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Consider a game in which Alice and Bob interact in order to output a randonibt p, , be the
probability that Alice outputs a, and Bob ay, at the end of the game. Then this game is a coin-flipping
protocol if p; 1 = poo = 1/2. Moreover, letp;, be the probability that Alice outputsia maximized over
all possible (cheating) strategies for Bob. Defing symmetrically. We say that the protocol issiong
coin-flipping protocol with bias if both p1.,p.1 € [1/2 —¢,1/2 + €.

Theorem 1 (Kitaev). For any strong coin-flipping game, we hapgp. > %
Corollary 2. Any strong coin-flipping protocol has bias at leage — 11/2.

Kitaev’s theorem applies to both classical and quantum games. We’'ll speabifor classical games
first, and then move to the quantum setting. Both proofs have the same sruBtip’'s best cheating
strategy can be expressed as a LP (or SDP in the quantum case), andysfonilalice’s. Any feasible
solution to the duals of each LP will provide an upper bound on the probabilgyccess of the cheating
strategy. The crucial insight is that the cheating probabilities need to tsdevadtogether through the
quantitypi.p«1: @ good upper bound on this expresses the fact that, either Alice canBaob to output a
1, or, if she can't, then it must mean that Bob can force her into outputtingkdtaev obtains a bound on
this bias by taking the product of some of the dual LP (or SDP) constraints.

1 Thebound on classical protocols

Let’s fix a classical protocol. See it as a tree, where each node is thébyxa variable: representing the
transcript that led to this node: if we are in nagdeand Alice plays by sending a messagéhen we arrive in
node(u, a). The honest protocol is given by probabilities(a|u), ps(blu), which are Alice’s (resp. Bob’s)
transition probabilities. Given that Alice is honest, Bob’s maximum cheatingtnitity can be expressed
as a linear program L&, in which the variablep s (u) represent the probability of reaching nodewhen
Alice is honest and Bob cheats. Bob’s goal is to maximize the probability ohieg a leaf labeled with a
1; denote this sef;. Constraints express the fact that Bob can choose any distributiorngess adhen it is
his turn to play, but he has to follow Alice’s distribution when it is her turn.

(LPp, primal) max Z pp(u)

uely
pe(u)p(alu) = pp(u,a) Va, Yu node for Alice
pa(w) = pp(u,b) Vu node for Bob
b
pp(0) =1
pr(u) >0 Yu



To write the dual of this LP, introduce variabl&s'(u, a) for the first set of constraints, ar# (u) for the
second set. The dualtis

(LPg, dual) min ~ Z4(0)
Z4u) > Zp(a\u)ZA(u, a) Vu node for Alice
ZA(u) > Z4(u, b) Vb, Yu node for Bob
ZA(u) > 1 Yu € Ly

Z(u) can be interpretédas the maximum probability with which Bob can cheat, starting at nodé/e
can consider another linear program4,Rhis time for a cheating Alice, which is completely symmetrical.
The interpretation of the variablgs?, ZZ motivates the introduction of the quantity

Fy =Byt [27(w) 2" (u)] 1)

whereu ~ £ is shorthand for, being taken according to the probability distribution on states at level
which arises from the honest game. In this expressithu) 2 (u) should be interpreted as the bias that
cheating players can achieve, if any of them starts cheating atstate

Let Z4, ZB be optimal solutions to the duals of ERand LP, respectively. The last constraint of the
dual implies that without loss of generality we can assume that Bdtland ZZ will be exactly1 at all
leaves labeled with a (as if they were larger, a better solution to the LP could be obtained by sgaling
Hence ifn is the last level of the game, then, = p; 1 = 1/2. Moreover, strong duality implies that
Fy = p1.p«1- Finally, by multiplying out the constraints of the two duals one easily getsihat Fy. 1,
which proves Theorem 1 for the case of classical protocols.

2 Thebound on quantum protocols

For quantum protocols, the bound follows analogously, with a few minorksve& game is modeled by a
series of unitary operations; for Alice, B; for Bob. The players are assumed to start in the state. Atthe
end of the interaction, they measure using wg respectively and obtain their outcome. The coin-flipping
requirement is that

p11=||(ma ®1d py @75)BpAy - -- B1A1]0...0)||? = 1/2

andpy o, defined symmetrically usindd —= ), (Id —7) as the measurements, is als@. The following
SDP, analogous to the one Kitaev and Watrous used for QIP, capturasmaum cheating probability for
Bob:

(SDPg, primal) max (mp®Id, p,)
Trar(piy1) = TrM(AiPiA}-‘rl)Vi

po = 0){0]agn
pi >0 Vi

1The actual black-box dual is slightly different, but is easily seen to bvalgut to the one given here.
2This interpretation can be made rigorous by considefing ZZ) an optimal primal/dual solution and expressing the comple-
mentary slackness conditions.



Figure 1: Step in the coin-flipping protocol

Herep; represents the state of Alice’s and the message’s registers, righe Bdifce performs hei-th action
(see Figure 1). The dual of this SDP is

(SDPg, dual) min  (0/Z*(0)|0)
ZAG@) @ 1da > Al (Z20 + 1) @ 1d ) A Vi
ZA(n) =74
ZA(i) = (Z24(0)f Vi

Let |¥,) be the state of the whole system at thil round, assuming honest play. Then the analogue of (1)
is

Fy = (0| ZA(0) @ 1d @25 ()| W) 2

By strong duality, it is easily seen th&y = p1.p.1, while F,, = 1/2. The relationF, > F,; follows from
the dual constraints, and we are done.

Interpretation. Kitaev gives an interpretation of the matricg4 (i) as “objectives” for Bob; i.e. at step
Bob is trying to perform a unitary which will maximize the inner prodict (i) - Tras(p;). For the case of

an optimal primal/dual solutiofp, Z), the complementary slackness conditions imply that this quantity is
constant, equal to the maximum probability with which Bob can cheat.



