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Abstract

We give the first device-independent proof of security of a protocol for quantum key distribution that
guarantees the extraction of a linear amount of key even when the devices are subject to a constant rate of
noise. Our only assumptions are that the laboratories in which each party holds his or her own device are
spatially isolated, and that both devices as well as the eavesdropper, are bound by the laws of quantum
mechanics.

1 Introduction

Quantum key distribution [BB84, Eke91] together with its proof of security [May01, SP00] appeared to
have achieved the holy grail of cryptography — unconditional security, or a scheme whose security was
based solely on the laws of physics. However, practical implementations of QKD protocols necessarily
involve imperfect devices [BBB+92, MHH+97], and it was soon realized that these imperfections could be
exploited by a malicious eavesdropper to break the “unconditional” security of QKD (see e.g. [SK09] for a
review).

Mayers and Yao [MY98] put forth a vision for restoring unconditional security in the presence of im-
perfect or even maliciously designed devices, by subjecting them to tests that they fail unless they behave
consistently with “honest” devices. The fundamental challenge they put forth was of device-independent
quantum key distribution (DIQKD): establishing the security of a QKD protocol based only on the validity
of quantum mechanics, the physical isolation of the devices and the passing of certain statistical tests. The
germ of the idea for device-independence may already be seen in Ekert’s entanglement-based protocol for
QKD [Eke91]. Barrett, Hardy, and Kent [BHK05] used intuition from the recently discovered monogamy of
non-signalling correlations [BLM+05] to show that the near-maximal violation of a specific Bell inequality,
based on the chained inequalities of Braunstein and Caves [BC90], by an arbitrary pair of spatially iso-
lated devices could be used to guarantee the generation of a random bit secure against any non-signalling
eavesdropper.1

A long line of research on DIQKD seeks to make the qualitative argument from [BHK05] quantitative,
devising protocols that extract an amount of key that is linear in the number of uses of the devices, and is
secure against increasingly general eavesropping strategies. Initial works [AGM06, AMP06, SGB+06] give
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1Barrett et al. give a protocol in which the users have access to n pairs of devices, such that the no-signalling condition holds
in-between each pair. This assumption is used in order to estimate the amount of Bell inequality violation that characterizes any
single use of the devices.
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efficient and noise-tolerant protocols that are secure against individual attacks by non-signalling eavesdrop-
pers. Subsequent work [MRC+09, Mas09] and [HRW10] also proved security against collective attacks.
Other works [ABG+07, PAB+09, MRC+09, HR10, MPA11] obtains better key rates under the stronger
assumption that the eavesdropper is bound by the laws of quantum mechanics. All these results, how-
ever, could only be established under restrictive independence assumptions on the devices, e.g. in recent
work [HR10, MPA11] a proof of security based on collected statistics requires that the n uses of each device
are causally independent: measurements performed at successive steps of the protocol commute with each
other.

Very recently two papers [BCK12b, RUV12] announced proofs of security of DIQKD without requiring
any independence assumption between the different uses of the devices Unfortunately, although the ap-
proaches in [BCK12b, RUV12] are very different both implied protocols are inefficient and cannot tolerate
noisy devices. The protocol used in [BCK12b] is very similar to the one originally introduced in [BHK05],
and requires a large number of uses of a pair of noise-free devices in order to generate a single bit of key.
In the case of [RUV12] the noise intolerance comes as a consequence of the very strong testing that is per-
formed: building on work on making the self-checking idea of Mayers and Yao robust [MMMO06, MYS12],
the authors show that the shared quantum state and operators of the two untrusted devices can be completely
characterized by performing certain statistical tests (CHSH tests). It is unclear whether such strong testing
can be achieved in a manner that is robust to noise.

A major stumbling block of DIQKD is the difficulty of dealing with the noise inherent in even the best
devices, without making any independence assumptions. Indeed, a good DIQKD protocol should differ-
entiate devices that are honest but noisy from devices that may attempt to take advantage of a protocol’s
necessary tolerance to noise in order to leak information to an eavesdropper by introducing correlations in
their errors [BCK12a]. The protocols in [BCK12b, RUV12] do not achieve this, since they cannot tolerate
any constant noise rate.

On a quite different though related front, a recent line of work investigates the possibility of generating
certifiable randomness. Although the goal is different, abstractly these works may be viewed as device-
independent results in which the devices are used in multiple rounds, without imposing independence as-
sumptions on successive rounds. Building on an observation made in [Col06], Pironio et al. [PAM+10] de-
vised a protocol in which the generation of randomness could be certified solely by testing for a sufficiently
large Bell inequality violation. In [FGS11, PM11] it was further shown that the randomness generated
was secure against an arbitrary classical adversary. Concurrently, [VV12] gave a protocol that was secure
even against a quantum adversary. It is tempting to use this protocol as a basis for DIQKD by drawing an
analogy between the quantum adversary in the randomness protocol and the eavesdropper in QKD. This is
not straightforward though, to begin with because in randomness generation the users’ inputs may be kept
private whereas in DIQKD they are revealed to the adversary in the classical post-processing phase; this
opens the way for a much broader set of eavesdropping strategies. Moreover, the strong security guarantees
in [VV12] seem to crucially depend upon the zero error-tolerance of the protocol, which provides a way to
enforce extremely strong correlations between the devices’ outputs.

To summarize, existing lines of work demonstrate the device-independent security of protocols assuming
either that each successive use of the devices is independent, or that they are noiseless. This raises the
question: is device-independent QKD even possible without independence assumptions in a realistic, noise-
tolerant scenario?
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1.1 Results

We answer this question in the affirmative by giving the first complete device-independent proof of security
of quantum key distribution that tolerates a constant noise rate and guarantees the generation of a linear
amount of key. Our only assumption on the devices is that they can be modeled by the laws of quantum
mechanics, and that they are spatially isolated from each other and from any adversary’s laboratory. In
particular, we emphasize that the devices may have quantum memory. While our proof builds upon ideas
from the work on certifiable randomness generation mentioned above, our protocol is closely related to
Ekert’s entanglement-based protocol [Eke91].

In the protocol,2 the users Alice and Bob make n successive uses of their respective devices. At each
step, Alice (resp. Bob) privately chooses a random input xi ∈ {0, 1, 2} (resp. yi ∈ {0, 1}) for her device,
collecting an output bit ai (resp. bi). If the devices were honestly implemented they would share Bell states
|ψ〉 = 1/

√
2|00〉 + 1/

√
2|11〉, and measure their qubits according to the following strategy: if xi = 0

measure in the computational basis, if xi = 1 measure in the Hadamard basis and if xi = 2 measure in the
3π/8-rotated basis. If yi = 0 measure in the π/8-rotated basis and if yi = 1 measure in the 3π/8-rotated
basis.

To test the devices, after the n steps have been completed, the users select a random subset B ⊆
{1, . . . , n} of size |B| = γn, where γ > 0 is a small constant, and publicly announce their inputs and out-
puts in B. Let zi = 1 if and only if ai 6= 2 and ai ⊕ bi 6= xi ∧ yi, or (ai, bi) = (2, 1) and ai 6= bi. The users
jointly compute the noise rate η := (1/|B|)∑i∈B zi − (1− opt), where opt = (2 cos2 π/8 + 1)/3.3.
If η ≥ 0.5% they abort. If not, they announce their remaining input choices. Let C ⊆ {1, . . . , n} be the
steps in which (ai, bi) = (2, 1). The users conclude by performing standard information reconciliation and
privacy amplification steps on their outputs in C, extracting a key of length κn for some κ = κ(η, ε), where
ε is the desired security parameter.

Theorem 1 (Informal). Let n be a large enough integer and ε = 2−c0n, where c0 > 0 is a small constant.
Suppose given a pair of spatially isolated quantum devices A and B such that the probability that the
protocol aborts is at most ε. Then conditioned on not aborting, at the end of the protocol Alice and Bob
can extract a shared key K of length κn, where κ ≈ 1.4%, such that ‖ρKE − Ĩdκn ⊗ ρE‖1 ≤ ε, where E
designates the environment and Ĩdκn the totally mixed state on κn qubits.

This informal statement hides a tradeoff between the parameters ε, η, and κ: the larger the security
parameter ε and the smaller the noise rate η, the higher the key rate κ. Provided ε is chosen large enough,
as η → 0 our proof guarantees a secure key rate κ ≈ 2.5%, which with our setting of parameters corre-
sponds to about 15% of the raw key. The maximum noise rate for which we may extract a positive key
length is ηmax ≈ 1.2%. This is worse than the optimal key rates obtained under the causal independence
assumption [MPA11], but still quite reasonable.

1.2 Proof overview and techniques

We now give a slightly more technical introduction to our results. As shown by Renner [Ren05], in order
to generate an ε-secure key over κn bits, for some κ > 0, it is enough to show that the smooth min-entropy

2See Figures 1 and 2 for a more detailed description.
3Note that this corresponds to estimating the average amount by which the devices’ outputs in B differ from a maximal violation

of a Bell inequality based on the CHSH inequality [CHSH69, BC90]. One can easily verify that opt corresponds to the largest
possible violation of that inequality allowed by quantum mechanics
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Hε
∞(B|E) ≈ κn, where B is the string of bits produced by Bob’s device and E the side information held by

the adversary Eve. For the purposes of this overview we focus on establishing the latter criterion.
The non-smooth variant of the quantum conditional min-entropy is best understood through its rela-

tionship with the guessing probability as H∞(B|E) = − log Pguess(B|E) [KRS09].4 The key idea in es-
tablishing security in a device-independent scenario is to exploit the tension between high guessing proba-
bility (Eve can predict Bob’s outputs) and the violation of a Bell inequality (as estimated in the protocol).
This connection was first made quantitatively precise in [ABG+07], who established a formula relating
the incompatibility between determinism and nonlocality in the case of a single use of the devices (see
also [PAM+10] for a similar formula in the no-signalling case, and [NPA08] for a generalization).

In [HR10, MPA11] it is shown how this approach can be extended to repeated uses of the devices under
an assumption of causal independence. This assumption is used to derive a product rule for the guessing
probability:

Pguess(B1 . . . Bn|E) / ∏
i

Pguess(Bi|E). (1)

A sufficiently large guessing probability then implies the existence of an i0 such that Pguess(Bi0 |E) ≥ 1−
ln(2)κ, and one can conclude using the techniques in [PAM+10]. It is not hard to see, however, that (1)
completely fails without the assumption of independence; this failure is the main difficulty in establishing
security in the most general scenario. In order to get around this our proof combines three main ingredients.

1. We first observe that the use of the guessing probability is too strong a criterion for obtaining privacy,
and instead focus on establishing a lower bound on its robust analogue, the ε-smooth min-entropy. The
use of this criterion, instead of the more usual guessing probability, already constitutes a major departure
between our work and previous analyses of DIQKD. We prove the following operational interpretation:
if Hε

∞(B|E) ≤ κn, then there exists roughly κn bits of classical side information V about B such that
Pguess(B|VE) ≥ poly(ε/n). Note the two key differences with the condition Pguess(B|E) ≥ 2−κn that
follows from the weaker assumption H∞(B|E) ≤ κn: additional side information, given by V, is required,
but provided ε is not too small the guessing probability is now much larger.

This characterization of the smooth min-entropy was already sketched in [VV12]. It is based on a so-
called “quantum reconstruction paradigm”, which takes its source in the theory of extractors. Originally
developed by Trevisan [Tre01] in the design and analysis of a family of classical extractors with very short
seed, it was extended to the setting of quantum side information in order to extend the security of Trevisan’s
extractor to the case of quantum adversaries in [DV10, DPVR12]. Interestingly, the bits of V can be chosen
as a subset of the bits of an encoding of the string B using a list-decodable code. In [VV12] the use of a
local list-decodable code was crucial; here any good code will do.

2. Recall that our goal is to obtain a contradiction between this characterization of the hypothetical adver-
sary and the non-signalling condition that follows from the spatial isolation of the devices. As we discussed
in the introduction, the key difficulty that needs to be addressed is the possibility for a combination of
correlations and noise in the devices’ successive output bits. In [VV12] the absence of noise was used to
guarantee that the “advice bits” V could be obtained from the output of either device, and so Alice’s device
could provide the advice bits to Eve allowing them (by using the fact that the devices’ outputs pass the
CHSH tests) to jointly guess Bob’s output and thus violate no signalling. Here we cannot make this assump-
tion, and instead work directly with the following strategy for the adversary: Eve first guesses a string V̂
uniformly at random, hoping that V̂ = V; she then measures E according to the measurement that optimizes

4We refer to Section 2 for complete definitions.
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Pguess(B|V̂E). Let Ê be the random variable describing her outcome. Since Eve does not require any input
she can perform her measurement even before the string B is obtained from the device, and we may apply
Baye’s rule to obtain

∏
i

Pr(Bi = Êi|Bi−1 = Êi−1, . . . , B1 = Ê1) = Pguess(B|V̂E)

≥ Pguess(B|VE)Pr(V̂ = V) ≥ poly(ε/n)2−κn. (2)

From (2) we may deduce, as we previously did from (1), the existence of an index i0 such that Pr(Bi0 =
Êi0 |Bi0−1 = Êi0−1, . . . , B1 = Ê1) ≥ 1− ln(2)κ − on(1), provided ε is chosen large enough.

Here we encounter a new difficulty: compared to (1), the conditioning on Bi0−1 = Êi0−1, . . . , B1 = Ê1
performed in (2) could, in general, drastically influence the joint distribution PAi0 Bi0 Xi0 Yi0

of the devices’
inputs and outputs in round i0. For instance, Ê could have the property of matching the string B in the first
few bits if and only if inputs to the i0-th round (which are publicly revealed in the protocol) are, say, (0, 0).
If this is the case there is no hope to exploit the no-signalling condition: devices whose inputs are fixed can
reproduce any joint distribution.5

3. The third and last step of the proof consists in using the specific structure of Eve’s measurement in order
to bound the disturbance introduced by the conditioning. Recall that Eve first guesses the string V̂ uniformly
at random, and then measures her system E. Crucially however, the event V̂ = V, though it has very small
probability 2−κn, is independent from any of the other events we consider. Hence the conditioning in (2)
only affects the distribution PAi0 Bi0 Xi0 Yi0

to the extent that conditioning on success of the second step in Eve’s
measurement does.

The fact that this second step has a relatively high success probability poly(ε/n) enables us to com-
plete the proof. To show that conditioning on a (somewhat) high-probability event cannot influence the
distribution PAi BiXiYi in many rounds i we use the chain rule for mutual information and Pinsker’s inequal-
ity. Together these two ingredients guarantee that PAi BiXiYi remains close to no-signalling for a large fraction
of rounds i.6 We may then use techniques from [PAM+10] to derive a contradiction between no-signalling
and the violation of a Bell inequality (in our setting, the CHSH inequality): it must be that Hε

∞(B|E) > κn,
and hence an ε-secure key of length≈ κn can be extracted from B (after the usual information reconciliation
step).

1.3 Perspective

We have not attempted to optimize the relationship between the parameters κ, η and ε describing the key
rate, the noise rate and the security parameter respectively, and it is likely that the explicit dependency
stated in Theorem 8 can be improved by tightening our arguments. It is an interesting question to find out
whether our approach can lead to a trade-off as good as the one that has been shown to be achievable under
additional assumptions on the devices [MPA11]. One possibility for improvement would be to bias the
users’ input distribution towards the pair of inputs (2, 1) from which the raw key is extracted, as was done
in e.g. [AMP06]: indeed, only a very small fraction of the rounds are eventually required to estimate the
violation of the CHSH condition.

5Note that this difficulty does not arise in the context of randomness certification, as in that context one may assume, as was
done in [VV12], that the inputs to the devices are not revealed to the adversary.

6Interestingly, a similar argument was used in the proof of a parallel repetition theorem for no-signalling strategies [Hol09,
Lemma 9.6].
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Our proof crucially makes use of quantum mechanics to model the devices and the adversary. Can one
obtain a fully device-independent proof of security of QKD against adversaries that are only restricted by
the no-signalling principle? Barrett et al. [BCK12b] recently showed that such security is achievable in
principle; however their protocol is highly inefficient and does not tolerate noisy devices.

It would be interesting to compare our characterization of the smooth min-entropy, proven with the help
of the quantum reconstruction paradigm, with other operational interpretations of this quantity [KRS09].
One could also contrast it with the recently proven chain rules for min-and max entropy [VDTR12].

Putting our results in a broader context, a major ongoing challenge remains to bridge the gap between
theoretical security proofs of quantum key distribution and practical implementations. The model of device-
independence only addresses one — admittedly major — aspect of this gap, and it will be interesting to
investigate whether other discrepancies, such as e.g. the possibility for side-channel attacks, or weaknesses
stemming from the possible mishandling of their devices by the users (such as re-using devices that should
have been securely discarded [BCK12a]), can also be incorporated in security proofs.

Organization of the paper. We start with some preliminaries in Section 2, introducing our notation, the
information-theoretic quantities that will be used. We also summarize the main parameters of our protocol,
which is described in Figures 1 and 2. In Section 3 we formally state our result and outline the security proof.
The two main ingredients are the analysis of Protocol B, which is given in Section 4, and the “quantum
reconstruction paradigm” introduced in Section 5. Finally, Section 6 contains probabilistic and information-
theoretic lemmas used in some of the proofs.

Acknowledgments. We thank Anthony Leverrier for many useful comments on a preliminary version of
this manuscript.

2 Preliminaries

We assume familiarity with basic concepts and standard notation in quantum information, and refer to the
books [NC00, Wil11] for detailed introductions.

Notation. We use roman capitals A, B, . . . , X both to refer to random variables and the registers, classical
or quantum, that contain them. Calligraphic letters A,B, . . . ,X are used to refer to the underlying Hilbert
space. D (X ) denotes the set of density operators (non-negative matrices with trace 1) onX . For an arbitrary
matrix A on X we let ‖A‖1 = Tr

√
AA† denote its Schatten 1-norm. ln denotes the natural logarithm and

log the logarithm in base 2. For x ∈ [0, 1], H(x) = −x log x− (1− x) log(1− x) is the binary entropy
function. We abuse notation and also write H(ρ) = −Tr(ρ ln(ρ)), when ρ ∈ D (X ) is a density matrix,
for the von Neumann entropy.

Information theoretic quantities. We summarize key properties of some standard quantities in quantum
information theory that will be used throughout. Given a density matrix ρ ∈ D (A), its von Neuman entropy
is H(ρ) := −Tr(ρ ln ρ). Given a classical-quantum state ρXA = ∑x px|x〉〈x| ⊗ ρx ∈ D (XA), where for
every x ρx ∈ D (A), we define the conditional entropy as H(A|X)ρ := ∑x px H(ρx). Given a state ρABX,
where X is classical, the conditional mutual information is defined as

I(A : B|X)ρ := H(A|X)ρ + H(B|X)ρ − H(AB|X)ρ.
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We will make use of the following quantum analogue of the classical Pinsker’s inequality (see e.g. Theo-
rem 11.9.1 in [Wil11] for a proof): for any ρAB ∈ D (AB),∥∥ρAB − ρA ⊗ ρB

∥∥2
1 ≤ (2 ln 2) I(A : B)ρ. (3)

The most important information measure in our context is the quantum conditional min-entropy, first intro-
duced in [Ren05], and defined as follows.

Definition 2. Let ρAB be a bipartite density matrix. The min-entropy of A conditioned on B is defined as

Hmin(A|B)ρ := max{λ ∈ R : ∃σB ∈ D (B) s.t. 2−λ IdA⊗σB ≥ ρAB}.

We will often drop the subscript ρ when there is no doubt about what underlying state is meant. The
smooth min-entropy is defined as follows.

Definition 3. Let ε ≥ 0 and ρAB a bipartite density matrix. The ε-smooth min-entropy of A conditioned on
B is defined as

Hε
min(A|B)ρ := max

ρ̃AB∈B(ρAB,ε)
Hmin(A|B)ρ̃,

where B(ρAB, ε) is a ball of sub-normalized states of radius ε around ρAB.7

The CHSH condition. Our results are based on the violation of a specific Bell inequality. The inequality
we use is a simple extension of the CHSH inequality, similar to the so-called “chained inequality” for two
inputs [BC90].

Let A and B designate two spatially isolated devices. There are three possible choices of inputs x ∈
{0, 1, 2} to A, and two possible inputs y ∈ {0, 1} to B. Each of the 6 possible pairs of inputs is chosen
with uniform probability 1/6. The devices produce outputs a, b ∈ {0, 1} respectively. In case both inputs
were in {0, 1}, the constraint on the outputs is the CHSH parity constraint a⊕ b = x ∧ y [CHSH69]. If the
inputs are (2, 1) the constraint is that the outputs (a, b) should satisfy a⊕ b = 0. Finally, for the remaining
pair of inputs (2, 0) all pairs of outputs are valid. We will refer to this set of constraints collectively as “the
CHSH condition”.

Let opt be the maximum probability with which any two isolated devices, obeying the laws of quan-
tum mechanics, may produce outputs satisfying the CHSH condition. It is not hard to show that opt =
(2/3) cos2 π/8 + (1/3), which is achieved using the following strategy. The devices are initialized in a
single EPR pair, each device holding one qubit. On input 0, A is measured in the computational basis, and
on input 1 it is measured in the Hadamard basis. On input 0, B is measured in the computational basis
rotated by π/8. If A gets input 2, or if B gets input 1, they are measured in the computational basis rotated
by 3π/8.

Parameters. For convenience, we summarize here the main parameters of the key distribution protocol
described in Figures 1 and 2.

• m is the total number of rounds in the protocol (in each round, an input to each ofA,B is chosen, and
an output is collected).

7Theoretically any distance measure could be used to define an ε-ball. As has become customary, we use the purified distance,
P(ρ, σ) :=

√
1− F(ρ, σ)2, where F(·, ·) is the fidelity.
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Protocol A

1. Let m and ε, Cη > 0 be parameters given as input. Let Cγ be the constant specified in Theorem 8, and
set γ = (Cγ/C2

η) ln(1/ε)/m.

2. Alice and Bob run Protocol B for m steps, choosing inputs x ∈ {0, 1, 2}m (resp. y ∈ {0, 1}m) and
obtaining outcomes a ∈ {0, 1}m (resp. b ∈ {0, 1}m). Let η be the observed error rate.

3. Alice and Bob publicly reveal their choices of inputs. Let C be the set of rounds i in which (xi, yi) =
(2, 1). If ||C| −m/6| > 10

√
ln(1/ε) they abort the protocol.

4. Alice and Bob perform information reconciliation on their outputs in C, with Bob sending a message
of ` ≤ H(2η)|C|+ log(2/ε) bits to Alice.

5. Let κ = κ(η) be as specified in Theorem 8. Alice and Bob perform privacy amplification using e.g.
two-universal hashing, extracting a shared key of length (κ − H(2η) −O(log(1/ε)/m))|C| from
the common |C|-bit string they obtained at the end of the previous step.

Figure 1: The device-independent key distribution protocol, Protocol A

• B are the rounds selected to perform parameter estimation. They are chosen uniformly at random
under the constraint that |B| = γm, for some γ > 0 specified in the protocol. .

• η is the error rate, as measured in the rounds in B: η is such that the fraction of rounds in B satisfying
the CHSH condition is at least opt− η.

• C ⊆ [m] are the check rounds. Those are rounds in which the inputs to (A,B) are (2, 1). Since the
inputs are chosen uniformly at random, the number of check rounds |C| is highly concentrated around
m/6.

• The target min-entropy rate κ. This is the rate of min-entropy that the users Alice and Bob expect to
be present in the check rounds, provided the protocol did not abort. Once information reconciliation
and privacy amplification have been performed, a secret key of length roughly (κ − H(2η))|C| will
be produced.

• ε is the security parameter: the statistical distance from uniform of the extracted key (conditioned on
the eavesdropper’s side information). Precisely, if K denotes the system containing the extracted key
of length `K, we will obtain that ‖ρKE ′ − ρU`K

⊗ ρE ′‖1 ≤ ε, where E ′ is a register containing all the
side information available to an arbitrary quantum eavesdropper in the protocol, and ρU`K

is the totally
mixed state on `K qubits.

3 Analysis of the key distribution protocol

The analysis of Protocol A, and the proof of Theorem 1, is performed in two steps. The first, main step
consists in proving a lower bound on the quantum smooth conditional min-entropy Hε

min(BC|XYABBBE)
of the outputs obtained by Bob in the check rounds C. This lower bound will depend on the “error rate” η that
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Protocol B

1. Let m, γ and Cη be parameters given as input.

2. Repeat, for i = 1, . . . , m:

2.1 Alice picks xi ∈ {0, 1, 2}, and Bob picks yi ∈ {0, 1}, uniformly at random. They input xi, yi
into their respective device, obtaining outputs ai, bi ∈ {0, 1} respectively.

3. Alice chooses a random subset B ⊆ [m] of size γm and shares it publicly with Bob. Alice and
Bob announce their input/output pairs in B, and compute the fraction of pairs satisfying the CHSH
condition. Let (opt− η′) be this fraction. Set η := max(η′, Cη).

Figure 2: Theorem 8 shows that, at the end of protocol B, the bits BC generated by Bob’s device in the
check rounds C both have high smooth min-entropy, conditioned on the adversary’s arbitrary quantum side
information.

is estimated by the users in the sub-protocol B (see Figures 1 and 2 for a description of protocols A and B
respectively). Here the lower bound is taken conditioned on the state of an arbitrary quantum adversary
(whom we will call Eve and refer to indiscriminately as “the adversary” or “the eavesdropper”) in the
protocol, who has access to the information X, Y, AB, BB revealed publicly in the course of the protocol,
as well as to a quantum system E which may initially have been correlated with the systems A, B of the
devices. Such an estimate is stated in Theorem 8 in Section 3.3 below.

The second step consists in showing that there exists appropriate protocols for the information reconcil-
iation and privacy amplification steps, Steps 4 and 5 in Protocol A respectively, such that the lower bound
on the conditional min-entropy from the first step guarantees the security (distance from uniform from the
point of view of the adversary) and correctness (Alice and Bob should obtain the same key) of the key that
is extracted. This step is standard, and all the ingredients required already appear in the literature. We
summarize the result as Lemma 4 in Section 3.2 below.

Theorem 1 follows immediately by combining Theorem 8 and Lemma 4.

3.1 Probability space

Before stating and proving our technical results, it will be useful to formally define all the random variables
and events that will be necessary for their analysis.

Modeling the devices. Fix a pair of spatially isolated devices (A,B). Alice holds system A, and Bob
system B. In addition, the adversary Eve holds a system E , arbitrarily correlated with but spatially isolated
from A and B. Let ρA1B1E be the density matrix describing the joint state of the system at the start of the
protocol.

We define the following random variables and events. X ∈ {0, 1, 2}m and Y ∈ {0, 1}m are two uni-
formly distributed random variables, used to represent the inputs to A,B respectively. A, B ∈ {0, 1}m are
random variables denoting the outputs produced by the devices, when sequentially provided their respective
inputs X, Y. We will always use C ⊆ [m] to denote the set of “check” rounds, in which (Xi, Yi) = (2, 1),
and B ⊆ [m] the set of “Bell” rounds chosen by Alice and Bob to perform parameter estimation.
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Let ρAiBi denote the reduced state of devicesA and B in the i-th round of the protocol (before they have
been provided their input). Formally,

ρAiBi ∝
(

∏
j<i

M
Aj
Xj
⊗ N

Bj
Yj

)
ρA1B1

(
∏
j<i

(
M

Aj
Xj

)† ⊗
(

N
Bj
Yj

)†
)

,

where {M
Aj
Xj
} and {N

Bj
Yj
} are the Krau operators corresponding to the measurement on device A and B in

round j respectively, and ρAiBi is normalized. Here ρA1B1 = TrE (ρA0B0E ) is the reduced state of the devices
at the start of the protocol. It is important to note that for any i the state ρAiBi may depend on a measurement
that is performed on system E , as soon as a particular outcome of that measurement is fixed (or conditioned
on).

Measuring the violation of the CHSH condition. Given a set S ⊆ [m] and δ > 0, CHSHAB(S, δ) is
the event that the tuple (X, Y, A, B) satisfies the CHSH condition (as described in Section 2) in a fraction
at least opt− δ of the rounds indicated by S. If S is omitted, CHSHAB(δ) = CHSHAB([m], δ). Letting
Z ∈ {0, 1}m be the indicator random variable of the CHSH condition not being satisfied in any given round,
we can write

CHSHAB(S, δ) ≡
{ 1
|S| ∑i∈S

Zi ≤ (1− opt) + δ
}

.

We also define VIOLAB(i), where i ∈ [m], to express the expected amount by which the CHSH condition
in round i is satisfied:

VIOLAB(i) = E[ Zi ]− (1− opt),

where here the expectation is taken over the choice of inputs (Xi, Yi) in round i, and over the randomness
in the devices’ own measurements in round i. Note that VIOLAB(i) implicitly depends on the specific
state of the devices in round i, which may be affected by previous input/outputs (X<i, Y<i, A<i, B<i) ob-
tained in the protocol as well as on other events that may be conditioned on. Hence an expression such
as Pr(VIOLAB(i) < δ|E), for some event E, indicates the average probability, over all possible e ∈ E,
that the devices satisfy the CHSH condition in round i with probability at least opt− δ, provided their
inputs are distributed according to the conditional distribution (Xi, Yi)|E = e, and when performed on the
post-measurement state of AB in round i conditioned on E = e.

For any δ > 0 we let VIOLAB(δ) be the event that (1/m)∑i VIOLAB(i) ≤ δ.

The adversary. We include a description of random variables that depend on the adversary, holding the
quantum system E . The adversary is described in Lemma 9 below; to understand the events below it may
be useful to read that lemma’s statement first.

Let E ∈ {0, 1}|C| be the random variable that describes the outcome of the measurement on E described
in Lemma 9. Note that this outcome depends on the “advice” that is given to the adversary. We use X̂, Ŷ to
denote the inputs that are given to the adversary, and ˆADV ∈ {0, 1}αm to denote the additional advice bits.
Note that these random variables need not equal the actual values X, Y, ADV: in general, the adversary’s
measurement is well-defined for any given advice bits, and E is used to denote its outcome irrespective of
whether the advice given was “correct” or not. For any i ∈ [m], define GUESSBE (i) ∈ {0, 1} to be 1 if
and only if, either i ∈ C and Ei = Bi, or i /∈ C, and let GUESSBE = ∧iGUESSBE (i).
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3.2 Information reconciliation and privacy amplification

For convenience, we let E ′ := XYABBBE denote the side information available to the eavesdropper. We
show the following lemma, whose proof follows from standard arguments in the analysis of QKD protocols
(see e.g. [Ren05]). We provide the relevant details below.

Lemma 4. Let γ, ε > 0. Let ε′ = 2e−γ|C|/400. Suppose that, after Step 2 of Protocol A, the condition
Hε

min(BC|E ′) ≥ κ|C| is satisfied. Then with probability at least 1− ε′, at the end of the protocol Alice and
Bob have a common shared key that is 2ε-close to uniform and has length Hε

min(BC|E ′)− H(1.1η)|C| −
4 log(1/ε).

Information reconciliation. We first analyze the information reconciliation step. The following lemma
states the conditions that are required for there to exist a satisfactory information reconciliation procedure.

Lemma 5 (Lemma 6.3.4 in [Ren05]). Let A, B ∈ {0, 1}k be two random variables, and ε > 0. Suppose
Alice holds A, and Bob holds B. There is an information reconciliation protocol in which Bob communicates
` ≤ Hε

max(B|A) + log(2/ε) bits of information about B to Alice and is such that with probability at least
1− ε Alice and Bob both know B at the end of the protocol.

To apply Lemma 5 it suffices to prove an upper bound on the conditional max-entropy Hε
max(BC|AC).

By definition of the rounds C, the CHSH condition in those rounds imposes that Ai = Bi for all i ∈ C.
Hence, were it not for errors, we would have Hε

max(B|A) = 0. The following claim shows that the bound
on the error rate that results from the estimation performed in the rounds B in Step 3 of Protocol B is enough
to guarantee a good upper bound on the conditional max-entropy.

Claim 6. Suppose Alice and Bob do not abort after Step 3 in Protocol B. Let C be the set of check rounds,
as designated in Step 4 of Protocol A. Then Hε′

max(BC|CC) ≤ H(1.1η)|C|, where ε′ = 2e−γ|C|/400.

Proof. Fix the set C. The set B chosen by Alice and Bob to perform parameter estimation contains a fraction
at least γ/2 of the rounds in C, except with probability at most e−γ|C|/8. The protocol is aborted as soon as
more than an η fraction of those rounds are such that ai 6= bi. Hence with probability at least 1− e−γ|C|/200

the total fraction of errors in C is at most 1.1η. In particular, with probability at least 1− e−γ|C|/400 over
AC, with probability at least 1− e−γ|C|/400, BC will take on at most 2H(1.1η)|C| values.

Privacy amplification. The following lemma states the existence of a good protocol for privacy amplifi-
cation.

Lemma 7 (Lemma 6.4.1 in [Ren05]). Suppose the information reconciliation protocol requires at most `
bits of communication. Then for any ε > 0 there is a privacy amplification protocol based on two-universal
hashing which extracts Hε

min(BC|E ′)− `− 2 log(1/ε) bits of key.

Lemma 4 now follows directly by combining Claim 6 with Lemma 7 and the assumption on the condi-
tional min-entropy placed in the lemma.

3.3 A lower bound on the conditional min-entropy

The main result of this section is a lower bound on Hε
min(BC|XYABBBE), the quantum smooth conditional

min-entropy of the raw key, given by the bits of B’s output string B that falls in the check blocks C.
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Theorem 8. Let Cη > 0 be given. There exists positive constants Cε, Cγ (possibly depending on Cη) such
that the following hold. Let m be an integer and ε ≥ 2−Cεm be given. Let γ = (Cγ/C2

η) ln(1/ε)/m and η
be as specified in Protocol A (Figure 1) and Protocol B (Figure 2) respectively. Let κ be any constant such
that κ < (

√
2− 1)/(4 ln(2))− (4/ ln(2))η.

Suppose that the devices A, B are such that with probability at least ε the protocol does not abort.
Let E be an auxiliary system held by an eavesdropper, who may also learn (X, Y) and (AB, BB). Then,
conditioned on the protocol not aborting, it holds that

Hε
min(BC|XYABBBE) ≥ κ|C| −O

(
ln(1/ε)

)
.

We note that the precise relation between the parameters κ and η stated in the theorem is the one that
we obtain from our proof; however we have not attempted to optimize it fully and it is likely that one may
be able to derive a better dependency. It is also clear from the proof that one may trade off the different
constants between each other, depending on whether one is interested in the maximum possible key rate in
the presence of very small noise, or to the opposite if one wishes to tolerate as much noise as possible.

The proof of Theorem 8 is based on two lemmas. We state both lemmas, and derive the theorem from
them, below; the lemmas themselves are proved in Section 5 and Section 4 respectively.

Our first lemma states that, if the min-entropy condition in the conclusion of the theorem is not satis-
fied, then there must exist a measurement on the system E , depending on X, Y, AB and BB, together with
some additional “advice” bits of information about BC, whose outcome E ∈ {0, 1}|C| agrees with BC with
reasonable probability.

Lemma 9. Let κ > 0 and suppose that Hε
min(BC|XYABBBE) < κ|C|. Then there exists an α = κ|C|/m +

2γ + O(log(m/ε)/m), and a function f : {0, 1}|C| → {0, 1}(α−2γ)m such that, given the bits ADV =
fADV(BC)ABBB ∈ {0, 1}αm together with the inputs X, Y, there exists a measurement on E that outputs a
string e ∈ {0, 1}|C| such that with probability (over the randomness in B and in the measurement) at least
CE(ε/m)6, where CE is a universal constant, the equality e = bC holds.

The proof of Lemma 9 is based on a “reconstruction”-type argument from [DPVR12]. A very similar
argument was already used to establish an analogous lemma in [VV12]. We give the proof of Lemma 9 in
Section 5.

Our second lemma states the existence of a “good” round i0 ∈ [m] in which both the CHSH condition
is satisfied, and the outcome Ei0 of the measurement described in Lemma 9 agrees with Bi0 , with good
probability. Note also the additional condition (4) in the lemma, which states that systemsA and B are each
close to being independent from the random variables Xi0 , Yi0 describing the choice of inputs in round i0.
This condition is crucial for condition (5), on the CHSH violation, to be of any use: indeed, without (4) it
could in principle be that the conditioning on specific outcomes in previous rounds, including the adversary’s
outcomes, completely determines the choice of inputs in the i0-th round (since the adversary’s measurement
may depend on inputs X, Y to all rounds). As we will see in the proof of Lemma 27, (4) implies that the
distribution that arises from the devices’ measurements on the states ρ

xy
AB is, while not necessarily quantum,

still no-signalling, and this will be sufficient for our purposes. (We refer to Section 3.1 for a description of
the events CHSHAB and VIOLAB appearing in the statement of the lemma.)

Lemma 10. Let ˆADV be uniformly distributed in {0, 1}αm, and η, ε > 0 be such that the following holds:

Pr
(
CHSHAB(η) ∧ GUESSBE |ADV = ˆADV

)
≥ ε,
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and let α = |ADV|/m. Then there exists a universal constant Cν > 0, a ν ≤ Cν

√
log(1/ε)/m, an

i0 ∈ [m] and a set Gi0 ⊆ ({0, 1, 2} × {0, 1} × {0, 1}3)i0−1 such that for every (x, y, a, b, e) ∈ Gi0 , there is
a choice of x̂>i0 , ŷ>i0 such that the following hold:

max
{∥∥∥ρAi0 Xi0 Yi0

− ρAi0
⊗
(1

6 ∑
x,y
|x, y〉〈x, y|

)∥∥∥
1

,
∥∥∥ρBi0 Xi0 Yi0

− ρBi0
⊗
(1

6 ∑
x,y
|x, y〉〈x, y|

)∥∥∥
1

}
≤ ν,

(4)

VIOLAB(i0) ≤ 3η + ν, (5)

Pr(GUESSBE (i0)) ≥ 1− 12 ln(2)α− ν, (6)

where in (4) the state ρAi0Bi0 Xi0 Yi0
is the (normalized) state of the corresponding systems in round i0, con-

ditioned on (x, y, a, b, e), and similarly in (5) and (6) the violation is estimated conditioned on previous in-
put/outputs to the devices being (x, y, a, b), and on Eve making her measurement with inputs (x<i0 , 2, x̂>i0)
and (y<i0 , 1, ŷ>i0) and advice string ˆADV chosen uniformly at random, and obtaining outcomes e as her
prediction in rounds C∩ {1, . . . , i0 − 1}.

The proof of Lemma 10 in given in Section 4. Based on these two lemmas, we give the proof of
Theorem 8.

Proof of Theorem 8. Let (X, Y, A, B) be random variables describing Alice and Bob’s choice of inputs toA
and B respectively, and the outputs obtained, in an execution of Protocol A. Let E = E( ˆADV) be the random
variable that describes the outcome of the measurement on E described in Lemma 9, when the advice bits

ˆADV are selected uniformly at random (independently from A and B). Let ADV = fADV(BC)ABBB denote
the “correct” advice bits.

The proof proceeds by contradiction. Assume that there existed a pair of devices (A,B) such that

Pr
(
CHSHAB(B, η)

)
≥ ε and Hε

min(BC|XYABBBE) < κ|C|, (7)

where ε, η, κ are as in the statement of the theorem. Let GUESSBE ( ˆADV) denote the event that E = BC.
Using Lemma 9, we deduce from (7) that the following must hold:

Pr
(
CHSHAB(B, η) ∧ GUESSBE ( ˆADV)| ˆADV = ADV

)
= Pr

(
GUESSBE ( ˆADV)|CHSHAB(B, η), ˆADV = ADV

)
Pr
(
CHSHAB(B, η)| ˆADV = ADV

)
≥ CE(ε/m)6 · ε, (8)

where CE is the constant from Lemma 9. Since the rounds B are chosen uniformly at random, Claim 11
below states that, for any 0 ≤ β ≤ 1:

Pr
(
CHSHAB((1 + β)η)|CHSHAB(B, η)

)
≥ 1− e−2β2η2γm, (9)

where γ = |B|/m. Choose β = 1/3, and let η′ := 4η/3. Provided Cγ is chosen large enough, and since
by definition η ≥ Cη the choice of γ made in the theorem is such that γ ≥ log(2m6/CEε7)/((2/9)η2m),
so that e−2β2η2γm ≤ CEε7/(2m6). Hence we obtain the following by combining (8) and (9):

Pr
(
CHSHAB(η′) ∧ GUESSBE ( ˆADV)| ˆADV = ADV

)
≥ CE(ε

7/(2m6)) =: ε′. (10)
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We may now apply Lemma 10. Let ν = Cν

√
log(1/ε′)/m, and i0 ∈ [m] be the “good” round that is

promised by the lemma. We proceed to show that the existence of such a round leads to a contradiction by
appealing to the guessing lemma, Lemma 27.

Consider the following setup. Alice, Bob and Eve prepare their devices by selecting a random string
of inputs X̂, Ŷ for Eve, except that X̂i0 = 2 and Ŷi0 = 1 always. Eve guesses the advice bits ˆADV at
random and makes a prediction E = e. Alice and Bob then use their devices up to round i0 − 1 by
choosing inputs (X<i0 , Y<i0) = (X̂<i0 , Ŷ<i0). They verify that the resulting outputs a<i0 , b<i0 are such
that (x<i0 , y<i0 , a<i0 , b<i0 , e<i0) ∈ Gi0 ; if not they abort. Upon having succeeded in this conditioning they
separate and play the guessing game. Alice holds system A, while Bob holds system B.

Lemma 10 shows that all conditions in Lemma 27 are satisfied: it must be that

12 ln(2)α + ν ≥
(√2− 1

2
− 6η′ − 2ν

)
− 75ν.

By definition, provided the constant Cν is large enough we have α ≤ κ/6 + 2γ + ν, where we used that
|C| ≤ m/6 + 10

√
ln(1/ε), as enforced in the protocol, and η′ = 4/3η. Re-arranging terms and using the

definition of ν and γ we obtain the condition

κ >

√
2− 1

4 ln(2)
− 4

ln(2)
η −O

( log(1/ε)

C2
ηm

)
,

which, given the choice of κ made in the theorem, is a contradiction provided Cε is chosen small enough
(possibly depending on Cη).

Claim 11. Let η, γ > 0. The following holds for any 0 ≤ β ≤ 1:

Pr
S

(
CHSH((1 + β)η)|CHSH(S, η)

)
≥ 1− e−2β2η2γm,

where the probability is taken over the choice of a random subset S ⊆ [m] of size |S| = γm.

Proof. Consider a given run of the protocol. Suppose that the fraction of rounds in which the CHSH
condition is not satisfied is at least (1− opt) + (1 + β)η. By a Chernoff bound, a randomly chosen set
S ⊆ [m] will of size γm will have at least ((1− opt) + η)γm of its rounds with inputs corresponding to
the CHSH condition being violated, except with probability at most e−2β2η2γm.

4 Proof of Lemma 10

This section is devoted to the proof of Lemma 10. Let D be the event CHSHAB(η)∧ GUESSBE : the main
assumption of the lemma states that Pr(D|ADV = ˆADV) ≥ ε. We first prove two preliminary claims which
establish that, provided ε is not too small, conditioning on D does not affect either the distribution of inputs
(Xi, Yi) or the reduced density matrices of the inner state of each device’s system in most rounds i by too
much.

Claim 12. Suppose that, in Protocol B, Alice and Bob choose inputs (X, Y) ∈ {0, 1, 2}m × {0, 1}m uni-
formly at random, obtaining outcomes A, B ∈ {0, 1}m. Suppose that E is measured using Eve’s guessing
measurement (as described in Lemma 9) with inputs (X̂, Ŷ) = (X, Y) and advice bits ˆADV = ADV, re-
sulting in an outcome E ∈ {0, 1}|C|. Let PXiYi be the marginal distribution of the inputs in the i-th round,
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conditioned on (X<i, Y<i, A<i, B<i, E<i) = (x<i, y<i, a<i, b<i, e<i) ∈ D<i, the projection of D on the first
(i− 1) coordinates. Then the following bound holds on expectation over (x<i, y<i, a<i, b<i, e<i):

1
m ∑

i

∥∥PXiYi −U3×2
∥∥

1 ≤
√

log(1/ε)

2m
,

where U3×2 is the uniform distribution on {0, 1, 2} × {0, 1}.

Proof. The Shannon entropy H(X, Y) = log(6)m, and conditioned on D, H(X, Y|D) ≥ log(6)m −
log(1/ε). Applying the chain rule,

1
m ∑

i
H(Xi, Yi|X<i, Y<i, D<i) ≥ log(6)− log(1/ε)

m
.

Using the classical Pinsker’s inequality as ‖PXiYi − U3×2‖1 ≤
√
(log(6)− H(Xi, Yi))/2 and Jensen’s

inequality we get
1
m ∑

i

∥∥PXiYi −U3×2
∥∥

1 ≤
√

log(1/ε)

2m
,

proving the claim.

The fact that D depends both on the choice of inputs (X, Y) and on the adversary’s measurement out-
come implies that conditioning on D could not only bias the distribution of (X, Y) but also introduce cor-
relations between (X, Y) and the reduced state ρAB of the devices. The following claim shows that, if D
is an event with large enough probability, the correlations introduced by this conditioning do not affect the
reduced state on either A or B by too much, for most rounds i.

Claim 13. Consider the same situation as described in Claim 12. Let ρAiXiYi denote the reduced den-
sity of the joint state of systems A (in round i) and Xi, Yi, conditioned on (X<i, Y<i, A<i, B<i, E<i) =
(x<i, y<i, a<i, b<i, e<i) ∈ D<i. Then the following holds on expectation over (x<i, y<i, a<i, b<i, e<i):

1
m ∑

i

∥∥∥ρAiXiYi − ρAi ⊗
(1

6 ∑
x,y
|x, y〉〈x, y|

)∥∥∥
1
≤ 4

√
log(1/ε)/m.

Moreover, the same bound holds when Ai is replaced by Bi.

Proof. We use Claim 26. Alice’s sequential measurements are taken to be the ones performed on A, while
Bob’s measurement is the combination of the measurements on B, together with Eve’s measurement, on
inputs X, Y and advice bits ˆADV = ADV obtained from B. We set X in the claim to be XY here, and the
outcomes B in the claim to BE here. Together with the assumption Pr(D| ˆADV = ADV) ≥ ε, the claim
shows that

1
m ∑

i
I
(
Ai; XiYi|D<i

)
ρAi XiYi

≤ log(1/ε)

m
.

Using Pinsker’s inequality (3) together with Jensen’s inequality,

1
m ∑

i

∥∥∥ρAiXiYi − ρAi ⊗
(1

6 ∑
xy
|x, y〉〈x, y|

)∥∥∥
1
≤ 4

√
log(1/ε)/m,

where we used Claim 12 to show that the marginal distribution of (Xi, Yi) is close to uniform on {0, 1, 2} ×
{0, 1}, even conditioned on D<i.
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Let PRODABXY(δ) be the event that the bound in Claim 13 holds up to error δ, both as stated and when
the system A is replaced by B. The following claim states a bound that is similar to our initial assumption
Pr(D| ˆADV = ADV) ≥ ε, except that it adds the additional “tensor product form” condition PRODABXY.
It also replaces the event that the CHSH condition is satisfied in a large fraction of rounds by the event that,
on average over i ∈ [m], the CHSH condition is likely to be satisfied in the i-th round.

Claim 14. There exists a ν ≤ 5
√

log(1/ε)/m such that

Pr
(
PRODABXY(ν) ∧ VIOLAB(η + ν) ∧ GUESSBE | ˆADV = ADV

)
≥ ε/20.

Proof. Let Zi ∈ {0, 1} be 1 if and only if the CHSH condition is not satisfied in round i. By definition,
E[Zi] = (1 − opt) + VIOLAB(i). Let Wi = E[Zi] − Zi and W≤i = W1 + · · · + Wi. (W≤i)i is a
Martingale, and by Azuma’s inequality (see Lemma 24), for any β > 0

Pr
( 1

m ∑
i

VIOLAB(i) + (1− opt) >
1
m ∑

i
Zi + β

)
= Pr

( 1
m ∑

i
Wi > β

)
≤ e−β2m/2.

Since the string ˆADV is chosen by the adversary uniformly at random, we may further condition the equa-
tions above on ˆADV = ADV without affecting their validity. Note that the event CHSHAB(η) is equivalent
to 1

m ∑i Zi ≤ (1− opt) + η. Choosing β =
√

2 log(8/ε)/m, so that e−β2m/2 < ε/8, and using the
assumption Pr(D| ˆADV = ADV) ≥ ε to further condition on D = CHSHAB(η) ∧ GUESSBE we get

Pr
( 1

m ∑
i

VIOLAB(i) > η + β
∣∣D, ˆADV = ADV

)
≤ 1/8. (11)

To conclude, note that Claim 13 together with Markov’s inequality implies that conditioned on D the event
PRODABXY(β′) holds with probability at least 1/5 for β′ = 5

√
log(1/ε)/m. Together with (11) and the

assumption Pr(D| ˆADV = ADV) ≥ ε, this proves the claim.

Proof of Lemma 10. Let ν be as in Claim 14, and for a parameter δ > 0 define

GOOD(i, δ) = (VIOLAB(i) ≤ (η + ν)/δ) ∧ (PRODABXY(i) ≤ 2ν/δ),

where PRODABXY(i) ≤ 2ν/δ denotes the event that∥∥∥ρAiXiYi − ρAi ⊗
(1

6 ∑
x,y
|x, y〉〈x, y|

)∥∥∥
1
≤ 2ν/δ and

∥∥∥ρBiXiYi − ρBi ⊗
(1

6 ∑
x,y
|x, y〉〈x, y|

)∥∥∥
1
≤ 2ν/δ.

Choosing δ = 1/3, by Claim 14 together with Markov’s inequality there must exist a subset S ⊆ [m] of
size at least |S| ≥ m/2 such that

Pr
(
∧i∈S

(
GOOD(i, 1/3) ∧ GUESSBE (i)

)
| ˆADV = ADV

)
≥ ε/20.

Removing the conditioning on ˆADV = ADV (so that the adversary now guesses an advice string ˆADV

uniformly at random), ε/20 is replaced by 2−αmε/20. Applying Baye’s rule, we find that there must exist
an i0 ∈ S such that

Pr
(

GOOD(i0, 1/3) ∧ GUESSBE (i0)| ∧i∈S,i<i0
(
GOOD(i, 1/3) ∧ GUESSBE (i)

))
≥ 2−2α(ε/20)2/m.
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To conclude the proof of the lemma, it suffices to note that, once inputs and outputs to the devices in rounds
prior to i0 have been fixed, the event GOOD(i0, 1/3) is deterministic. Finally, in order for the adversary’s
guess in round i0 to be meaningful, we further condition on inputs in round i0 to be the pair (2, 1), which
(given the condition PRODABXY(i0)) happens with probability 1/6± 6 · 9ν.

5 The quantum reconstruction paradigm

In this section we prove a general lemma, Lemma 21 in Section 5.2 below, from which Lemma 9 is deduced
in Section 5.3. We start with some useful preliminary definitions and known results.

5.1 Combinatorial preliminaries

We first define extractors.

Definition 15. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a quantum-proof (or simply quantum)
(k, ε)-strong extractor if for all states ρXE classical on X with Hmin(X|E) ≥ k, and for a uniform seed
Y ∈ {0, 1}d, we have

1
2

∥∥ρExt(X,Y)YE − ρUm ⊗ ρY ⊗ ρE
∥∥

1 ≤ ε,

where ρUm is the fully mixed state on a system of dimension 2m.

We will use list-decodable codes.

Definition 16. A code C : {0, 1}n → {0, 1}n̄ is said to be (ε, L)-list-decodable if every Hamming ball of
relative radius 1/2− ε in {0, 1}n̄ contains at most L codewords.

There exist list-decodable codes with the following parameters.

Lemma 17. For every n ∈ N and δ > 0 there is a code Cn,δ : {0, 1}n → {0, 1}n̄, which is (δ, 1/δ2)-list-
decodable, with n̄ = poly(n, 1/δ). Furthermore, Cn,δ can be evaluated in time poly(n, 1/δ) and n̄ can be
assumed to be a power of 2.

For example, Guruswami et al. [GHSZ02] combine a Reed-Solomon code with a Hadamard code, ob-
taining such a list-decodable code with n̄ = O(n/δ4).

We will also use the notion of weak design, as defined in [RRV02].

Definition 18. A family of sets S1, · · · , Sm ⊂ [d] is a weak (t, r, m, d)-design if

1. For all i, |Si| = t.

2. For all i, ∑i−1
j=1 2|Sj∩Si | ≤ rm.

There exists designs with the following parameters.

Lemma 19 ([RRV02, Lemma 17]). For every t, m ∈N there exists a weak (t, 1, m, d)-design S1, . . . , Sm ⊂
[d] such that d = t

⌈ t
ln 2

⌉
dlog 4me = O(t2 log m). Moreover, such a design can be found in time

poly(m, d) and space poly(m).

Finally, we describe Trevisan’s extractor construction.

Definition 20. For a one-bit extractor C : {0, 1}n × {0, 1}t → {0, 1}, and for a weak (t, r, m, d)-design
S1, · · · , Sm ⊂ [d], we define the m-bit extractor ExtC : {0, 1}n × {0, 1}d → {0, 1}m as

ExtC(x, y) := C(x, yS1), . . . , C(x, ySm).
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5.2 The reconstruction lemma

The following lemma is implicit in the proof of security of Trevisan’s extractor construction paradigm
against quantum adversaries given in [DPVR12]. A similar lemma also appeared in [VV12, Lemma 13],
where the code C was specialized to the t-XOR code. For completeness, we state and sketch the proof of a
more general variant of that lemma.

Lemma 21. Let n, m, r, t, L be integers and ε > 0. Let C : {0, 1}n → {0, 1}n̄ be a (ε2/(8m2), L)-list-
decodable code, where n̄ = 2t. Let ExtC be the extractor obtained by combining C with a (t, r, m, d) design
as in Definition 20.

Let ρXE be a state such that X is a random variable distributed over n-bit strings. Let Um be uniformly
distributed over m-bit strings, and suppose that

‖ρExtC(X,Y)YE − ρUm ⊗ ρY ⊗ ρE
∥∥

1 > ε, (12)

where Y is uniformly distributed over {0, 1}d. Then there exists fixed strings y1, . . . , yrm ∈ {0, 1}t such
that, given the {(yi, C(X)yi)} as advice, with probability at least ε2/(8m2) over the choice of x ∼ pX and
her own randomness an “adversary” Eve holding system E can produce a string z such that dH(z, C(x)) ≤
1/2− ε2/(8m2). In particular, Eve can recover L strings x̃i ∈ {0, 1}n such that there exits i, x̃i = x.

Proof. Proposition 4.4 from [DPVR12] shows that a standard hybrid argument, together with properties of
Trevisan’s extractor (specifically the use of the seed through combinatorial designs), can be used to show
the following claim.

Claim 22. Assume (12) holds. Then there exists strings y1, . . . , yrm ∈ {0, 1}t, and for every y ∈ {0, 1}t a
binary measurement, depending on the {(yi, C(X)yi)}, on E that outputs C(X, y) with probability at least
1/2 + ε/m on average over y. Formally,∥∥ρCt(X)YYVE − ρU1 ⊗ ρY ⊗ ρVE

∥∥
1 >

ε

m
, (13)

where Y is a random variable uniformly distributed over {0, 1}t and V is a classical register containing the
{(yi, C(X)yi)}.

The next step is to argue that Eq. (13) implies that an adversary given access to E′ = VE can predict
not only a random bit of C(X), but a string Z of length m such that Z agrees with C(X) in a significant
fraction of positions. This follows from an argument given in [KT08], and the following claim is proved
exactly as [VV12, Claim 15].

Claim 23. Suppose (13) holds. Then there exists a measurement F , with outcomes in {0, 1}n, such that

Pr
x∼pX , y∼Ut

(
C(x)y = C(F (VE))y

)
≥ 1

2
+

ε2

4m2 , (14)

where F (VE) denotes the outcome of F when performed on the state ρVE.

To conclude the argument, we use the error-correction properties of C to argue that Eve can decode her
string C(F (VE)) into an educated guess of x. Claim 23 shows that, on expectation over x, Eve’s string is
at Hamming distance 1/2− ε2/(4m2) from the encoding of x. In particular, the distance will be at most
1/2− ε2/(8m2) for a fraction at least ε2/(8m2) of x ∼ pX. Since, by assumption, C is (ε2/(8m2), L)-
list-decodable, for those x Eve can narrow down the possibilities to at most L distinct values.
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5.3 Proof of Lemma 9

The proof of Lemma 9 follows immediately from Lemma 21 and an appropriate choice of parameters. Let
E denote the system made of the combination of XYABBBE , and let n = |C|. The assumption of the
lemma is that Hε

min(BC|E) < κn. Let m = κn + 1. Let C = Cn,δ, where δ = ε2/(32m2), be a (δ, 1/δ2)
list-decodable code, as promised by Lemma 17. Let ExtC be constructed from C and a (t, 1, m, d) design,
where t = log n̄ and d = O(t2 log m), as promised by Lemma 19.

It follows from the data processing inequality (see e.g. [KR11, Lemma V.1 (ii)]), our assumed upper
bound on Hε

min(BC|E), and our choice of m that Eq. (12) holds with (ε/2) in place of ε. Thinking of Eve as
simply outputting one of her L guesses x̃i chosen at random, we obtain that Eve’s guess will be successful
with probability at least ε2/(32Lm2). Overall, Eve needs m bits of advice, given which she can predict x
with success probability O(ε6/m6), given our choice of parameters.

6 Additional lemmas

Lemma 24 (Azuma-Hoeffding inequality). Let (Xk) be a martingale such that |Xk − Xk−1| ≤ ck for all k.
Then for all integers m and all t ≥ 0,

Pr
(
Xm − X0 ≥ t

)
≤ e−t2/(2 ∑k c2

k).

Lemma 25. Let ε, δ, η, β > 0 and m an integer such that e−2β2δm < ε/2. Let X be a random variable
defined over m-bit strings. Suppose that Pr(∑i Xi ≤ ηm) ≥ ε. Then there exists a set G ⊆ {0, 1}m such
that Pr(G) ≥ ε/2 and for all x in G, for a fraction ≥ 1− δ of indices i ∈ [m],

Pr(Xi = 0|X<i = x<i) ≥ 1− η − β.

As a consequence, for a fraction at least 1− 2δ of i ∈ [m] there exists a set Gi ⊆ G such that Pr(Gi|G) ≥
1/2 and for every x<i ∈ Gi,

Pr(Xi = 0|X<i = x<i) ≥ 1− η − β.

Proof. For every i ∈ [m] define

Bi =
{
(x1, . . . , xi−1, . . . , xm)| Pr(Xi = 1|X<i = x<i) ≥ η + β

}
,

let
B =

{
x
∣∣ ∑

i:x∈Bi

1 ≥ δm
}

,

and suppose towards a contradiction that Pr(B) ≥ 1− ε/2. Let B̂ = {x ∈ B|∑i xi ≤ ηm}. By definition,
for every x ∈ B and at least a δ-fraction of indices i it holds that Pr(Xi = 1|X<i = x<i) ≥ η + β. Hence the
probability that x ∈ B has less than η indices j at which xj = 1 is at most e−2β2δm, i.e. Pr(B̂|B) ≤ e−2β2δm.
This shows that

Pr
(
∑

i
Xi > ηm

)
≥ Pr(B)

(
1− Pr(B̂|B)

)
≥ (1− ε/2)

(
1− e−2β2δm) > 1− ε

given our assumption on ε, δ, η, β and m; a contradiction.
For the “consequence”, for any x ∈ G and i ∈ [m] let Yx,i = 1 if and only if the condition

Pr(Xi = 0|X<i = x<i) ≥ 1− η − β
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is satisfied. We have shown Ex∈G,i∈[m]

[
Yx,i
]
≥ 1 − δ. The result is then a consequence of Markov’s

inequality.

Claim 26. Let ρ = ρAB be a bipartite state shared between Alice and Bob. Suppose Bob chooses x ∈ Xm

according to distribution (px), and applies a measurement with Krauss operators {Nb
x}b∈Bm on B. Alice

sequentially applies a measurement with Krauss operators {Mai
xi}ai∈A on A, for i = 1, . . . , m. Let D ⊆

(X×A× B)m be a set of probability Pr(D) = ε. For i ∈ [m], let ρi be the state of the system ABXi after
i− 1 measurements have been performed by Alice, conditioned on (x<i, a<i, b<i) ∈ D<i:

ρi ∝ ∑
(x,a,b):(x<i ,a<i ,b<i)∈D<i

px

((
∏
j<i

M
aj
xj

)
⊗ Nb

x

)
ρ
((

∏
j<i

(
M

aj
xj

)†
)
⊗
(

Bb
x
)†
)

,

and ρi is normalized. Then the following bound holds:

∑
i

I(A : Xi|D<i)ρi ≤ log(1/ε).

Proof. We prove the lemma using standard techniques from quantum information theory; specifically the
proof of the Holevo-Schumacher-Westmoreland theorem [Hol98, Sch96]. We assume that the reader is
familiar with the coding and decoding strategies employed in that result, and in particular the notion of
typical subspace (see e.g. [Chapters 14 and 19][Wil11], and more specifically the proof of Theorem 19.3.1).
We prove the claim by describing an experiment by which Bob transmits H(X) bits of information to Alice
using only H(X) + log(1/ε)−∑i I(A : Xi)ρi bits of communication from him to Alice. This implies the
claimed inequality: if it did not hold Alice could guess Bob’s H(X) bits with success larger than 2−H(X)

simply by running the protocol by herself, and guessing Bob’s messages.
Suppose Alice and Bob share an infinite number of copies of ρ. For each i ∈ [m], Alice and Bob

also agree on a random code Ci ⊆ X K, where K is a large integer, such that |Ci| = 2KI(A:Xi |D<i)ρi . By the
properties of typical subspaces, with high probability over the choice of Ci the collection of states⊗K

j=1ρi(x′j)
for (x′1, . . . , x′K) ∈ C, where ρi(x′j) is the reduced density of ρi on A conditioned on Xi = x′j, are almost
perfectly distinguishable.8

The experiment proceeds as follows. The copies of ρ are grouped in groups of K. For each group, Bob
selects a random x = (xj

i)1≤i≤m,1≤j≤K ∈ (X m)K and applies the measurements {Nxj} in the j-th copy of
ρ in that group, obtaining an outcome bj ∈ Bm. For each i ∈ [m], Alice does the following, independently
for each group. She guesses whether Bob’s choice of (x1

i , . . . , xK
i ) is in Ci (the probability with which she

guesses this should be so is equal to the probability that xi ∈ Ci, i.e. 2K(I(A:Xi |D<i)ρi−H(Xi))). If so, she
performs the decoding measurement to recover xi. If not, she guesses (x1

i , . . . , xK
i ) according to p×K. She

then applies the measurements {Maj
i

xj
i

} corresponding to the guessed (xj
i). At the end of the m repetitions,

Alice sends all her guesses, and her outcomes, to Bob.
Finally, Bob finds the first group of K states in which Alice’s guesses were all correct, and (xj, aj, bj) ∈

D (for each 1 ≤ j ≤ K). In any group, the probability that this event happens is 2−K(H(X)−∑i I(A:Xi |D<i)ρi )εK.
Moreover, note that Alice’s probability of correctly guessing Bob’s choice of (xj

i) is independent of (xj
i).

Hence Bob can indicate to Alice the index of the first group of states on which she was correct by transmitting
O(K log(1/ε) + K(H(X)− ∑i I(A : Xi|D<i)ρi)) bits. Alice then knows all KH(X) bits of information
about Bob’s choices of x in the m rounds on the group of K states.

8Precisely, there exists a distinguishing measurement whose success probability can be made arbitrarily close to 1 by taking K
large enough.

20



Lemma 27 (Guessing lemma). Let δ, ν, η > 0. Suppose given six bipartite states ρ
xy
AB , where x ∈ {0, 1, 2},

y ∈ {0, 1}, such that the following hold:

1. Letting ρA = (1/6)∑xy TrB(ρ
xy
AB) and ρB = (1/6)∑xy TrA(ρ

xy
AB),

1
6 ∑

x,y

∥∥ρA − ρ
xy
A
∥∥

1 ≤ ν and
1
6 ∑

x,y

∥∥ρB − ρ
xy
B
∥∥

1 ≤ ν, (15)

2. There exists observables Ax = A0
x − A1

x, By = B0
y − B1

y on A,B respectively that satisfy

1
4

(
Tr
(
(A0⊗ B0)ρ

00
AB
)
+Tr

(
(A0⊗ B1)ρ

01
AB
)
+Tr

(
(A1⊗ B0)ρ

10
AB
)
−Tr

(
(A1⊗ B1)ρ

11
AB
))
≥
√

2
2
− η,

3. Bob’s B1 measurement produces outcome b1 ∈ {0, 1} with probability 1− δ, when performed on his
share of ρ21

AB: Tr((Id⊗Bb1
1 )ρ21

AB) ≥ 1− δ.

Then the condition

δ ≥
(√2− 1

2
− η

)
− 75ν

must hold.

Proof. For every (a, b, x, y) ∈ {0, 1}2 × {0, 1, 2} × {0, 1} let p(a, b|x, y) := Tr((Aa
x ⊗ Bb

y)ρ
xy
AB). Condi-

tion (15) implies that the distribution p is approximately no-signalling, in the following sense: on average
over the choice of a uniformly random pair (x, y), the statistical distance

1
6 ∑

x,y
∑

a

∣∣∣∑
b

p(a, b|x, y)− 1
2 ∑

y′

(
∑

b
p(a, b|x, y′)

)∣∣∣ ≤ 1
6 ∑

x,y
∑

a

∣∣Tr
(
(Aa

x ⊗ Id)(ρxy
AB − ρx

AB)
)∣∣

≤ 1
6 ∑

x,y

∥∥ρ
xy
AB − ρx

AB
∥∥

1

≤ 2ν,

and a similar bound holds for the marginals on B. Lemma 9.5 in [Hol09] implies that there exists a distribu-
tion q(a, b|x, y) such that q is (perfectly) no-signalling, and moreover, on average over (x, y) the statistical
distance ‖p(·, ·|x, y)− q(·, ·|x, y)‖1 ≤ 10ν. In particular, the second assumption in the lemma implies that
the distribution q must violate the CHSH inequality by at least

√
2/2− η − 15ν, and the third assump-

tion implies that ∑a q(a, 1|2, 1) ≥ 1− δ− 60ν. Applying the bound (A.11) derived in the supplementary
information to [PAM+10] with I/4 =

√
2/2− η− 15ν we obtain the inequality claimed in the lemma.
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