ 0), and replies with answer a if the measurement
outcome corresponds to Aa

s . Similarly, we define POVMs {Bb
t} for Bob. So the probability that

Alice answers a and Bob answers b is given by

P [a, b|s, t] = 〈ψ|Aa
s ⊗Bb

t |ψ〉. (1)

Thus, the entangled value of this game is given by

ω∗(G) = lim
d→∞

max
|ψ〉∈Cd×d

max
Aa

s ,Bb
t

∑

a,b,s,t

π(s, t)V (a, b|s, t)〈ψ|Aa
s ⊗Bb

t |ψ〉. (2)

We are going to show that, there exists an infinite hierarchy of SDPs whose solutions converge
to the field-theoretic value ωf (G) defined below, which is conjectured to equal the entangled value
ω∗(G).

Theorem 1. There exists a hierarchy of SDPs whose solutions converge to ωf (G).
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Lemma 2. ωf (G) ≥ ω∗(G).

Conjecture 3. ω∗(G) = ωf (G).

In what follows, we will first define ωf (G) and give the intuition why it seems to equal ω∗(G).
Then, we reduce the problem of computing ωf (G) to the problem of determining whether a poly-
nomial (in the measurement operators) is positive, i.e. q({Aa

s , B
b
t}) > 0, under some polynomial

constraints pj({Aa
s , B

b
t}) ≥ 0. Next, we apply the recent result of non-commutative Positivstel-

lensatz, which basically states that this is true only if q lies in the convex cone generated by pj ’s.
At last, we show that testing the membership of a convex cone can be solved using a hierarchy of
SDPs.

1 Field-theoretical value

The field-theoretic value of a game G = G(π, V ) defined as follows:

ωf (G) = sup
Aa

s ,Bb
t

‖
∑

a,b,s,t

π(s, t)V (a, b|s, t)Aa
sB

b
t‖, (3)

where Aa
s , B

b
t ∈ B(H) for some Hilbert space H,

∑
a Aa

s =
∑

b Bb
t = I, Aa

s , B
b
t ≥ 0, and [Aa

s , B
b
t ] = 0.

To prove lemma 2, one only needs to realize that for any Aa
s , B

b
t in Eq.(2), we can always choose

|ψ〉 such that it is the eigenstate corresponding to the maximum eigenvalue of the operator
∑

a,b,s,t

π(s, t)V (a, b|s, t)Aa
s ⊗Bb

t =
∑

a,b,s,t

π(s, t)V (a, b|s, t)Âa
sB̂

b
t ,

where Âa
s = Aa

s ⊗ I and B̂b
t = I ⊗Bb

t are commutative. Then ω∗(G) ≤ ωf (G) is obvious.
On the other hand, the following lemma states that, for finite-dimensional Hilbert spaces, the

commutation relation and tensor product structure are equivalent.

Lemma 4. Suppose H is a finite-dimensional Hilbert space, and Xi, Yj ∈ B(H). Then the following
conditions are equivalent:
(1) [Xi, Yj ] = 0, ∀i, j;
(2) H =

⊕
α
Hα

1 ⊗Hα
2 , s.t. Xi ∈

⊕
α
B(Hα

1 )⊗ I(Hα
2 ), Yj ∈

⊕
α
I(Hα

1 )⊗ B(Hα
2 ).

As a result, if we only consider finite-dimensional spaces in the definition of ωf (G), it should
equal ω∗(G). The only possible difference may arise from the case of infinite-dimensional spaces.
But, intuitively, one can imagine that there should exist some continuity and thus the field value
should equal ω∗(G). It would be surprising if ωf (G) > ω∗(G), meaning that there is a gap between
the limit of finite dimension case and the infinite dimension case.

2 Reduction to Polynomial Positivity

Our goal is to find the value of ωf (G), which is the supremum of the operator norm of some
polynomial in measurement operators {As

a, B
b
t}. Note that for a Hermitian operator M , ‖M‖ = c

if and only if c′I −M > 0 for any c′ > c, but c′I −M 6> 0 for any c′ < c. Thus, define

qc = cI −
∑

a,b,s,t

π(s, t)V (a, b|s, t)Aa
sB

b
t .
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If c > ωf (G), then: qc > 0 for any Aa
s , B

b
t that satisfy

pA
s ≡

∑
a

Aa
s − I = 0,

pB
t ≡

∑

b

Bb
t − I = 0,

pA
a,s ≡ Aa

s ≥ 0,

pB
b,t ≡ Bb

t ≥ 0,

pa,b,s,t ≡ Aa
sB

b
t −Bb

t A
a
s = 0.

On the other hand, if c < ωf (G), this statement is not true. Note that qc and pA
s , pB

t , pA
a,s, p

B
b,t, pa,b,s,t

are all polynomials in {As
a, B

b
t}.

So, suppose we have an oracle that solves the following problem: given a set of Hermitian
polynomials q, p1, p2, . . . , pm in Hermitian variables X = (X1, X2, . . . , Xn), is q(X) > 0 for any X

that satisfies pj(X) ≥ 0? Then, we can approximate ωf (G) to arbitrary accuracy by querying the
oracle with qc and {±pA

s ,±pB
t , pA

a,s, p
B
b,t,±ipa,b,s,t} for different values of c (i.e. using the binary

search).

3 Positivstellensatz

Given a set of Hermitian polynomials q, p1, p2, . . . , pm in Hermitian variables X = (X1, X2, . . . , Xn),
is q(X) > 0 for any X that satisfies pj(X) ≥ 0? This question was answered in a recent paper by
Helton and McCullough. They proved a non-commutative Positivstellensatz, which basically says
that the answer to this question is yes only if q lies in the convex cone generated by p1, p2, . . . , pm.
This theorem actually needs some extra conditions to hold. But these conditions hold for qc and
Q. For a rigorous statement of non-commutative Positivstellensatz, see [2].

For a set of polynomials p1, p2, . . . , pm, the convex cone generated by them, denoted by C{pj}
is the set of polynomials of the form

q =
L∑

j=1

r†jrj +
m∑

i=1

K∑

j=1

s†ijpisij , (4)

where L,K are finite, and rj , sij are arbitrary polynomials. One can easily see that if pj(X) ≥ 0,
then q(X) ≥ 0 for any q ∈ C{pj}. The Positivstellensatz states that, in some sense, the converse
is also true. Namely, if q(X) > 0 for any X that satisfy pj(X) ≥ 0, then q ∈ C{pj}, i.e. q can be
written the form of Eq.(4).

4 Construction of the SDP Hierarchy

Now we show that the membership of a convex cone can be tested by using a hierarchy of SDPs.
The drawback of Eq.(4) is that we do not know the degrees of rj and sij . It is possible that

they have high degrees, but eventually the high-degree terms cancel on the righthand side of Eq.(4),
resulting in a low-degree polynomial q. So we can only define a hierarchy of problems, in which the
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level-n problem requires that each term r†jrj , s†ijpisij should have degree ≤ 2n. For example, the

first level requires that each r†jrj and s†ijpisij should be at most quadratic.
At each level, the degree of polynomials rj and sij are fixed. So we can represent them by

matrices. Specifically, a Hermitian polynomial f of degree d in Hermitian variables X1, . . . , Xn can
be represented by

f = Z†ΓfZ,

where
Z = [1 X1 . . . Xn X1X2 X1X3 . . . ]†

is a vector consisting of all the monomials of degree ≤ d over X1, . . . , Xn, and Γf is a Hermitian
matrix of corresponding size. Note that Γf might be not unique, i.e. a polynomial can have multiple
representations. Furthermore, f =

∑
j r†jrj for some polynomials rj if and only if it has a positive

semidefinite representation Γf ≥ 0. This because if Γf =
∑
j

uju
†
j , then f =

∑
j

Z†uju
†
jZ =

∑
j

r†jrj ,

where rj = u†jZ is a polynomial. The other direction is trivial.
Let

V =
∑

j

r†jrj ,

Wi =
∑

j

s†ijsij .

Then V and Wi are all sum of squares, and thus they have positive semidefinite representations
ΓV , ΓWi . Moreover, observing Eq.(4) carefully, one can be convinced that it is equivalent to a set
of linear constraints on the entries of ΓV , ΓWi . Each constraint verifies that the coefficients of a
particular monomial are the same for both sides of Eq.(4). So, we want to find ΓV ,ΓWi ≥ 0 subject
to some linear constraints on their entries. This can be solved by a SDP.

5 Conclusion

The above arguments can be straightforwardly generalized to the cases of any number of provers.
There are two interesting open questions. One is to prove or disprove conjecture 3. Another

is to find out exactly how fast this hierarchy of SDPs converges to the field-theoretic value. If
conjecture 3 is solved affirmative and also some bound on the convergence speed of the hierarchy
is established, then we might be able to provide some upper bound on the class MIP ∗.

There is another hierarchy of SDPs [3, 4] that has also been proved to converge to the field
value of multi-prover games. Instead of basing on representation theory of positive polynomials,
that hierarchy is based on the moment matrix. It is dual to the one presented here.
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