
6.876 Lattice Based Crypto
Fall 2015

Worst-case to Average-case Reduction for LWE
Date: 11/2/2015

So far:

• SIS and Applications: CRHF, OWF

• LWE and Applications: SK Enc, pK Enc, fhe

Today:

• Sketch of LWE wc/ac reductions

• Trapdoors for lattices

We need new techniques to work with lattices and LWE. The main point is to start
talking about trapdoors for lattices. This will let us construct not only one-way functions,
but trapdoors.

Before going there, we will briefly sketch LWE wc/ac reductions.

Sketch of LWE wc/ac reductions

Theorem. Suppose you can solve LWEn,q,χ (average-case) where χ is a Gaussian Dαq

with standard deviattion αq with α ∈ [0, 1). So each sample (a,< a, s > +e) has e ∈ Dαq.
Then, you can solve gapSV Pn,1/α·n1.5 (worst-case).

This only applies to LWE with Gaussian distribution. Other distributions are open
problems. The larger α is, the harder it is to solve LWE, then we should be able to find
a better approximation to gapSVP, so parameter is 1/α.
Note: For SIVP, we showed a similar reduction: SIS average case to worst case SIV Pn,O(n),
and gapSV Pn,O(n) by duality. SIS gives you a solution to shortest INDEPENDENT vec-
tor problem, but solving LWE, don’t know how to solve a worst case search problem.

Proof. Idea: We will show that if you can solve average case LWEn,q,χwc we can solve
the worst case (search problem) BDDn,αbdd. Then, if you can solve BDDn,α, you can
solve worst case gapSV P

n,1/αbdd·
√
n/logn

.

Definition. LWEn,α: If m > n log q, then the lattice generated by A, Lq(A) = {sTA}+
qZm is very sparse, and has a large minimum distance:

λ1(Lq(A)) = O(q)

Definition. BDDn,α (Bounded Distance Decoding): Given a point v ∈ Zn that is
at most αλ1(L)-far from L, with α ∈ [0, 1/2), find the closest lattice point.



BDD =⇒ gapSV P : Given access to BDD how to we solve gapSVP problem? BDD
only solves the closest vector problem if v is αλ1(L) away. The inputs to BDD should
be close to the lattice. How should we generate good target point for which we do not
know the answer?

If we have a lattice, we can pick a random lattice point, and add about
√
n/ log n

noise around it, call it v.
In one case, if λ1 ≥ 2

√
n/ log n, then v is a valid input to BDD. BDD will returns y.

In the second case, we have λ1 ≤ 1. It is unlikely that we have a unique closest vector
to v. BDD algorithm will return y or y±w with equal probability. So if the BDD oracle
return the same y that we picked, then we know that λ1 is large. If it doesn’t, then λ1
is small.

This generalizes to any α for BDD, by distinguishing the case with λ1 ≥ 2
√
n/logn· 1α

and λ1 ≤ 1. Thus, we can solve gapSV P
n, 1
α
·
√
n/logn

.

(ac)LWEn,q,αwc =⇒ (wc)BDDn,αbdd : Given an average-case LWE oracle, and we
want to solve worst-case BDD.

Input: Lattice L, Vector v ∈ Zn, and we want to find the closest lattice vector.
Let’s say y ∈ L is the closest lattice vector to v, in other words, v = y + e, where

‖e‖ ≤ αbdd · λ1(L). We can write v = Bs+ e. Want to find s. How can we use ac LWE
to solve this problem? s is going to remain the same: s is the worst case BDD secret,
and s is the average case LWE secret.

Idea: Sample y∗ ← DL∗,r, where L∗ = {x ∈ Rn :< x, y >∈ Z∀y ∈ L} and r > q·ηε(L).
So y∗ = B ∗ ·a for some a, which will be our a’s to LWE.

< v, y∗ > =< y + e, y∗ >
=< y, y∗ > + < e, y∗ >
= yty ∗+ . . .

= stBtB∗a+ . . .

= st(I)a+ . . .

= sta+ . . .

But we need to show that a mod q looks random. If we pick a large discrete gaussian,
this is possible. What happens to error? This is a discrete Gaussian with a worst
case error with bounded length. Want to show that it behaves like a one-dimensional
Gaussian. This would be true if y∗ were a continuous Gaussian. To prove it for a discrete
Gaussian is harder, and can be done if r is large enough, so we can kill it by adding a
continuous Gaussian e′ (this is the rough idea):

< v, y∗ > +e′ mod q

The above work is the work of Micc-Lyubaskhecsky and Regev+Peikert.



Lattice Trapdoors [Ajtai’99, ..., MP’12]

Recall that we have a one-way function from LWE:

fA(s, w) = sTA+ eT

where A is an n×m lattice.
Inverting this is uniformly hard. Is it possible to make it hard for you but easy for

me? In other words, can this be a trapdoor function where:

1. Given A, fA(s, e), it is hard to find s

2. Given (A, TA) (Ta = trapdoor), it is easy to find s

3. Should be easy to sample (A, TA).

In this situation, given sTA+eT , we want some special information about A that lets
me distinguish that from randomness. This special information can be a short vector
in the kernel of A – a short solution to At = 0 mod q, a solution to SIS on A. Why?
Given t, we can compute yT t. If y is random, we can randomness. If y is LWE, we get
(sTATe )t = eT t which is small. This is my trapdoor.

Want to use this trapdoor to not only distinguish between LWE and random, but
also to break one-way-ness: we want to recover s and e.

Definition. A trapdoor for A is a matrix of linearly independent solutions to SIS.
Ta ∈ Zm×m such that:

• ‖Ta‖ is small (each vector is small)

• A · Ta = 0 mod q

• Ta has rank m over Z

Note: How many linearly independent vectors can we have in the kernel? At most
n −m. So we need to have rank m over the integers Z, but they wouldn’t be linearly
independent mod q.

Given T , we can:

(stA+ et) · T = etT mod q

So we get m equations for the error term. Since they are both small, we actually
have etT over the integers. We know that T has full rank over Z, so we can invert T and
retreive e. Once we have e, we have s.

Not only can we use TA to solve LWE, but we can also solve inhomogeneous SIS
(ISIS):

ISIS: Given v ∈ Znq , find short r such that Ar = v mod q.

To find TA: Take q = 2k, g = (1, 2, 4, . . . , 2k−1) so Lg = {z ∈ Zk :< z, g >= 0 mod q}.
Find Tg.

(1, 2, 4, . . . , 2k−1)Tg = 0 mod q

Easy to find some vectors (2,−1, 0, . . . , 0), (0, 2,−1, 0, . . . , 0), (0, . . . , 0, 2,−1), and
(0, . . . , 0, 2). each vector is small, and rank is full, because easy to check determinant is
nonzero, and not full rank mod q.


