
6.876 Advanced Topics in Cryptography: Lattices November 9, 2015

Lecture 17
Lecturer: Vinod Vaikuntanathan Scribe: Alex Grinman

Previously,

1. We discussed two notions of trapdoors for an n×m matrix A:

• Type 1: a “short” full rank basis T (m×m) such that

AT = 0 mod q

• Type 2: a “short” matrix R such that

AR = G mod q

where G is the gadget matrix from last class.

2. Using trapdoors, we constructed a “candidate” Digital Signature Scheme. This scheme was broken
because we did not have a secret key sampling scheme.

Today: we will fix the candidate Digital Signature Scheme with a discrete Gaussian sampling algorithm
(GPV Sampling algorithm).

1 Candidate Digital Signature Scheme

Our candidate digital signature scheme is based off trapdoors and consists of three functions Gen, Sign, and
Verify. Additionaly we will use a random oracle function H : Zq → Znq .

• Gen(1n, 1m, q) : Pick (A,R)
$←TrapSamp(1n, 1m, q) where TrapSamp is the algorithm presented in the

last lecture that uniformly at random samples a matrix A and it’s Type 2 trapdoor R. The n × m
matrix A is the verification key PK and the trapdoor R is the signing key SK.

• Sign(R,m) : “Solve” the equation (using R):

A~e = H(m) mod q

for vector ~e. Let the signature σ = ~e.

• Verify(A,m, σ) : Check that following holds:

1. Aσ = H(m) mod q

2. ||σ|| ≤ poly(n)

if both conditions succeed, accept, otherwise reject.

The scheme is almost complete, everything has been determined except the “Solve” function. How do we
construct a “good” enough solve function that computes the signature σ = ~e and can’t be forged? We
describe what it means for the solve function to be “good” in the next section.

17-1

2 A “Good” Solve Function

For the Solve function to be good it must be that for most A, all short enough trapdoors R, and polynomially
many yi the following distributions are distributions are statistically close:

(A, e ∼ DZmq ,σ, yi = Ae) ≈s (A, e← Solve(R,A, yi), yi
$← Znq)

where (A,R) ← TrapSamp(1n, 1m, q). Hence, we define a “good” Solve function which on input A,R and
some yi taken uniformly at random from the range of the random oracle function H, generates a vector e in
a distribution that is statistically close to a sampling from a Gaussian distribution over vectors in Zmq with
standard deviation σ, such that yi = Ae. Why is this definition good enough?

Claim 1. Forging Signatures from a “good” Solve is as hard as solving ISIS

Proof. Suppose there is an adversary α that can forge signatures e ∼ DZmq ,σ of messages m where Ae =

H(m) = y. We can use α construct an ISIS solver β as follows. β on input A ∈ Zn×mq , u ∈ Znq :

1. Generate large values y, y′ ∈ Znq such that y − y′ = u.

2. Query α, the solve adversary and ask for a forgeries: e, e′ ← α(A, y), α(A, y′) where Ae = y and
Ae′ = y′

3. Output e− e′.

Note that A(e− e′) = Ae−Ae′ = y−y′ = u, hence x = e− e′ is a solution to Ax = u, and x is small because
both e, e′ are statistically small since the solve adversary must produce forgeries that are statistically from a
gaussian distribution on DZmq ,σ. Thus, forging signatures from a “good” Solve function can be used to solve
ISIS.

3 “Solve” using GPV Sampling

3.1 What is a discrete Gaussian Distribution over a lattice?

For any s > 0, a Gaussian function on Rn centered c with parameter s is

∀x ∈ Rn, ρs,c(x) = e−
π||x−c||2

s2

The discrete Gaussian distribution over a lattice L(B), for any c ∈ Rn and s > 0 is defined as

D⊥(B),s,c =
ρs,c(x)

ρs,c(L(B))
= k · e−

π||x−c||2

s2

where the denominator is just normalizing factor for the lattice, making D⊥(B),s,c proportional to e−
π||x−c||2

s2 ,
and s is the smoothing parameter for the lattice.

3.2 “Solve” is GaussSamp

Theorem 2 ([GPV08]). For all B basis, where s > ||B|| · ω(log n), the algorithm GaussSamp(B, s) ≈
DL(B),s,c meaning

1. Sampling e← GaussSamp(B, σ) is exactly the same as sampling e from a discrete Gaussian distribu-
tion.

2. GaussSamp operates independently of the basis B, no matter what B is the result will still be from the
distribution.

In section 4.3 we will prove our construction of GaussSamp satisifies this first requirement Theorem 2.

17-2

3.3 Converting Trapdoors from Type 2 → Type 1

In order to use the our new solve function, GaussSamp(B, s), we need to convert the signing key, trapdoor
R (type 2), into a trapdoor T (type 1) which is a full-rank “short” basis T such that AT = 0 mod q. Let
G = AR be the gadget matrix, and TG be the type 1 trapdoor for G. To convert a type 2 to a type 1
trapdoor we observe that A · (RTG) = GTG = 0, where R ·TG = T is a full rank, short basis type 1 trapdoor
for A.

4 GaussSamp

How do we construct the GaussSamp algorithm?

4.1 Idea 1: “Round Off”

A simple starting point is the following algorithm:

1. Sample a vector e∗ from a continuous Gaussian distribution with paramter s and center c

2. Use B to round off e∗ to the nearest lattice vector e.

Why does this not work? While this algorithm is well defined, it is not basis independent and therefore does
not produce samples from discrete Gaussian over the lattice.

4.2 Idea 2: Rejection Sampling over 1-Dimensional Integer Lattice

Instead of sampling from a continuous Gaussian distribution we construct an algorithm to sample vectors
directly from a lattice using a discrete Gaussian distribution. This approach is not obvious since the distri-
bution is infinite and is unclear how to sample succinctly, so we will first start with a simpler algorithm to
sample integers which uses rejection sampling on a 1-dimensional lattice Z, and then lift this scheme to an
n-dimensional lattice.

Given smoothing parameter s, center c, and a fixed function t(n) define the integer lattice sampling function
GaussSamp1D as follows:

1. choose x← Z ∩ [c− s · t(n), c+ s · t(n)] uniformly at random

2. with probability ρs,c(x) output x, with probability 1− ρs,c(x) go to step 2.

We now show that GaussSamp1D samples from a discrete Gaussian.

Claim 3. GaussSamp1D for t(n) = o(
√

log n) samples from a distribution statistically close to DZ,s,c

Proof. From the proofs of the tail inequality on the distribution DZ,s,c in [GPV08] and [Ban95] we have that

Pr
x∼DZ,s,c

[|x− c| > s · t(n)] ≤ e−t(n)
2α

and therefore for t > ω(
√

(log n)), the probability that an x is selected that is outside of the interval
[c − s · t(n), c + s · t(n)] is negligible. Hence, the distribution of samples produced in GaussSamp1D, since
they are kept with probability ρs,c(x), is statistically close to DZ,s,c.

It is also easy to see that GaussSamp1D terminates in polynomial time in n,by substituting the probability

density function ρs,c(x) = e
−π||x−c||2

s2 for s > ||B|| ·ω(log n). Hence, the expected number of iterations is less
than t(n) · ω(log n).

17-3

4.3 Sampling over n-Dimensional Lattices

We can now describe an algorithm to sample vectors from an n-dimensional lattice using GaussSamp1D as
a subroutine. We will use Babai’s nearest plane algorithm to solve CVP, except instead of rounding, we will
use GaussSamp1D to sample integers from ≈s DZ,s,c. The overall idea of the algorithm is to find the n− 1
dimension hyperplane that’s closest to the target vector, project c onto this hyperplane, and recurse. More
formally, the algorithm works as follows:

GaussSamp(B, s, c):

1. for i = n . . . 1:

2. Compute c′i = 〈ci,b̃n〉
〈b̃n,b̃n〉

3. Sample zi ← GaussSamp1D(si
||b̃i||

, c′i)

4. Project onto Span(b1, . . . , bi−1): ci−1 ← ci − zi · bi

5. output
∑n
i=1 zi · bi

Now we will prove correctness of GaussSamp.

Claim 4. On any input (B, s, c) where s > ||B||ω(log n), and for any output vn =
∑n
i=1 z

∗
i bi ∈ L(B):

Pr[v ← GaussSamp(B, s, c)] =
ρs,c(v)

ρs(L(B))

Proof. GaussSamp(B, s, c)] outputs v =
∑n
i=1 z

∗
i bi if and only if for every sampling zi = z∗i ,∀i = n . . . 1.

Hence,

Pr[vn =

n∑
i=1

zibi] = Pr[zn = z∗n] · Pr[vn−1 =

n−1∑
i=1

zibi | zn = z∗n]

=
ρ s
||b̃n||

,c′i
(z∗n)

ρ s
||b̃n||

,c′n
(Z)
·
ρ s

|| ˜bn−1||
,c′n−1

(zn−1)

ρ s
|| ˜bn−1||

,c′n−1
(Z)

=

1∏
i=n

ρ s
||b̃i||

,c′i
(z∗i)

ρ s
||b̃i||

,c′i
(Z)

=

∏1
i=n ρs((z

∗
i − c′i) · ||b̃i||)

ρs(L(B))
=
ρs(

∑1
i=n(z∗i − c′i) · b̃i)
ρs(L(B))

=
ρs(v − c)
ρs(L(B))

=
ρs,c(v)

ρs(L(B))

(1)

where c′i is as is defined in the GaussSamp algorithm above, ρs(L(B)) =
∏1
i=n ρ s

||b̃i||
,c′i

(Z), the third-

to-last equality follows from the orthonogonality of Gram-Schmidt vectors, and the second to last equality
follows from [GPV08] Lemma 4.4. Note that the size requirement for s > ||B||ω(log n) is required for the
statistical closeness of the 1-dimensional GaussSamp1D to a discrete Gaussian distribution over Z.

17-4

References
[Ban95] Wojciech Banaszczyk. Inequalities for convex bodies and polar reciprocal lattices inr n. Discrete & Computational

Geometry, 13(1):217–231, 1995.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic con-
structions. In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 197–206. ACM,
2008.

17-5

	Candidate Digital Signature Scheme
	A ``Good" Solve Function
	``Solve" using GPV Sampling
	What is a discrete Gaussian Distribution over a lattice?
	``Solve" is GaussSamp
	Converting Trapdoors from Type 2 Type 1

	GaussSamp
	Idea 1: ``Round Off"
	Idea 2: Rejection Sampling over 1-Dimensional Integer Lattice
	Sampling over n-Dimensional Lattices

