
6.876 Advanced Topics in Cryptography: Lattices September 16, 2015

Lecture 3
Lecturer: Vinod Vaikuntanathan Scribe: Itay Berman

In the first two lectures we introduces lattices and covered the following topics:

• Minkowski’s first and second convex body theorems.

• Gram-Schmidt Orthogonalization and used it to lower-bound the length of the shortest non-zero vector
in a lattice (λ1 ≥ mini ‖bi‖).

• Proof for the four squares theorem using lattices.

In the next few lectures we will cover:

• Computational problem with lattices (SVP, CVP, SIVP).

• Overview of the complexity landscape.

• The LLL algorithm, which finds an approximation to the shortest vector. We will then use the LLL
algorithm to find the shortest vector exactly (while increasing the running time), and to find an
approximation to the closest vector problem.

1 Computational Problems

We will focus on three computational problems regarding lattices:

• The Shortest Vector Problem (SVP): find the shortest non-zero vector in the lattice.

• The closest Vector Problem (CVP): find the closest lattice vector to a given vector.

• The Shortest Independent Vectors Problem (SIVP): find n independent and “short” vectors.

We define search, approximation and decision variants of the above problems. Recall that λ1 = λ1(B) is
the first successive minima of L(B) (i.e., is the length of the shortest non-zero vector in L(B)), that λn is
the n’th successive minima of L(B) and that dist(t,L(B)) = minu∈L(B) ‖u− t‖.

Search Approximation for γ > 1 Decision (Promise1) for γ > 1

SVP: given a basis B ∈ Zn×n, find
u ∈ L(B) \ {0} s.t. ‖u‖ = λ1.

SVPγ: given a basis B ∈ Zn×n, find
u ∈ L(B) \ {0} s.t. ‖u‖ ≤ γ ·
λ1.

gapSVPγ: Y ES =
{(B, s) : λ1(B) ≤ s},
NO = {(B, s) : λ1(B) > γ · s}

CVP: given a basis B ∈ Zn×n and
t ∈ Zn, find u ∈ L(B) s.t.
‖u− t‖ = dist(L(B), t).

CVPγ: given a basis B ∈ Zn×n and
t ∈ Zn, find u ∈ L(B) s.t.
‖u− t‖ ≤ γ · dist(L(B), t).

gapCVPγ: Y ES =
{(B, t, s) : dist(L(B), t) ≤ s},
NO =
{(B, t, s) : dist(L(B), t) > γ · s}

SIVP: given a basis B ∈ Zn×n,
find independent vectors
u1, . . . , un s.t. ‖ui‖ ≤ λn for
i ∈ [n].

N/A N/A

1A promise problem is such that the input domain is Y ES ∪ NO. An algorithm decides a promise problem if it accepts
inputs from Y ES and rejects inputs from NO.

3-1

γ

run time
poly(n)

1

2(logn)
1−ε

NP-hard

NP ∩ coNP
√
n

n

Crypto

2O(n log log n
log n)

ALG
LLL2O(n)

2k

2Õ(n/k)

Heuristic

20.292n

[1]

2n

LLL

2O(n2)

Figure 1: The complexity landscape of SVPγ .

2 Complexity Landscape

We present the landscape for the Shortest Vector Problem. The landscape for the Closest Vector Problem
is very similar. In the following we assume we are given a lattice basis in Zn×n. The running times of
the described algorithms will be a function of n, and we ignore polynomial factors in the length of the bit
representation of the given basis.

Algorithms for SVPγ: The first algorithm to solve the SVPγ was the LLL algorithm [2]. It gave a 2O(n)-
approximation and its running time is poly(n). The best know approximation factor achieved by a

polynomial time algorithm is 2O(n log log n
log n).

If we want to solve the exact SVP (i.e., γ = 1), then the LLL algorithm can do so with running time of

2O(n2). The fastest known algorithm to solve the exact SVP was recently given in [1], and its running
time is 2n. There are also Heuristics algorithms with running time 20.292n.

Finally, One can have a trade off between the approximation factor and the running time — achieving

2k-approximation can be done in 2Õ(n/k) time.

Hardness of SVPγ: It is no surprise that we don’t know of a polynomial time algorithm to solve the exact

SVP, since it was shown to be NP-hard. In fact, even achieving 2(logn)
1−ε

-approximation is NP-hard.
On the other hand, it was shown that SVP√n is in NP ∩ coNP, and thus unlikely to be NP-hard.

Cryptography from SVPγ: The smallest approximation factor from which we know how to build crypto-
graphic primitives is γ = n. Since SVP√n ∈ NP∩coNP, this will likely not suffice to base cryptography
on NP-hardness.

A pictorial presentation of the above description if given in Figuire 1. Throughout this course we’ll
cover all the aforementioned results, starting with the LLL algorithm. However, before presenting the LLL
algorithm, we warm up by reducing the Shortest Vector Problem to the Closest Vector Problem.

Theorem 1. For any γ > 1, given access to CVPγ oracle, there exists a polynomial time algorithm that
solves SVPγ .

Proof. We prove for the case γ = 1, and the proof generalizes to γ > 1 naturally. For a basis B = [b1, . . . ,bn]
and i ∈ [n], let Bi = [b1, . . . ,bi−1, 2bi,bi+1, . . . ,bn]. The polynomial time algorithm that solves SVP sets
vi := CVP(Bi,bi) for every i ∈ [n], and return vi∗ − bi∗ such that i∗ = arg mini ‖vi − bi‖.

Let v =
∑n
i=1 cibi be the shortest vector in L(B). We show that the algorithm returns v. The correctness

of the algorithm follows from the next claim.

3-2

Claim 2. Assume that cj is odd, then v + bj is the closest vector to bj in L(Bj).

Proof. First, it is easy to see that v + bj ∈ L(Bj). Assume towards a contradiction that there exists
v′ ∈ L(Bj) such that ‖v′ − bj‖ < ‖(v + bj)− bj‖ = ‖v‖. But, it is easy to see that v′−bj belongs to L(B),
a contradiction to the fact that v is the shortest vector in L(B).

Since at least one of the ci’s is odd (as otherwise v/2 would be a shorter lattice vector), say cj , the
algorithm will set vj = v + bj , and will return v.

3 The LLL Algorithm

We begin describing the algorithm of Lenstra, Lenstra and Lovász for approximating the shortest vector of
a lattice.

Theorem 3. Given a basis B ∈ Zn×n there is a poly(n,WB)-time algorithm for SVP2O(n) , where WB

is the length of the bit representation of B; namely, the algorithm returns a vector v ∈ L(B) such that
‖v‖ ≤ 2O(n) · λ1(B).

The LLL algorithm actually transforms, in polynomial time, the given basis into a “LLL-reduced” basis
for the same lattice. The above theorem holds since a LLL-reduced basis has an important property — its
shortest vector is a 2O(n)-approximation for the shortest vector in entire the lattice. In this lecture we’ll give
define a LLL-reduced basis and give some intuition for this definition; in the next lecture we’ll describe and
analyze the LLL algorithm itself.

3.1 LLL-reduced Basis

Our goal is to transform the given basis to one with “short” vectors. Consider the case n = 2, i.e., B =
[b1,b2]. Our starting point is the Gram-Schmidt orthogonalization process in which we set b̃1 := b1 and
b̃2 := b2−µ21b̃1, where µ21 = 〈b2, b̃1〉/〈b̃1, b̃1〉. Intuitively, b̃2 is the shortest vector we can hope for, since
we removed all b̃1’s components from it (this fact is what make the Gram-Schmidt orthogonal). However,
b̃2 /∈ L(B), and thus cannot be in a basis of L(B). To fix this issue, we transform B into the following basis:
b′1 = b and b′2 = b2 − bµ21eb′1, where b·e means rounding to the closest integer. b′2 is the shortest lattice
vector we can hope for, as we removed all the integer components of b̃1. Note that when projecting b′2 to
the line generated by b′1, then this projection is between −b′1/2 to b′1/2. The latter fact also guarantees
that the resulting basis is “close” to orthogonal — the angle between b′1 to b′2 is at least 60 degrees. See
Figure 2 for an example of this transformation.

So far we reduced b2, but left b1 as is. But what if b1 is very long to begin with? there is no guarantee
that the reduced basis is short. At this point we adopt an idea from Euclid’s greatest common divisor (gcd)
algorithm: we reduce b2 with respect to b1 as much as we can, then swap the roles of b1 and b2 and repeat
the process. The process will stop when the basis meets the following conditions, which are the definition of
LLL-reduced basis in two dimensions.

Definition 4 (LLL-reduced basis in two dimensions). A basis B = [b1,b2] is LLL-reduced if

1. |µ21| ≤ 1/2.

2. ‖b2‖ ≥ ‖b1‖.

Note that the second condition can be written as
∥∥∥b̃2

∥∥∥2 ≥ (1−µ2
21)
∥∥∥b̃1

∥∥∥2. Generalizing for n dimensions

we get the following definition.

Definition 5 (LLL-reduced basis). Let δ ∈ [1/4, 1]. A basis B = [b1, . . . ,bn] is δ-LLL-reduced if

1. |µij | ≤ 1/2 for every 1 ≤ i < j ≤ n.

3-3

b1

b2b′2b̃2

b′1/2−b′1/2

>60

Figure 2: The LLL-reduced basis of [b1 = (2, 0),b2 = (3, 2)] is [b′1 = (2, 0),b′2 = (1, 2)].

2.
∥∥∥b̃i+1

∥∥∥2 ≥ (δ − µ2
i+i,i)

∥∥∥b̃i∥∥∥2 for every 1 ≤ i ≤ n− 1.

Note that the projection of a (partial) LLL-reduced basis [b1, . . . ,bi−1,bi,bi+1] to Span(b̃i, . . . , b̃n) is
[0, . . . , 0, b̃i,bi+1+µi+1,ib̃i]. The last two vectors meet the definition of LLL-reduced basis in two dimensions.

References

[1] Divesh Aggarwal and Daniel Dadush and Oded Regev and Noah Stephens-Davidowitz. Solving the Short-
est Vector Problem in 2n Time Using Discrete Gaussian Sampling: Extended Abstract. STOC 2015.

[2] Lenstra, A.K. and Lenstra, H.W.jun. and Lászlo Lovász. Factoring polynomials with rational coefficients.
Math. Ann. 1982

3-4

	Computational Problems
	Complexity Landscape
	The LLL Algorithm
	LLL-reduced Basis

