
6.876J Advanced Topics in Cryptography: Lattices Oct 14, 2015

Lecture 10
Lecturer: Vinod Vaikuntanathan Scribe: Lauren de Meyer, Prashant Vasudevan

Last class we showed the NP-hardness of the Closest Vector Problem (CVP). Today, we discuss
the NP-hardness of the Shortest Vector Problem (SVP) and its gap version, GapSVP.

1 History

The essential parts of the history of hardness proofs for SVP are presented in Table 1. By SVPγ and
CVPγ , we denote GapSVP and GapCVP respectively with gap γ. NP-hard∗ means that the reduction
is randomised - an algorithm for this problem would give a randomised algorithm for any problem in
NP. Quasi-NP-hard means the reduction runs in super-polynomial (though still sub-exponential)
time.

Problem Norm Hardness Reference
CVP1 `p NP-hard [vEB81]
SVP1 `∞ NP-hard [vEB81]
SVP1 `2 NP-hard∗ [Ajt98]
SVP√2 `2 NP-hard∗ [Mic98]
SVPc `p NP-hard∗ [Kho04]
SVP

2(logn)
1/2−ε `p quasi-NP-hard [Kho04]

SVP2(logn)
1−ε `p quasi-NP-hard [HR07]

Table 1: History of NP-hardness proofs for lattice problems.

The following questions immediately arise from the current state of knowledge of NP-hardness
reductions as presented in Table 1, and are still open.

1. Can the reductions to SVP with any gap at all be derandomised? See [Mic12] for notes on
analogies to similar problems from the domain of linear codes.

2. It was shown in [AR05] that SVPn1/2 is in coNP. This makes it unlikely that SVPn1/2 is
NP-hard. But what about SVPn1/2−ε for some ε?

3. Can we get polynomial time reductions for the cases where we now have sub-exponential time
reductions (from [Kho04] and [HR07])? If so, then things here would mirror the state of affairs
for the same gaps for CVP.

2 NP-hardness of SVP in `2-norm

We present here the reduction from [Kho04] SVPc for constant c. While [Kho04] works for SVP in
the `p for any p > 1, we shall concern ourselves only with the `2 norm. It is to be mentioned that the
reduction due to [HR07] mentioned in Table 1 starts with this reduction and uses tensor products
to amplify the gap.

The reduction proceeds in the following three steps:

1. ESC ≤ CVP∗

10-1

2. CVP∗≤ SVP∗

3. SVP∗≤ SVP

The problems ESC (Exact Set Cover), CVP∗, and SVP∗are defined when discussing the respective
steps below.

Step 1: ESC ≤ CVP∗

Exact Set Cover. For each n′, n′′, the promise problem ESC(γ, d) is defined over sets of n′′ subsets
S1, . . . , Sn′′ ⊆ [n′] (along with n′) by the following characterisation of YES and NO instances:

• YES: There is a collection of γd subsets among S1, . . . , Sn′′ that partition [n′].

• NO: No collection of ≤ d subsets among S1, . . . , Sn′′ covers [n′].

CVP∗. The promise problem CVP∗(γ, d) is defined over pairs of full rank matrices and vectors
(B, t) by the following characterisation of YES and NO instances:

• YES: ∃y ∈ Λ(B) such that (y − t) is a 0-1 vector with at most γd ones

• NO: ∀y ∈ Λ(B) and β ∈ Z\{0}, (y − βt) has at least d non-zero coefficients.

Reduction:

For any d and γ, we show how to reduce ESC(γ, d) to CVP∗(γ, d). Given an instance (n′, S1, . . . , Sn′′)
of ESC(γ, d), let χSi be the characteristic vector of Si (of length n′). Then the CVP∗instance reduced
to is (BCV P , t), where BCV P and t are constructed as follows:

1. Pick matrix S as:

S ←


...

...
...

χS1
. . . χSn′′

...
...

...

 ∈ {0, 1}n′×n′′

2. Let LCV P be the lattice defined as LCV P = {z ∈ Zn′′ | Sz = 0}. Pick BCV P to be a basis of
LCV P .

3. Pick t to be any vector in Zn′′ such that St = −−→1 .

In other words, BCV P is a basis of the dual of the lattice formed by the characteristic vectors of
the sets S1, . . . , Sn′′ , and t is a vector in a certain coset of this lattice. The following argue that the
reduction is correct:

• If (n′, S1, . . . , Sn′′) is a YES instance of ESC(γ, d), this implies that there is a 0-1 vector z

with at most γd 1’s such that Sz =
−→
1 . Then the vector y = z + t is in Λ(BCV P) because

Sy = S(z + t) =
−→
0 , and (y − t) = z is a 0-1 vector with at most γd 1’s. Thus, (BCV P , t) is a

YES instance of CVP∗(γ, d).

• If (n′, S1, . . . , Sn′′) is a NO instance of ESC(γ, d), then no collection of at most d subsets even

covers [n′]. For any y ∈ Λ(BCV P) and β ∈ Z\{0} , note that S(y − βt) = −βSt = β
−→
1 . So

(y−βt) cannot have less than d non-zero co-efficients as the set of subsets corresponding to the
non-zero co-efficients of (y− βt) constitutes a cover of [n′]. Hence, (BCV P , t) is a NO instance
of CVP∗(γ, d).

10-2

Step 2: CVP∗≤ SVP∗

SVP∗. The promise problem SVP∗(ζ, d) is defined over a full rank matrix B by the following
characterisation of YES and NO instances:

• YES: There are “many” vectors z ∈ Λ(B) with ‖z‖ ≤
√
ζd

• NO: There are only “a few” vectors z ∈ Λ(B) with ‖z‖ < d.

We leave “many” and “a few” undefined for now. We will reduce CVP∗(γ, d) to SVP∗(4γ + r
d , d)

(for r to be specified later) by creating a lattice that has a guaranteed number of short vectors
(‖ · ‖ ≤

√
4γd+ r) when the CVP∗ instance is a YES and only a limited number of vectors with

length < d when the CVP∗ instance is a NO.

A First Attempt

Consider a CVP∗instance (BCV P , t) with y = BCV Pw the solution. First, construct the lattice basis
B =

[
BCV P t

]
.

• If (BCV P , t) is a YES instance of CVP∗(γ, d) then t is close to the lattice LCV P . This implies
the existence of a vector w ∈ {0, 1}n′′ such that y = BCV Pw is the solution of CVP∗and thus[
BCV P t

] [w
−1

]
= y − t is a 0-1 vector with at most γd ones ⇔ ‖ · ‖2 ≤

√
γd.

• If (BCV P , t) is a NO instance of CVP∗(γ, d), then for any lattice vector y = BCV Pw and for

any β ∈ Z\{0}:
[
BCV P t

] [w
β

]
= y + βt has at least d non-zero coefficients ⇔ ‖ · ‖2 ≥

√
d.

What about the case when β = 0? For this, consider the SVP lattice from

[
BCV P t
L s

]
with L

a gadget lattice and s some point that must satisfy the following properties:

1. s is close to all Lw vectors with w ∈ {0, 1}n′′ such that the YES-instances[
BCV P t
L s

] [
w
−1

]
=

[
BCV Pw − t
Lw − s

]
are not ruined.

2. For NO-instances

[
BCV P t
L s

] [
w
β

]
=

[
BCV Pw + βt
Lw + βs

]
, we have either:

• β 6= 0⇒ the vector BCV Pw + βt already has at least d non-zero coefficients by CVP∗.

• β = 0⇒ we must make sure Lw is not short

Finding L and s

Consider a binary [n, k, d]2 code that transforms k-bit messages to n-bit codewords such that the
minimum distance between any two codewords is d. With G the generator matrix of the code, let L
be the basis of the lattice generated by

[
G 2I

]
(the basis vectors of G mod 2).

Lemma 1. Every vector in Λ(L) has either

• only even coordinates (= vectors corresponding to the zero codeword)

• ≥ d non-zero coordinates (=vectors corresponding to non-zero codewords)

10-3

Lemma 2. For any r ∈ N, there is a point s ∈ {0, 1}n such that the number of lattice vectors in
Λ(L) at distance at most r from s is at least:

2k

2n

(
n

r

)
=

1

2n−k

(
n

r

)
Proof. Consider the collection of 2k codewords (that are also vectors in Λ(L)) and the space {0, 1}n
of 2n vectors. Connect each codeword to the vectors with hamming distance r (which are obtained
by flipping r bits of the codeword). In each codeword one can choose

(
n
r

)
different combinations of

bits to flip so each codeword has
(
n
r

)
edges. This implies that the total number of edges is

(
n
r

)
· 2k.

So there is at least one point s ∈ {0, 1}n that has at least
(
n
r

)
2k

2n incident edges, which implies there
are at least so many points in Λ(L) within distance r from it.

The Reduction

Now we can finish our reduction from CVP∗(γ, d) to SVP∗ by dealing with the case of β = 0. Consider
the following lattice basis:

BSV P =

[
2BCV P 0 2t

0 L s

]
• If (BCV P , t) is a YES instance of CVP∗(γ, d), then there are vectors y, w such that y − t =
BCV Pw − t is a 0-1 vector with at most γd ones. By Lemma 2, there exists a vector s and at
least 1

2n−k

(
n
r

)
vectors w′ such that Lw′ − s has at most r ones. This means that there exist at

least 1
2n−k

(
n
r

)
lattice vectors z = BSV P

 ww′
−1

 =

[
2(BCV Pw − t)

Lw′ − s

]
with ‖z‖2 ≤

√
4γd+ r (We

call these z’s good vectors).

• If (BCV P , t) is a NO instance of CVP∗(γ, d), then consider the vector z = BSV P

ww′
β

 for any

w,w′ and β. We have the following cases:

– β 6= 0 ⇒. In this case, the fact that this is a NO instance of CVP∗ guarantees that
‖z‖2 ≥

√
d.

– β = 0. In this case, the lattice vectors are of the form z =

[
2BCV Pw
Lw′

]
.

1. If ∃ an odd coordinate in z, then by Lemma 1, there are ≥ d odd coordinates ⇔
‖z‖2 ≥ d.

2. Else, there are only even coordinates:

∗ If there are at least d
4 non-zero coordinates in z, then ‖z‖2 ≥ d.

∗ Else, z has less than d
4 non-zero coordinates:

· If there is a coordinate with absolute value at least d, then ‖z‖2 ≥ d
· Else, we call z an annoying vector. Such a vector has only a few (< d/4)

non-zero coordinates and each coordinate have absolute value at most d. By
straightforward counting, we can see that the number of annoying vectors
is at most: (

n+ n′′ − n′

d/4

)
(2d+ 1)d/4

10-4

If one chooses r = (3
4 + ε)d for some small constant ε and uses a BCH code ([n, n− d

2 log n, d]2)
in the above reduction, then one can make sure that the number of annoying vectors in any instance
that a NO instance of CVP∗ reduces to is much smaller than the number of good vectors in any
instance that a YES instance reduces to.

Note that there was a non-uniform step involved in the reduction, which was knowing an s such
that there are a lot of codewords close to it as predicted by Lemma 2. This non-uniformity can
be traded for randomness, as it can be shown that a random 0-1 vector, in fact, has very similar
properties.

Step 3: SVP∗≤ SVPc

We reduce SVP∗ to SVP with (an arbitrarily large) constant gap by transforming the lattice with
basis BSV P to a new lattice Lw,q = {v ∈ Λ(BSV P) s.t. 〈v, w〉 = 0 mod q}. For any set of vectors
in Λ(BSV P), with high probability (over the choice of w), 1 in q vectors from this set is present
in Lw,q. So by choosing q appropriately and choosing w at random, we can ensure that with high
probability, none of the annoying vectors are retained when reducing from a NO istance of SVP∗,
and least 1 good vector is retained when reducing from a YES instance.

References

[Ajt98] Miklós Ajtai. The shortest vector problem in L2 is NP -hard for randomized reductions
(extended abstract). In Proceedings of the Thirtieth Annual ACM Symposium on the Theory
of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 10–19, 1998.

[AR05] Dorit Aharonov and Oded Regev. Lattice problems in NP cap conp. J. ACM, 52(5):749–765,
2005.

[HR07] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to
within almost polynomial factors. In Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 469–477, 2007.

[Kho04] Subhash Khot. Hardness of approximating the shortest vector problem in lattices. In
45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004,
Rome, Italy, Proceedings, pages 126–135, 2004.

[Mic98] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within some
constant. In 39th Annual Symposium on Foundations of Computer Science, FOCS ’98,
November 8-11, 1998, Palo Alto, California, USA, pages 92–98, 1998.

[Mic12] Daniele Micciancio. Inapproximability of the shortest vector problem: Toward a
deterministic reduction. Theory of Computing, 8(1):487–512, 2012.

[vEB81] Peter van Emde Boas. Another np-complete partition problem and the complexity of
computing short vectors in a lattice. Technical Report 81-04, Mathematische Instituut,
University of Amsterdam, 1981.

10-5

