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1 Overview

• Worst-case to average-case reduction

Worst-case problems are typically harder than average-case problems. While if there
is worst-case to average-case reduction, you are able to solve the problem in worst-case
if you can solve a problem in average case.

An example of worst-case to average-case reduction is RSA. Assume there is an black
box reverse RSA, i.e. you known N, e, the box output me−1 mod φ(N) on input m. While
the box is only guaranteed to work w.h.p. on random input m. Then given m, your
could query the box on input m′ = m · re for random r, then the box should output
me−1 · r with high probability.

• Cryptography constructions (One-way functions, CRHFs)

2 Reduce worst-case SIVPÕ(n) to average-case SIS (Short

Integer Solutions) [MR07]

Definition 2.1 (Search SIVPγ). Given a lattice L, find n linear independent vectors v1, . . . ,vn
in L such that ‖vi‖2 ≤ γλn.

Definition 2.2 (SIS(n,m, q, β)). Given A ∈ Zn×mq , find e ∈ Zmq s.t.

1. Ae = 0

2. e 6= 0

3. ‖e‖2 ≤ β

Moreover, SIS is typically considered as an average-case problem. An oracle solving SIS
would output a short solution w.h.p. given uniform random input A.

We choose parameter m > n log q
log(β+1/2)

so that a short solution is guaranteed.

Remark. • Parameter: When m < n, the SIS problem is trivial. The case when n <
m < n log n is similar to LWE.

• We could define fA by fA(e) = Ae mod q, fA is “many-to-one” under such parameter.
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• SIS is a lattice problem. The set Λ⊥(A) = {e : Ae = 0 mod q} is an integer lattice
and A is the “parity check” matrix. SIS problem is to find a non-zero short vector in
the lattice.

• SIS can be defined more generally on a Abelian group G. In SISG, given a1, . . . , am ∈ G,
find short vector (e1, . . . , em) ∈ Zm such that

∑
eiai = 0.

• Another generalization is ISIS (Inhomogenous SIS), given A,b, find e such that Ae = b
mod q.

Theorem 2.1. There is a polytime reduction from SIVPÕ(n) to average-case SISn,m,q,β, where

q = Ω(n2), β = O(
√
m),m ≈ n log q.

An important concept in the proof is Gaussian distribution. In n-dim Gaussian, ρs(u) ∝
e−
‖u‖2

s2 . Consider we pick a random lattice, then add a Gaussian noise with variance s.
(Formally, we should sample from Gaussian distribution and modulo parallelepiped.) If
s � λ1, the resulting distribution should concentrate around the lattice points. If s � λ1,
then the Gaussian distribution rooted at two neighbor lattice points “merge together”. If s
is sufficiently large, then the distribution is close to uniform distribution.

To quantify this idea, we define the smoothing parameter ηε as in [MR07]

Definition 2.3 (Smoothing parameter ηε(L(B))). The smoothing parameter of lattice L(B)
of error ε is the minimum variance of Gaussian, such that its modulo over parallelepiped
P (B) is ε-close to uniform.

ηε(L(B)) = inf{s : ∆sd(N (0, s2) mod P (B),UP (B)) ≤ ε}

Theorem 2.2 (Banaszczyk [Ban95, Pei08]). For every lattice,

ηε(L) ≤
√

log(1/ε) + log n · λn

Proof of Theorem 2.1. The reduction is

Given basis B ∈ Zn×n, (and assume that λn is known)

1. Choose x1, . . . ,xn from n-dimensional Gaussian N (0, s2) such that s ≥ ηε(L)

2. yi = xi mod P (B)

Then we known yi should satisfies (close to) uniform distribution in P (B).
We consider the sup-lattice L(1

q
B) = {v/q : v ∈ L(B)}, which is qn times more dense

then L(B). Round yi to a vector zi in this sup-lattice, and let ai be the coefficient of the
lattice point under base 1

q
B.

3. ai = dq ·B−1yic, zi = 1
q
Bai

Then zi = 1
q
Bai is the lattice point in L(1

q
B), and it’s close to yi. Moreover, ai should be

(almost) uniform random in Zq.
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4. Feed (a1, . . . , am) as input to the SIS oracle, get (e1, . . . , em).

5.
∑
ei(xi − yi + zi) is a short lattice vector.

Correct: Vector
∑
ei(xi − yi + zi) is a lattice point.

∑
ei(xi − yi) is a lattice point

because xi − yi is a lattice point; and
∑
eizi is a lattice point because

∑
eiai = 0 mod q∑

eiai = 0 mod q

=⇒
∑

ei
1

q
ai = 0 mod 1

=⇒
∑

ei
1

q
Bai = 0 mod P (B)

=⇒
∑

eizi = 0 mod P (B)

Short: Vector
∑
ei(xi − yi + zi) is a short vector.

‖v‖ ≤ ‖
∑

eixi‖+ ‖
∑

ei(yi − zi)‖

≤ ‖e‖ · ‖x‖+
nmaxi ‖bi‖

q

≤ β · s
√
n+

nmaxi ‖bi‖
q

The problem is that ‖bi‖ might be so large that the output v is not a short vector. In such
case, v is shorter than maxi ‖bi‖ (if q is sufficiently large), then we could use v to update
the basis so that we’ll get a shorter basis.

Set q ≥ n2. If maxi ‖bi‖ > Ω̃(nλn), we get v that is smaller than maxi ‖bi‖. Use it to
update the basis and reduce max ‖bi‖. Repeat such process many times until ‖bi‖ = Õ(nλn),
then ‖v‖ ≈ O(β

√
mn).

Non-zero and cheat: The above analysis does not rule out the possibility that v = 0.
We are solving Search SIVPλ, we are looking for n linear independent lattice points, while
the procedure might always output lattice points from a subspace. Also, when maxi ‖bi‖,
we use v to update the basis, while if v is limited in a subspace, e.g. the space spanned by
b1, then v can not be used to improve the basis. In either case, we hope v is not limited in
any subspace. We relies on randomness to solve the problem. E.g. if v is uniformly sampled
from all lattice points that ‖v‖ ≤ Õ(β

√
mn), then all the problems are fixed.

Notice that in our procedure, step 3 and 4, xi is never used, and yi is their best knowledge
about xi. Given yi = xi mod P (B), vector xi − yi satisfies discrete Gaussian distribution,

which is a distribution over lattice L such that ρs(u) ∝ e
‖u‖2

s2 .
The procedure outputs v =

∑
ei(xi − yi) +

∑
eizi. Given the values used in step 3 and

4,
∑
eizi is a fixed number, while

∑
ei(xi − yi) is sum of discrete Gaussian, which satisfies

discrete Gaussian with standard deviation ‖e‖2s. These provide sufficient randomness to fix
the problems mentioned above.
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3 Reduce SAT to inverting OWF? (Is SAT ≤ OWF?)

Question: we are given an oracle inverting a family of one-way functions. Could you use it
to solve SAT in polynomial time?

Consider a special case where the family is consist of permutations. Any language that
can be reduced to inverting one-way permutation is in NP∩coNP. So SAT can not be reduce
to inverting one-way permutations unless polynomial hierarchy collapses.

Slightly more generally, if a language can be reduce to inverting an one-way functions
family that is regular (or size-verifiable). Then the language is in AM∩ coAM ( NP [BB15].
This rule out the probability that you can reduce SAT to worst-case inverting regular one-way
functions.

Another negative result: NP-hard problems cannot be reduce to arbitrary one-way func-
tions family, if the reduction is non-adaptive (or constant-round adaptive) [HMX10].

What we are looking for is an reduction from SAT to average-case inverting an one-way
functions family. We have not ruled out this probability, but we known the OWF family
must not be regular or size-verifiable, and the reduction must be (heavily) adaptive.

We can easily construct a “one-way functions family”, inverting which in worst-case
implies solving SAT. While the worst-case hardness is not a useful guarantee in cryptography.
The reduction from SIVP to SIS is extremely interesting because it reduce inverting a one-
way function in worst-case to an average-case problem.
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