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Introduction

Given a circuit C with gates U1, ..., UT acting on the state |φ0〉, we want to simulate the circuit model com-
putation UTUT−1...U1|φ0〉 in the Hamiltonian Quantum Computing (HQC) model. In the HQC model,
computation is performed by starting with a Hamiltonian H (which is a sum of local Hamiltonians) and an
initial state |ψ0〉 and evolving this initial state according to the Schrödinger equation with H for some time
t to get a state |ψt〉 = e−iHt|ψ0〉 and then measuring |ψt〉 in some basis to determine the answer of the
computation.
It is easy to take a Hamiltonian from the HQC model and implement it in the circuit model by dividing the
evolution time t into a large number of intervals and applying the unitary corresponding to each interval (the
Lie-Suzuki-Trotter formula is used in this discretization).
The more interesting problem is to create a local Hamiltonian H which can be used in an HQC to simulate
a quantum circuit C. In [1], Nagaj showed two such constructions for H . In the first construction, H will be
the sum of 3-qubit projector terms, and in the second construction which will be a relatively simple modifi-
cation of the first, H will be the sum of qubit-qutrit projectors (ie. 6× 6 matrices).

A couple of properties of the Hamiltonian H from both constructions:

• H =
∑

iHi where each Hi is a local projector term.

• H will be frustration-free. This means that if H =
∑

iHi, then the ground state of H is also a ground
state for each Hi. The paper seems to indicate that this leads to a large eigenvalue gap above the
ground state energy, but this isn’t clear from the definition.

• H will be time-invariant. This is a freebie, but is claimed to be a desirable property for HQC.

Overview

We will follow a very similar strategy to what we did for the QMA-completeness reductions. We augment
the Hilbert space of the circuit qubits with a clock space and create a Hamiltonian whose ground state is
the history state of the circuit. This Hamiltonian will just be the Hamiltonian which ensured correct time
propagation of the circuit in the QMA-completeness reductions, namely:

H =
T∑
t=1

1
2(|t〉〈t|+ |t− 1〉〈t− 1| − Ut ⊗ |t〉〈t− 1| − U †t ⊗ |t− 1〉〈t|)

Define the intermediate states of the original circuit as |φt〉 = Ut...U1|φ0〉. If we define the basis
B = {|ψt〉 = |φt〉 ⊗ |t〉} for the Hilbert space Hφ0 spanned by B, then the matrix H restricted to the
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subspace Hφ0 and written in this basis B looks like that of a symmetric random walk on the states of B
arranged in a line.

Connection with quantum random walks

The above connection between Hamiltonians and random walks can indeed be realized algorithmically and
was first noticed by Farhi. If we have such a Hamiltonian H above, then we view the Schrödinger evolution
e−iHt for some time t as a random walk generated by H on the space |φ0〉|0〉, |φ1〉|1〉, ..., |φT 〉|T 〉. From
the theory of quantum random walks on a line, we will pick a random time t ≤ O(T log2 T ), evolve from
|φ0〉|t〉 for time t using e−iHt, and measure the clock register. The measurement will be any of 0, 1, ..., T
with equal probability and thus the work space will be left in any of |φ0〉, |φ1〉, ..., |φT 〉with equal probability

1
T+1 . Since we want to get the output |φT 〉 of the circuit with constant probability, say 2/3, and the above
random walk samples φT with probability 1

T+1 , we can just append dummy identity gates to make the circuit
three times as long, and now with probability 2/3, the random walk would sample the outcome of the circuit.
Note that it is sufficient to restrict the attention ofH to the subspaceHφ0 in the random walk since the initial
state |φ0〉|0〉 ∈ Hφ0 , and H (and hence e−iHt) leave the spaceHφ0 invariant.

Clock construction

We still have to specify how to implement the clock in the above construction for H .
In the QMA-completeness results, we used a wall-clock, which used T qubits where t 1’s followed by T − t
0’s represented the clock state |t〉. It’s easy to imagine an alternative clock with T + 1 qubits, where |t〉 is
represented by the t-th qubit being 1 and all other qubits being 0. This clock is called the pulse clock. The
pulse clock was unsuitable for QMA-completeness results because you can’t use local terms to enforce that
at least one of the qubits is a 1. But enforcing correctness is not an issue in this HQC construction, so we
will use the pulse clock since terms like |t〉〈t − 1| are now 2 local (while they would have to be 3 local in
the wall clock construction). Since the circuit contains 2-qubit and 1-qubit unitaries, we immediately have
a Hamiltonian that is the sum of 4-local qubit projectors.

3-qubit projectors

Assume that the circuit is composed of 1-qubit and C-Not gates. The 1-qubit gates only introduce 3-local
projectors to H (1 for the unitary and 2 for the clock terms like |t〉〈t− 1|). Whenever we have a C-Not, say
at time t, with control qubit q1 and target qubit q2, we expand the space in the HQC model to handle the
branching of the two cases of when q1 = 0 and q1 = 1.
We write the state before the C-Not, |ψt−1〉 = |φt−1〉|t − 1〉 = (a|ϕ0〉 + b|ϕ1〉) ⊗ |t − 1〉 where |ϕ0〉
is the subspace of |φt−1〉 where q1 = 0 and |ϕ1〉 is the subspace where q1 = 1. Then, if we define
|ψ′t−1〉 = a|ϕ0〉|l1〉+b|ϕ1〉|u1〉, we can enforce transitions between |ψt−1〉 and |ψ′t−1〉 by a suitable projector
term which is 3-local (this term essentially projects onto the space spanned by the 0-subspace of q1 tensored
with the l1 clock subspace, and the 1-subspace of q1 tensored with the u1 subspace). This is the splitting
part of the railroad-switch gadget construction where |φt−1〉 splits into two tracks based on the previously
described projection. The upshot of this is that we can directly apply a σxq2 gate on the upper track (ie. when
in the u1 clock subspace) since we know that q1 = 1 here, and apply an identity on the lower track (ie. when
in the l1 clock subspace) since we know that q1 = 0 here. This gate application can again be written as
a 3-local projector, enforcing movement from |ψ′t−1〉 to |ψ′′t−1〉 where |ψ′′t−1〉 = a|ϕ0〉|l2〉 + bσxq2 |ϕ1〉|u2〉.
Finally, we join the two tracks using another projector which will enforce movement from |ψ′′t−1〉 to |ψt〉.
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Refer to figure 3 in the paper for a better picture.
If we now augment the basis B described previously with these states |ψt−1〉′ and |ψt−1〉′′ whenever Ut is
a C-Not, and replace the projector terms corresponding to C-Not gates in H with the new projector terms
coming from the railroad-switch gadget, we can see that we still have a random walk but now on a slightly
larger space due to these extra basis states from the railroad-switch gadgets. But now we’ve reduced the
Hamiltonian to be a sum of 3-qubit projectors.

Qubit-qutrit projectors

In the railroad-switch gadget for C-Not with control qubit q1 and target qubit q2, we needed 3-qubit pro-
jectors because when we performed the projection onto |0〉〈0|q1 , we also moved on the clock space from
time |t − 1〉 to |l1〉. But now suppose we create a qutrit clock state and decide that whenever we perform a
1-qubit projection on the work space we will only move from one state of the qutrit to another state of the
same qutrit, then we can encode the projection |0〉〈0|q1 along with the clock space change as a qubit-qutrit
projector. This same argument applies for the 3-qubit projector term involving the |1〉〈1|q1 projector for
moving to the upper track and for the σxq2 gate applied on the upper track. The only problem is that there
is no way to ensure that only the q1 = 0 part of the state moves to the lower track and only the q1 = 1
part of the state moves to the upper track, since we’ve moved the |0〉〈0|q1 and |1〉〈1|q1 projectors onto qutrit
states on the lower and upper tracks respectively. But if the wrong value for q1 entered a particular track,
the projector |0〉〈0|q1 or |1〉〈1|q1 (as the case may be) would kill the state in the next step, so the random
walk is still almost a random walk on a line, but with an extra edge sticking out from some points on the
line corresponding to the wrong value of q1 entering a track. In the paper, they actually convert the line state
graph to a circle for ease of analysis and make the C-Not’s evenly spaced so that the state graph looks like a
circle with edges spiking out periodically (they call it a necklace graph). They claim that the mixing time is
Õ(T 2) for this necklace graph which is of length O(T ) here.
Refer to figure 4 in the paper for a good picture of how the projectors act.
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