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1 Introduction

So far, we have seen:

• An average-case hard problem on lattices: Short Integer Solution (SIS)

• Worst-case to average reduction (for SIS)

• Cryptographic applications of hardness of SIS: one-way functions, collision-resistant hash function
families, etc.

Today, we plan to cover:

• Another average-case hard problem: Learning with Errors (LWE)

• Public-key encryption (PKE) and fully homomorphic encryption (FHE) from LWE

Next time, we will begin with:

• Worst-case to average reduction (namely, if there is an efficient solver for LWE, then there is an efficient
solver for worst-case SIVP)

1.1 Background

Cryptographic work over the past decade has built many primitives based on the hardness of the Learning
with Errors (LWE) [Reg05] problem. Today, LWE is known to imply essentially everything you could want
from crypto, apart from a few notable exceptions: e.g. it is not known how to construct program obfuscation,
one-way permutations, or non-interactive zero knowledge based on LWE.

Features of LWE that make it advantageous for use in cryptography include:

• LWE seems to be resilient to partial leakage of secrets, as we will see.

• No quantum attacks against LWE are known (unlike the other major cryptographic hardness assump-
tions such as factoring or discrete logarithm).

Notation PPT stands for probabilistic polynomial time. For a set S, we write s ← S to mean that s is
sampled uniformly at random from S. negl(·) denotes an arbitrary negligible function. For a natural number
n, we write [n] to denote the set {1, . . . , n}. We write || · || for the `2-norm.

2 Learning with Errors

A learning with errors instance LWEn,q,χ is parametrized by:

• n ∈ N,

• q ∈ Primes, and

• χ, a probability distribution over Z/qZ.

χ is known as the noise distribution and we would like it to generate “short” elements, i.e. ||e|| ≤ B with
high probability for some bound B << q, when e← χ. In practice, χ is usually a discrete Gaussian over Z.
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2.1 Search LWE

Suppose we are given an oracle Ons which outputs samples of the form (a, 〈a, s〉+ e),

• a← Znq is chosen freshly at random for each sample.

• s ∈ Znq is the “secret” (and it is the same for every sample).

• e← χ is chosen freshly according to χ for each sample.

The search-LWE problem is to find the secret s given access to Ons . The LWEn,q,χ assumption is the
assumption that the search-LWE problem is computationally hard: this is formalized in Definition 1 below.

Remark Note that without the “noise” bit e, the problem would be trivial: if we get n samples of the
form (a1, 〈a1, s〉), . . . , (an, 〈an, s〉), we can solve for s by Gaussian elimination.

Definition 1 (LWEn,q,χ assumption). For any PPT algorithm A, it holds that:

Pr
s←Zn

q

[
AO

n
s (1n) = s

]
= negl(n).

The search version of the LWE problem is not very suitable for cryptography: intuitively, if we are
constructing an encryption scheme, then we want the adversary not to be able to get any information about
the encrypted message, not that he just cannot guess it exactly. For example, the LWEn,q,χ assumption allows
for the possibility that an adversary could reliably guess the first half of the secret s. For cryptography, the
decisional variant of the LWE assumption described in the next subsection is preferable.

2.2 Decisional LWE

Let Ons be the oracle described in the previous subsection, and let R be an oracle which outputs uniformly
random samples (a, b)← Znq×Zq. The decisional LWE problem is to “guess” which oracle you are interacting
with, when given access to an unknown oracle which is either Ons or R. This is formalized in Definition 2.

Definition 2 (Decisional LWEn,q,χ assumption). For any PPT algorithm A, it holds that:∣∣∣Pr
[
AO

n
s (1n) = 1

]
− Pr

[
AR(1n) = 1

]∣∣∣ = negl(n).

It is easy to see that if the decisional LWEn,q,χ assumption holds, then the (search) LWEn,q,χ assumption
holds too. Interestingly, the opposite implication also holds (although we lose a little in the parameters), as
will be shown in subsection 2.7.

2.3 A variant definition with fixed number of samples

We define LWEn,m,q,χ with an additional parameter m ∈ N which represents the number of samples that the
adversary is given. That is, the adversary no longer has oracle access to Ons (or R), but instead receives as
input m samples from Ons (or R). Note that m samples from Ons have the following form:

(a1, 〈a1, s〉+ e1), . . . , (am, 〈am, s〉+ em),

where for each i ∈ [m], ai ← Znq and ei ← χ. Thus, these samples can equivalently be expressed as:

(A, sTA + eT ),

where A← Zn×mq is a matrix that has columns a1, . . . ,am, and e← χm has entries e1, . . . , em.
Definitions 3 and 4 formally describe the search and decisional LWEn,m,q,χ assumptions, respectively.
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Definition 3 (LWEn,m,q,χ assumption). For any PPT algorithm A, it holds that:

Pr
s←Zn

q

A←Zn×m
q

e←χm

[
A(1n, (A, sTA + eT )) = s

]
= negl(n).

Definition 4 (Decisional LWEn,m,q,χ assumption). For any PPT algorithm A, it holds that:∣∣∣∣∣∣∣∣∣∣
Pr

s←Zn
q

A←Zn×m
q

e←χm

[
A(1n, (A, sTA + eT )) = 1

]
− Pr

A←Zn×m
q

b←Zm
q

[A(1n, (A,b)) = 1]

∣∣∣∣∣∣∣∣∣∣
= negl(n).

Note that LWEn,m,q,χ is more restricted that LWEn,q,χ in that the adversary gets only a predetermined
number of samples, rather than being able to oracle-query however many times he wants. We will find the
LWEn,m,q,χ definition to be useful for the reductions we show in the rest of the lecture.

2.4 Reduction from SIS to LWE

Recall the Short Integer Solution (SISn,m,q,β) problem: given A ← Zn×m, find a “short” non-zero vector
r ∈ Zm such that Ar = 0 mod q and ||r|| ≤ β.

Claim 5. If there is an efficient algorithm that solves SISn,m,q,β, then there is an efficient algorithm that
solves decisional LWEn,m,q,χ, provided that β ·B << q.

Proof. Let ASIS be an efficient solver for SISn,m,q,β . We build an efficient solver AdLWE for decisional LWE
as follows. On input (A,bT ) ∈ Zn×mq × Zmq , AdLWE runs ASIS(A) = r and obtains a short vector r. Now, if

(A,bT ) is an LWE sample, then
bT r = (sTA + eT )r = eT r,

which is small (specifically, it is at most β ·B) since both e and r are short. On the other hand, if (A,bT ) is
random in Zn×mq ×Zmq , then bT r is random in Zq. Hence, if our solver AdLWE outputs 1 when ||bT r|| ≤ β ·B
and outputs 0 otherwise, it will distinguish with non-negligible advantage between the case when (A,bT ) is
an LWE sample and the case when (A,bT ) is random.

For the next claim, we invoke a strong SIS solver. A strong SIS solver is one which, when run many
times, will output many independent, random short vectors r satisfying the requirements of the SIS problem.

Claim 6. If there is an efficient algorithm that strongly solves SISn,m,q,β, then there is an efficient algorithm
that solves (search) LWEn,m,q,χ.

Proof. Let A∗SIS be an efficient algorithm which strongly solves SISn,m,q,β . We build an efficient solver ALWE

for search LWE as follows: on input (A,bT ), ALWE runs A∗SIS(A) m times to obtain short vectors r1, . . . , rm.
Note that for each i ∈ [m], our algorithm ALWE can efficiently compute

bT ri = (sTA + eT )ri = eT ri.

Since A∗SIS strongly solves SISn,m,q,β , the vectors r1, . . . , rm are independent and random subject to ||ri|| ≤ β.
It follows that from the pairs (ri, e

T ri), it is possible for ALWE to compute e by Gaussian elimination. Once
e is known, ALWE can compute s as s = (b− e)TA′ where A′ is the right-inverse of A.
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2.5 For which values of m is the LWE problem hard?

The search LWE problem is actually easy if m is much smaller than n. For example, if you only get one
sample (a, 〈a, s〉 + e), then there is only one constraint, and there are many solutions which satisfy this
constraint: in other words, s is not uniquely defined.

m = 1 m = n m = Ω(n), m >> n

Search LWE: trivial

Decisional LWE: impossible

As far as we know,
LWE is hard

(even as hard as SIS)

Injective: given (A, sTA + eT ),

there is a unique solution (s, e)

2.6 Random self-reducibility

Claim 7. If there is an efficient decider Davg for average-case decisional LWE (i.e. where the secret s is
chosen at random), then there is an efficient decider Dworst for worst-case decisional LWE (i.e. where the
secret s may be chosen from an arbitrary distribution).

Proof. Given an average-case decider Davg, we can build a worst-case decider Dworst as follows: on input

(A,bT ), our decider Dworst chooses a fresh random s′ ← Znq and runs Davg on input (A,bT + s′
T
A). Notice

that if (A,bT ) was an LWE sample, i.e. bT = sTA + eT , then the input given to Davg can be written as

(A,bT + s′
T
A) = (A, (sT + s′

T
)A + eT ),

and this is an LWE sample with secret s + s′. Since s′ was chosen at random, this new secret s + s′ is
also distributed uniformly at random – that is, the input to Davg is an average-case LWE sample. On the

other hand, if (A,b) was random, then the input (A,bT + s′
T
A) given to Davg is also random. Hence, the

decider Davg will succeed (with non-negligible advantage) at distinguishing between the case where its input

(A,bT + s′
T
A) is an LWE sample and the case where it is random. Moreover, we have shown that these

two cases exactly correspond to the case where the input (A,bT ) to Dworst is an LWE sample and the case

where it is random, respectively. Therefore, if Dworst runs Davg on input (A,bT + s′
T
A), and outputs the

value outputted by Davg, then it will be an efficient decider for worst-case decisional LWE.

2.7 Reduction from search to decisional LWE

We now show a reduction from search to decisional LWE.

Theorem 8. If there is an efficient solver for decisional LWEn,m,q,χ, then there is an efficient solver for
search LWEn,m′,q,χ, where m′ = O(nmq/ε2).

Proof. Let D be an efficient solver for decisional LWEn,m,q,χ. Without loss of generality, assume that

Pr
s←Zn

q

A←Zn×m
q

e←χm

[
A(1n, (A, sTA + eT )) = 1

]
− Pr

A←Zn×m
q

b←Zm
q

[A(1n, (A,b)) = 1] = ε(n). (1)

where ε is polynomial in n. Our approach to solve search LWEn,m′,q,χ will be to “guess” the secret, one
coordinate at a time. Let s1, . . . , sn ∈ Zq denote the coordinates of s, that is, s = (s1, . . . , sn). Consider the
algorithm which, on input (A, sTA + eT ), for each i ∈ [m], guesses the ith coordinate of s as described in
Algorithm 1 below.
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Algorithm 1 “Guess” the ith coordinate of s

For j = 0, . . . , q − 1:

• Let gi := j.

• For ` = 1, . . . , L = O(1/ε):

– Sample a random vector c` ← Zm
q , and let C` ∈ Zn×m

q be the matrix whose top row is c`, and whose
other entries are all zero.

– Let A′` := A+C`, and b′` = b+ gi · c`.
– Run D on input (A′`,b

′
`) and let the output of D be called d`.

• If majority(d1, . . . , d`) = 1 then output gi. Else, continue to the next iteration of the loop.

If a guess gi is correct, i.e. si = gi, then the inputs (A′`,b
′
`) given to D are LWE samples, since

b′` = b + si · c` = sTA + eT + si · c` (expanding b)

= (sTA + si · c`) + eT (rearranging)

= sT (A + C`) + eT (by construction of C`)

= sTA′` + eT . (by definition of A′`)

On the other hand, if the guess gi is wrong, i.e. si 6= gi, then the inputs (A′`,b
′
`) given to D are uniformly

random, since

b′` = b + gi · c` = sTA + eT + gi · c`
= (sTA + gi · c`) + eT

= sTA′` + (gi − si) · c` + eT ,

and the term (gi− si) · c` is random since gi− si is nonzero and c` is random. It follows, by (1), that D will
output 1 with probability at least 1/2 + ε, in the case that si = gi. Since we run D many times (L = O(1/ε)
times, to be precise), it follows from a Chernoff bound that with overwhelming probability: if the majority
of the outputs d1, . . . , d` from D are equal to 1, then we are in the case where si = gi, and if not, we are
in the case where si 6= gi. Hence, with overwhelming probability, Algorithm 1 guesses each coordinate of
s correctly. Therefore, applying Algorithm 1 to each coordinate of s will, with overwhelming probability,
correctly output all coordinates s1, . . . , sn of s.

3 Encryption schemes

3.1 Secret-key encryption from LWE

In this subsection, we describe a secret-key encryption scheme SKE based on LWE, due to [Reg05]. For the
correctness of the encryption scheme, we will require that the noise distribution χ is such that ||e|| ≤ q/4
with high probability, for e← χ. We can choose χ to be a discrete Gaussian distribution that satisfies this
constraint.

• SKE.KeyGen(1n) takes as input the security parameter n and outputs a secret key sk = s← Znq .

• SKE.Enc(sk = s, µ) takes as input a secret key s and a message µ ∈ {0, 1}, and outputs a ciphertext

(a, 〈a, s〉+ e+ µ · dq/2e),

where a← Znq and e← χ are sampled afresh for each ciphertext.
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• SKE.Dec(sk = s, (a, b)) takes as input a secret key s and a ciphertext (a, b), and outputs a decryption:

µ′ :=

{
0 if ||b− 〈a, s〉|| < q/4

1 otherwise.

We now argue the correctness and security of this encryption scheme.

Correctness If (a, b) is a correctly formed ciphertext, then we have

b− 〈a, s〉 = e+ µ · dq/2e .

Then, from the definition of the decryption algorithm, it is clear that correctness holds as long as ||e|| < q/4.
This holds with high probability, due to our choice of χ.

Security By the decisional LWEn,q,χ assumption, a sample of the form (a, 〈a, s〉 + e) is computationally
indistinguishable from a random sample (a, b)← Znq ×Zq. The ciphertexts of SKE are simply LWEn,q,χ sam-
ples with µ ·dq/2e added to the second component, so it follows that the ciphertexts are also computationally
indistinguishable from random samples (a, b) ← Znq × Zq. In particular, there is no efficient algorithm that
distinguishes with non-negligible advantage between the cases where µ = 0 and µ = 1.

3.2 Public-key encryption from LWE

Finally, we describe a public-key encryption scheme PKE based on LWE, again due to [Reg05]. We require
for the correctness of the encryption scheme that the noise distribution χ is such that ||e|| ≤ q/4m with high
probability, for e← χ.

• PKE.KeyGen(1n) takes as input the security parameter n, samples A ← Zn×mq and e ← χm, and

outputs a key-pair (pk, sk) where sk = s← Znq and pk = (A, sTA + eT ).

• PKE.Enc(pk = (A,bT ), µ) takes as input a public key (A,bT ) and a message µ ∈ {0, 1}, samples a
short vector r← {0, 1}m, and outputs a ciphertext

(Ar,bT r + µ · dq/2e).

• PKE.Dec(sk = s, (u, v)) takes as input a secret key s and a ciphertext (u, v), and outputs a decryption:

µ′ :=

{
0 if ||v − sTu|| < q/4

1 otherwise.

We now argue the correctness and security of this encryption scheme.

Correctness If (u, v) is a correctly formed ciphertext, then we have

v − sTu = bT r− µ · dq/2e − sTAr = eT r + µ · dq/2e .

Note that if we have a bound B such that ||e|| ≤ B with high probability for e ← χ, then we have that
||eT r|| ≤ m ·B by a coordinate-wise bound. From the definition of the decryption algorithm, it is clear that
correctness holds if ||eT r|| < q/4. This holds with high probability, due to our choice of χ with B = q/4m.
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Security We want to prove that for any k = poly(n),

(pk,PKE.Enc(pk, µ1), . . . ,PKE.Enc(pk, µk))
c
≈ (pk,PKE.Enc(pk, 0), . . . ,PKE.Enc(pk, 0)), (2)

where pk is a public key sampled by PKE.KeyGen, and
c
≈ denotes computational indistinguishability. In fact,

it is sufficient to show that1

(pk,PKE.Enc(pk, 0))
c
≈ (pk,PKE.Enc(pk, 1)). (3)

We now show that (3) holds by considering the following hybrids. In the description of each hybrid, the
part which changed from the previous hybrid is underlined in red.

Hybrid 1

• pk = (A,bT ) = (A, sTA+ eT ) for A← Zn×m
q , s← Zn

q , e← χm

• ct = PKE.Enc(pk, 0) = (Ar,bT r) for random r← {0, 1}m

Hybrid 2

• pk = (A,bT ) for A← Zn×m
q and random b← Zm

q

• ct = PKE.Enc(pk, 0) = (Ar,bT r) for random r← {0, 1}m

Hybrid 3

• pk = (A,bT ) for A← Zn×m
q and random b← Zm

q

• ct = (u, v)← Zn
q × Zq

Hybrid 4

• pk = (A,bT ) for A← Zn×m
q and random b← Zm

q

• ct = PKE.Enc(pk, 1) = (Ar,bT r+ dq/2e) for random r← {0, 1}m

Hybrid 5

• pk = (A,bT ) = (A, sTA+ eT ) for A← Zn×m
q , s← Zn

q , e← χm

• ct = PKE.Enc(pk, 1) = (Ar,bT r+ dq/2e) for random r← {0, 1}m

Hybrid 1 is computationally indistinguishable from Hybrid 2 by the decisional LWEn,m,q,χ assumption.
Hybrids 2 and 3 are statistically indistinguishable by the Leftover Hash Lemma (see Lemma 9). Hybrids
3 and 4 are also statistically indistinguishable by Lemma 9. Finally, Hybrids 4 and 5 are computationally
indistinguishable by the decisional LWEn,m,q,χ assumption.

Notice that Hybrid 1 corresponds exactly to the pair (pk,PKE.Enc(pk, 0)) on the left-hand side of (3),
and Hybrid 5 corresponds to the pair (pk,PKE.Enc(pk, 1)) on the right-hand side of (3). We conclude that
no PPT adversary can distinguish with non-negligible advantage between Hybrid 1 and Hybrid 5, and thus
we have shown that (3) holds.

Lemma 9. The distribution of (A,Ar) is statistically ε-close (see Definition 10) to the distribution of (A,u)
where A← Zn×mq , r← {0, 1}m, and u← Znq .

Proof. By the Leftover Hash Lemma [ILL89], this holds as long as m > n log(q) + 2 log(1/ε).

Definition 10. Let X and Y be two random variables with range U . The statistical distance between X and
Y is defined as follows:

∆(X,Y ) =
1

2

∑
u∈U
|Pr[X = u]− Pr[Y = u]|

. For any ε > 0, we say X and Y are statistically ε-close if ∆(X,Y ) ≤ ε.
1From (3), we can prove (2) by a standard hybrid argument.
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