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Lecture 10

Lecturer: Vinod Vaikuntanathan Scribe: Lauren de Meyer, Prashant Vasudevan

Last class we showed the NP-hardness of the Closest Vector Problem (CVP). Today, we discuss
the NP-hardness of the Shortest Vector Problem (SVP) and its gap version, GapSVP.

1 History

The essential parts of the history of hardness proofs for SVP are presented in Table 1. By SVP, and
CVP,, we denote GapSVP and GapCVP respectively with gap 7. NP-hard™ means that the reduction
is randomised - an algorithm for this problem would give a randomised algorithm for any problem in
NP. Quasi-NP-hard means the reduction runs in super-polynomial (though still sub-exponential)
time.

Problem Norm Hardness Reference
CVP, ¢, NP-hard [VEBS8I]
SVP, loo NP-hard [VEB81]
SVP1 EQ NP-hard* [AJt98]
SVP 5 Uy NP-hard* [Mic98]
SVP, l, NP-hard* [KhoO4]
SVP o(log myL/2—¢ l, quasi-NP-hard | [Kho(O4]
SVP, 105 ny1— ¢, | quasi-NP-hard | [HRO7]

Table 1: History of NP-hardness proofs for lattice problems.

The following questions immediately arise from the current state of knowledge of NP-hardness
reductions as presented in Table 1, and are still open.

1. Can the reductions to SVP with any gap at all be derandomised? See [Mic12] for notes on
analogies to similar problems from the domain of linear codes.

2. It was shown in [ARO5] that SVP,1/> is in coNP. This makes it unlikely that SVP /> is
NP-hard. But what about SVP,,1/2-. for some €7

3. Can we get polynomial time reductions for the cases where we now have sub-exponential time
reductions (from [Kho04] and [HRO7])? If so, then things here would mirror the state of affairs
for the same gaps for CVP.

2 NP-hardness of SVP in />-norm

We present here the reduction from [Kho04] SVP, for constant ¢c. While [Kho04] works for SVP in
the ¢, for any p > 1, we shall concern ourselves only with the £3 norm. It is to be mentioned that the
reduction due to [HRO7] mentioned in Table 1 starts with this reduction and uses tensor products
to amplify the gap.

The reduction proceeds in the following three steps:

1. ESC < CVP*
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2. CVP*< SVP*
3. SVP*< SVP

The problems ESC (Exact Set Cover), CVP*, and SVP*are defined when discussing the respective
steps below.

Step 1: ESC < CVP*

Exact Set Cover. For each n’,n”, the promise problem ESC(~, d) is defined over sets of n” subsets
S1,...,Spn C [n'] (along with n') by the following characterisation of YES and NO instances:

e YES: There is a collection of vd subsets among Si, ..., S, that partition [n’].

e NO: No collection of < d subsets among Sy, ..., S, covers [n'].
CVP*. The promise problem CVP*(v,d) is defined over pairs of full rank matrices and vectors
(B, t) by the following characterisation of YES and NO instances:

e YES: 3y € A(B) such that (y —t) is a 0-1 vector with at most yd ones

e NO: Vy € A(B) and 8 € Z\{0}, (y — 8t) has at least d non-zero coeflicients.

Reduction:

For any d and v, we show how to reduce ESC(v, d) to CVP* (v, d). Given an instance (n’, S, ..., Sp)
of ESC(, d), let xs, be the characteristic vector of S; (of length n'). Then the CVP*instance reduced
to is (Bevp,t), where Boyp and t are constructed as follows:

1. Pick matrix S as:

S <« XSy oo XS, c {0, 1}n/><n”

2. Let Loy p be the lattice defined as Leyp = {2z € z’ | Sz = 0}. Pick Boyp to be a basis of
Levp.

3. Pick t to be any vector in Z"" such that St = —_1>.

In other words, Boy p is a basis of the dual of the lattice formed by the characteristic vectors of
the sets S1,..., Sy, and t is a vector in a certain coset of this lattice. The following argue that the
reduction is correct:

o If (n,S1,...,5,) is a YES instance of ESC(v,d), this implies that there is a 0-1 vector z
with at most vd 1’s such that Sz = 1. Then the vector y = z + ¢ is in A(Boyp) because
Sy=S8(z+t)= ﬁ, and (y —¢) = z is a 0-1 vector with at most vd 1’s. Thus, (Bevp,t) is a
YES instance of CVP* (v, d).

o If (n/,S1,...,S,~) is a NO instance of ESC(v, d), then no collection of at most d subsets even
covers [n]. For any y € A(Bcvp) and 8 € Z\{0} , note that S(y — ft) = —8St = 5? So
(y— ft) cannot have less than d non-zero co-efficients as the set of subsets corresponding to the

non-zero co-efficients of (y — St) constitutes a cover of [n']. Hence, (Bcoy p,t) is a NO instance
of CVP* (v, d).
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Step 2: CVP*< SVP*

SVP*. The promise problem SVP*((,d) is defined over a full rank matrix B by the following
characterisation of YES and NO instances:

e YES: There are “many” vectors z € A(B) with ||z|| < +/Cd
e NO: There are only “a few” vectors z € A(B) with ||z]] < d.

We leave “many” and “a few” undefined for now. We will reduce CVP™ (7, d) to SVP* (4y + £, d)
(for r to be specified later) by creating a lattice that has a guaranteed number of short vectors
(Il - || € V4yd +r) when the CVP* instance is a YES and only a limited number of vectors with
length < d when the CVP* instance is a NO.

A First Attempt

Consider a CVP*instance (Bcvy p,t) with y = Boy pw the solution. First, construct the lattice basis
B = [BCVP t} .

e If (Beyp,t) is a YES instance of CVP* (7, d) then ¢ is close to the lattice Loy p. This implies
the existence of a vector w € {0,1}"™ such that y = Boy pw is the solution of CVP*and thus

[BCVP t] {fﬂ =y —tis a 0-1 vector with at most vd ones < || - ||2 < /~d.

e If (Beyp,t) is a NO instance of CVP*(v,d), then for any lattice vector y = Beypw and for

any 3 € Z\{0}: [Bovp t| m

5| =Y + Bt has at least d non-zero coefficients < || - |2 > V/d.

What about the case when 8 = 07 For this, consider the SVP lattice from [BCLVP ﬂ with L

a gadget lattice and s some point that must satisfy the following properties:

1. s is close to all Lw vectors with w € {0, 1}"” such that the YES-instances

Bevp t||w| _ |Bevpw—t
L sl =1 Lw —s
are not ruined.

: Bevp t| |w| _ [Bevpw+ St I
2. For NO-instances { I s] [5} = [ Lw + s , we have either:

e (3 # 0 = the vector Boy pw + St already has at least d non-zero coefficients by CVP*.

e 3 =0 = we must make sure Lw is not short

Finding L and s

Consider a binary [n, k,d]s code that transforms k-bit messages to n-bit codewords such that the
minimum distance between any two codewords is d. With G the generator matrix of the code, let L
be the basis of the lattice generated by [G 2] (the basis vectors of G mod 2).

Lemma 1. Every vector in A(L) has either
e only even coordinates (= vectors corresponding to the zero codeword)

e > d non-zero coordinates (=vectors corresponding to non-zero codewords)
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Lemma 2. For any r € N, there is a point s € {0,1}" such that the number of lattice vectors in
A(L) at distance at most r from s is at least:

2F /n 1 (n

o) =5 ()
Proof. Consider the collection of 2% codewords (that are also vectors in A(L)) and the space {0, 1}"
of 2" vectors. Connect each codeword to the vectors with hamming distance r (which are obtained
by flipping r bits of the codeword). In each codeword one can choose (:) different combinations of
bits to flip so each codeword has (f) edges. This implies that the total number of edges is (:) -9k,

So there is at least one point s € {0,1}" that has at least (") 3—: incident edges, which implies there

are at least so many points in A(L) within distance r from it. O

The Reduction

Now we can finish our reduction from CVP*(7y, d) to SVP* by dealing with the case of 3 = 0. Consider
the following lattice basis:
Bovp — [2BCV p 0 2t}
0 L s

e If (Becyp,t) is a YES instance of CVP*(v,d), then there are vectors y,w such that y — ¢ =
Beoypw —tis a 0-1 vector with at most vd ones. By Lemma 2, there exists a vector s and at

least in_k (:L) vectors w’ such that Lw’ — s has at most r ones. This means that there exist at

w
least 5 (7) lattice vectors z = Bgyp |w' | = {Q(Bcva B t)} with [|z]|2 < V4yd + 1 (We

/ —_
1 Lw" —s
call these z’s good vectors).
w
e If (Bovp,t) is a NO instance of CVP* (v, d), then consider the vector z = Bgyp |w'| for any
B

w,w’ and S. We have the following cases:

— B # 0 =. In this case, the fact that this is a NO instance of CVP* guarantees that

22 > V.

— B =0. In this case, the lattice vectors are of the form z = [2321‘;?10} .
1. If 3 an odd coordinate in z, then by Lemma 1, there are > d odd coordinates <

Izll2 = d.
2. Else, there are only even coordinates:
* If there are at least % non-zero coordinates in z, then ||z||2 > d.
x Else, z has less than % non-zero coordinates:
- If there is a coordinate with absolute value at least d, then ||z||s > d

- Else, we call z an annoying vector. Such a vector has only a few (< d/4)
non-zero coordinates and each coordinate have absolute value at most d. By
straightforward counting, we can see that the number of annoying vectors

is at most:
(n + n// _ n/

a/4 )(2d + 1)/
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If one chooses 7 = (3 + €)d for some small constant e and uses a BCH code ([n,n — £logn,d]>)
in the above reduction, then one can make sure that the number of annoying vectors in any instance
that a NO instance of CVP* reduces to is much smaller than the number of good vectors in any
instance that a YES instance reduces to.

Note that there was a non-uniform step involved in the reduction, which was knowing an s such
that there are a lot of codewords close to it as predicted by Lemma 2. This non-uniformity can
be traded for randomness, as it can be shown that a random 0-1 vector, in fact, has very similar
properties.

Step 3: SVP*< SVP,

We reduce SVP* to SVP with (an arbitrarily large) constant gap by transforming the lattice with
basis Bgyp to a new lattice L, , = {v € A(Bsvp) s.t. (v,w) = 0mod ¢}. For any set of vectors
in A(Bsvp), with high probability (over the choice of w), 1 in ¢ vectors from this set is present
in Ly,q. So by choosing ¢ appropriately and choosing w at random, we can ensure that with high
probability, none of the annoying vectors are retained when reducing from a NO istance of SVP™,
and least 1 good vector is retained when reducing from a YES instance.
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