
Reading group on Entanglement and Cryptography

Reading list

This is a brief survey of some papers on device independence and multiparty cryptography in the quan-
tum setting, some of which (many of which!) we may end up discussing depending on interest. I also
recommend a very recent extensive survey [BCP+13] that focuses on quantum nonlocality and its informa-
tion theoretic (rather than foundational) aspects. Section IV discusses device independence and applications
to randomness certification, key distribution and other cryptographic tasks. It is a great starting point and
Sections I, II and IV are also very much worthwhile reading.

0.1 Device independence

The idea of device independence dates back to Mayers and Yao [MY98] (read the introduction to their
paper, but not the technical arguments!). Some of the tasks that have been showed achievable in this setting
include:

• Randomness expansion. A good, leisurely introduction can be found in Chapter 5 of Colbeck’s the-
sis [Col06]. (A more detailed technical argument expanding on that Chapter appeared in [CK11].) The
first quantitative bounds (and experimental implementation!) were reported in [PAM+10]. See [PM11,
FGS11] for expansions on these ideas, and [VV12a] for a protocol with exponential expansion.

• Free randomness amplification. Colbeck and Renner showed that a particular kind of weak source
of randomness (a Santha-Vazirani source) could be ransformed into a near-perfect source of random-
ness [CR12]; this is well-known to be impossible classically. See also [GMdlT+12, MP13] for further
developments.

• One of the main applications of device independence so far is to quantum key distribution. The
first to obtain a proof of devic-independent QKD were Barrett, Hardy and Kent [BHK05]. However,
their proof relied on the assumption that the devices can be re-used independently — no memory,
no correlation between different uses. This assumption was recently removed in three independent
works [BCK12b, VV12b, RUV12].

• Some other two-party tasks have also been considered: e.g. bit commitment and coin flipping [SCA+11].
See also [Col06] for some interesting “relativistic” protocols.

• One should be careful not to claim that device independent protocols are secure under “no assump-
tions”. In particular, all such protocols are so far vulnerable to a series of generic attacks detailed
in [BCK12a], such as the fact that the devices may remember their past input and outputs and leak
them at a later time (say, if they are re-used as part of another protocol).
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0.2 Secure multiparty quantum computation

Various tasks in multiparty computation have been considered in the context of quantum information. Ex-
amples include quantum secret sharing [CGS02, BOCG+06], leader election [TKM05], Byzantine agree-
ment [BOH05]. For which of these tasks is a quantum protocol truly interesting? I don’t know.

0.3 Delegated quantum computation

Can a classical polynomial-time machine verify that an untrusted quantum polynomial-time machine se-
curely executes a circuit of its choosing on a given input? In general this question is open. It has been shown
achievable under two different types of assumptions:

• The classical verifier has some limited quantum ability, such as the possibility to store a constant
number of qubits [ABOE10] or even simply the ability to prepare single qubits, in a limited set of
states, and send them to the quantum prover [BFK09].

• The classical verifier has access to two isolated quantum provers [RUV12].

See also [DFPR13] for a proof of “universally composable security” of some of these protocols, which may
constitute a good independent introduction to delegated computing. A related (presumably simpler) task is
that of establishing quantum authentication codes; see Sections 4.1 and 4.2 in [BGS12] for more on this.

There seems to be a nice connection between classical protocols for delegated computation and the
theory of no-signalling multi-prover interactive proof systems. The idea for this originates in [ABOR00],
but more details are in an upcoming STOC paper by Kalai, Raz and Rothblum...unfortunately not pub-
licly available yet; see http://www.bu.edu/hic/2nd-charles-river-crypto-day/ for an
abstract. This could be a direction worth exploring.

0.4 Rigidity and robust testing

The following papers give one reason why device independence is possible: the almost maximal violation of
certain Bell inequalities (mostly, the CHSH inequality) can be used to characterize (up to a small distance)
the state and measurements underlying the devices. Once such “robust testing” has been achieved the devices
can be used for a variety of cryptographic tasks. See [RUV12] for recent breakthrough work in that direction
(including a discussion of previous works), and [MS12] for some follow-up work.

0.5 De Finetti-type results

Very roughly, de Finetti results can be used to show that distributions on many (n) variables that are
permutation-invariant have their marginals on few (k) systems that are close (depending on the setup, from
poly(k/n) to exp(−k/n)) to convex combinations of product distributions. These results can potentially
be useful to establish e.g. parallel repetition results. Recent de Finetti theorems such as the one by Brandao
and Harrow [BH12] may be useful in a “device-independent” scenario, and it would be interesting to have a
look.
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