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Consider a game in which Alice and Bob interact in order to output a random bit. Let px,y be the
probability that Alice outputs ax, and Bob ay, at the end of the game. Then this game is a coin-flipping
protocol if p1,1 = p0,0 = 1/2. Moreover, letp1∗ be the probability that Alice outputs a1, maximized over
all possible (cheating) strategies for Bob. Definep∗1 symmetrically. We say that the protocol is astrong
coin-flipping protocol with biasε if both p1∗, p∗1 ∈ [1/2− ε, 1/2 + ε].

Theorem 1 (Kitaev). For any strong coin-flipping game, we havep1∗p∗1 ≥ 1

2
.

Corollary 2. Any strong coin-flipping protocol has bias at least1/2− 1
√
2.

Kitaev’s theorem applies to both classical and quantum games. We’ll see theproof for classical games
first, and then move to the quantum setting. Both proofs have the same structure: Bob’s best cheating
strategy can be expressed as a LP (or SDP in the quantum case), and similarly for Alice’s. Any feasible
solution to the duals of each LP will provide an upper bound on the probabilityof success of the cheating
strategy. The crucial insight is that the cheating probabilities need to be consideredtogether, through the
quantityp1∗p∗1: a good upper bound on this expresses the fact that, either Alice can force Bob to output a
1, or, if she can’t, then it must mean that Bob can force her into outputting a1. Kitaev obtains a bound on
this bias by taking the product of some of the dual LP (or SDP) constraints.

1 The bound on classical protocols

Let’s fix a classical protocol. See it as a tree, where each node is indexed by a variableu representing the
transcript that led to this node: if we are in nodeu, and Alice plays by sending a messagea, then we arrive in
node(u, a). The honest protocol is given by probabilitiespA(a|u), pB(b|u), which are Alice’s (resp. Bob’s)
transition probabilities. Given that Alice is honest, Bob’s maximum cheating probability can be expressed
as a linear program LPB, in which the variablespB(u) represent the probability of reaching nodeu, when
Alice is honest and Bob cheats. Bob’s goal is to maximize the probability of reaching a leaf labeled with a
1; denote this setL1. Constraints express the fact that Bob can choose any distribution on edges when it is
his turn to play, but he has to follow Alice’s distribution when it is her turn.

(LPB, primal) max
∑

u∈L1

pB(u)

pB(u)p(a|u) = pB(u, a) ∀a, ∀u node for Alice

pB(u) =
∑

b

pB(u, b) ∀u node for Bob

pB(0) = 1

pB(u) ≥ 0 ∀u
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To write the dual of this LP, introduce variablesZA(u, a) for the first set of constraints, andZA(u) for the
second set. The dual is1

(LPB, dual) min ZA(0)

ZA(u) ≥
∑

a

p(a|u)ZA(u, a) ∀u node for Alice

ZA(u) ≥ ZA(u, b) ∀b, ∀u node for Bob

ZA(u) ≥ 1 ∀u ∈ L1

ZA(u) can be interpreted2 as the maximum probability with which Bob can cheat, starting at nodeu. We
can consider another linear program LPA, this time for a cheating Alice, which is completely symmetrical.
The interpretation of the variablesZA, ZB motivates the introduction of the quantity

Fℓ = Eu∼ℓ

[

ZA(u)ZB(u)
]

(1)

whereu ∼ ℓ is shorthand foru being taken according to the probability distribution on states at levelℓ
which arises from the honest game. In this expression,ZA(u)ZB(u) should be interpreted as the bias that
cheating players can achieve, if any of them starts cheating at stateu.

Let ZA, ZB be optimal solutions to the duals of LPB and LPA respectively. The last constraint of the
dual implies that without loss of generality we can assume that bothZA andZB will be exactly1 at all
leaves labeled with a1 (as if they were larger, a better solution to the LP could be obtained by scaling).
Hence ifn is the last level of the game, thenFn = p1,1 = 1/2. Moreover, strong duality implies that
F0 = p1∗p∗1. Finally, by multiplying out the constraints of the two duals one easily gets thatFℓ ≥ Fℓ+1,
which proves Theorem 1 for the case of classical protocols.

2 The bound on quantum protocols

For quantum protocols, the bound follows analogously, with a few minor tweaks. A game is modeled by a
series of unitary operationsAi for Alice,Bi for Bob. The players are assumed to start in the all0 state. At the
end of the interaction, they measure usingπA, πB respectively and obtain their outcome. The coin-flipping
requirement is that

p1,1 = ‖(πA ⊗ IdM ⊗πB)BnAn · · ·B1A1|0 . . . 0〉‖2 = 1/2

andp0,0, defined symmetrically using(Id −πA), (Id −πB) as the measurements, is also1/2. The following
SDP, analogous to the one Kitaev and Watrous used for QIP, captures themaximum cheating probability for
Bob:

(SDPB, primal) max 〈πB ⊗ Id , ρn〉
TrM (ρi+1) = TrM (AiρiA

†
i+1

)∀i
ρ0 = |0〉〈0|A⊗M

ρi ≥ 0 ∀i

1The actual black-box dual is slightly different, but is easily seen to be equivalent to the one given here.
2This interpretation can be made rigorous by considering(pB , Z

B) an optimal primal/dual solution and expressing the comple-
mentary slackness conditions.
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Figure 1: Stepi in the coin-flipping protocol

Hereρi represents the state of Alice’s and the message’s registers, right before Alice performs heri-th action
(see Figure 1). The dual of this SDP is

(SDPB, dual) min 〈0|ZA(0)|0〉
ZA(i)⊗ IdM ≥ A†

i+1
(ZA(i+ 1)⊗ IdM )Ai+1 ∀i

ZA(n) = πA

ZA(i) = (ZA(i))† ∀i

Let |Ψℓ〉 be the state of the whole system at theℓ-th round, assuming honest play. Then the analogue of (1)
is

Fℓ = 〈Ψℓ|ZA(ℓ)⊗ IdM ⊗ZB(ℓ)|Ψℓ〉 (2)

By strong duality, it is easily seen thatF0 = p1∗p∗1, whileFn = 1/2. The relationFℓ ≥ Fℓ+1 follows from
the dual constraints, and we are done.

Interpretation. Kitaev gives an interpretation of the matricesZA(i) as “objectives” for Bob; i.e. at stepi
Bob is trying to perform a unitary which will maximize the inner productZA(i) · TrM (ρi). For the case of
an optimal primal/dual solution(ρ, Z), the complementary slackness conditions imply that this quantity is
constant, equal to the maximum probabilityp1· with which Bob can cheat.
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