
6.876 Advanced Topics in Cryptography: Lattices September 30, 2015

Lecture 7
Lecturer: Vinod Vaikuntanathan Scribe: Adam Sealfon

Today and next time:

• Ajtai-Kumar-Sivakumar (AKS) Algorithm. 2O(n) time, randomized, SVP (2000)

• Micciancio-Voulgaris (MV) algorithm. 2O(n) time, deterministic, CVP (2010).

Two open problems:

Problem 1. Can we do integer programming in 2O(n) time? Using LLL we can solve integer programming
in 2O(n3) time, and Kannan improved this to nO(n) time. AKS/MV/ADRS solve CVP/SVP in 2O(n) time,
but we don’t know how to extend this to integer programming.

Problem 2. Can we solve SVP in 2O(n) time but 2o(n) space? But Kannan and LLL require poly(n) space,
but the 2O(n)-time algorithms we know require 2n space as well.

1 Sieving

At a high level, the AKS algorithm for finding the shortest vector in a lattice works by taking a large sphere
or box and choosing many (e.g. ∼ 210n) random lattice points in the box by taking random combinations of
the basis. The points are then refined through an iterative routine called sieving.

The sieving procedure Sieve(Y) will have the following properties. Sieve(Y) = C ⊆ Y such that:

• For all y ∈ Y , there exists y′ ∈ C such that ‖y − y′‖ ≤ R/2.

• |C| ≤ 5n.

The idea is that we start with a bunch of points and keep reducing by sieving, eventually obtaining the
shortest vector.

We implement Sieve(Y) as follows.

Sieve(Y):

1. C = ∅.

2. For every y ∈ Y ,

• If y is R/2-close to some y′ ∈ C, then η(y) = y′.

• Else C = C ∪ {y}.

We use a packing argument to show that the set C is small. Any pair of points in C must be at least
R/2 units apart, so the balls of radius R/4 centered at the points of C are all disjoint and are contained in
the ball of radius R+R/4 centered at the origin. Consequently we have that

|C| < Vol(B(0, 5R/4))

Vol(B(0, R/4))
= 5n.

7-1

2 The AKS Algorithm

We now present the main AKS algorithm. We assume for now that λ1 ∈ [2, 3). We will remove this
assumption by running the algorithm on a sequence of intervals of geometrically increasing size (i.e. the
intervals [3, 4.5), [4.5, 6.75), and so on). Using LLL we can estimate λ1 to within a factor of 2n, so we will
need to consider only O(n) such intervals.

INITIALIZATION:

1. Let R0 = n ·max ‖bi‖ and N = 28n logR0.

2. Choose x1, . . . , xN ← B(0, 2).

3. Let yi = xi mod P(B) for each i ∈ [N].

4. Let R = R0, X = {xi}i∈[N], Y = {yi}i∈[N], Z = {(xi, yi)}i∈[N].

SIEVING:

While R > 6:

5. C ← Sieve(Y)

6. For all yi ∈ Y :

• If yi ∈ C, discard it.

• Else, let yi ← yi − (yη(i) − xη(i)), where η(i) denotes the index of the cluster center of i.

7. Set R← R
2 + 2 and repeat sieving step.

OUTPUT:

8. For all (xi, yi), (xj , yj) ∈ Z, output the shortest nonzero vector (yi − xi)− (yj − xj).

We note two things about the sieving step. First, the sieving step only uses xi values for cluster centers,
which are points which are discarded. The values xi for points which remain are not used. Second, the value
yη(i) − xη(i) which is subtracted from yi in the sieving step is a lattice point. This preserves the invariant
that yi − xi is always a lattice point.

3 Analysis

We first prove some basic invariants about the algorithm. Then, rather than analyzing the behavior of the
algorithm’s inner routine directly, we will show that any algorithm which satisfies the invariants and does
not inspect the values of the xis must produce the correct output with high probability. In effect, we treat
the sieving subroutine as an adversary and show that any adversary which satisfies the invariants below is
unable to mess up the algoirthm.

Claim 3. yi − xi ∈ L(B).

Proof. This is true after the initialization step, since yi = xi mod P(B). In the sieving step, yi is replaced
by yi − (yη(i) − xη(i)) and xi is unchanged, so the difference after an iteration of sieving is

yi − xi = yi − (yη(i) − xη(i))− xi = (yi − xi)− (yη(i) − xη(i)) ∈ L(B)

since it is the difference of two lattice vectors.

7-2

Claim 4. After an iteration of sieving, ‖yi‖ ≤ R
2 + 2.

Proof. By the Triangle Inequality,

‖yi‖ = ‖yi − (yη(i) − xη(i))‖ ≤ ‖yi − yη(i)‖+ ‖xη(i)‖ ≤
R

2
+ 2.

Claim 5. The number of iterations of sieving is at most 2 logR0.

Proof. If R/2 > 6 then after two iterations, R decreases to ((R/2)+2)/2+2 = R/4+3 < R/2. Consequently
after fewer than 2 logR0 iterations, the sieving step will terminate.

Claim 6. At the conclusion of the sieving phase, Z consists of at least 27n pairs of points (xi, yi) such that
‖yi − xi‖ ≤ 8.

Proof. In each iteration of sieving, at most 5n points are discarded. Consequently, after 2 logR0 iterations,
the number of points remaining is at least

|Z| ≥ N − 2 · 5n logR0 = (28n − 2 · 5n) logR0 ≥ 27n logR0.

3.1 A mental experiment

Consider the following mental experiment. Say there’s an all-powerful individual A who knows a shortest
vector v in L. Then if the value xi ∈ B(0, 2) falls in a particular subregion, there are two possible values
of xi that produce the same yi modulo the lattice. These two values differ by v. Consequently, even if
the adversary is unbounded computationally, it cannot distinguish between these two ways of obtaining the
vector yi. Therefore, now considering the algorithm itself to be the adversary, if it does not look at the value
xi then the value wi = yi − xi produced at the end of the algorithm is equally likely to be two different
vectors which differ by v. We will use this argument to prove the correctness of the algorithm.

Define regions C1 and C2 as follows, where v is a shortest vector in L(B). Let C1 = B(0, 2) ∩ B(−v, 2)
is the set of points which are distance at most 2 from both 0 and −v, and C2 = B(0, 2) ∩ B(v, 2) is the set
of points which are distance at most 2 from both 0 and +v.

Define the operation Flip(y) as follows.

Flip(y) =

 y if y /∈ C1 ∪ C2

y − v if y ∈ C2

y + v if y ∈ C1

The Flip operation swaps C1 and C2, keeping other points fixed. The idea is that if we flip half of the points
xi at the start of the algorithm, the distribution of the xi’s will be unchanged, so the adversary (and the
algorithm) will be unchanged. Consequently for any yi corresponding to some xi ∈ C1 ∪ C2, depending on
whether xi ∈ C1 or xi is the the corresponding vector in C2, yi − xi is equally likely to result in either of
a pair of vectors which differ by v. Therefore, if we repeat enough times to guarantee that the same short
lattice point is obtained many times, we should also find a pair of points whose difference is the shortest
vector.

Lemma 7. Pr[x ∈ C1 ∪ C2] ≥ 2 · 2−2n.

7-3

ww − v w + v
C1 C2

Figure 1: The regions C1 and C2 of B(w, 2) used by the Flip operation, which is defined below. Flip swaps
points in C1 and C2, leaving the remainder of B(0, 2) fixed. C1 ⊂ B(0, 2) is the set of points which are
distance at most 2 from both 0 and −v, and C2 ⊂ B(0, 2) is the set of points which are distance at most 2
from both 0 and +v.

Figure 2: An outline of the structure of the AKS algorithm. The algorithm starts with uniformly random
points xi ∈ B(0, 2) and produces yi = xi mod L(B). Without referring to the original value xi, the algorithm
produces some y′i of length at most 6 such that y′i − xi ∈ L. We will show that with noticeable probability
the original point xi lies in a special region C1 ∪ C2 defined below. The sets C1 and C2 are translations of
each other by the shortest vector v, so if xi drawn from one of the regions, then w = y′i− xi is equally likely
to be either of a pair of vectors which differ by v.

7-4

Figure 3: The Flip operation is useful for analyzing the AKS algorithm. The view of the adversary (and
the algorithm) is the same whether or not xi was flipped. Consequently the algorithm is equally likely to
produce vectors w and w + v.

Proof. Since ‖v‖ = λ1 ≤ 3, we have that B(v, 1/2) ⊂ C2. Consequently since C1 and C2 are of equal size
and are disjoint, we have that

Pr[x ∈ C1 ∪ C2] = 2 · Pr[x ∈ C2] =
2 · Vol(C1)

Vol(B(0, 2))
≥ 2 · Vol(B(−v, 1/2))

Vol(B(0, 2))
= 2 · 4−n.

Call such a point x ∈ C1 ∪ C2 “good.” As a consequence of Lemma 7, roughly 26n logR0 of the original
points xi are good, and roughly 25n logR0 good points survive to the end of the sieving phase.

Lemma 8. The number of lattice points in B(0, 8) is at most 9n.

Proof. By assumption the shortest nonzero vector in the lattice has length at least 2. Consequently the balls
of radius 1 around lattice points in B(0, 8) are disjoint. But these balls are all contained in B(0, 9), so the
number of lattice points in B(0, 8) is at most

Vol(B(0, 9))

Vol(B(0, 1))
= 9n.

Consequently roughly 25n/9n ≈ 21.8n surviving points yi are close to the same lattice point and have
a corresponding xi which is good. These values xi are equally likely to be in C1 and C2, so with high
probability at least one xi is in each of the two sets. But then there will be a pair of indices i, j for which
(yi − xi)− (yj − xj) = v, and so the algorithm finds the shortest vector as desired.

4 A preview of next time: the MV algorithm for CVP

Next class we will discuss the algorithm of Micciancio and Voulgaris which solves the closest vector problem
deterministically in 2O(n) time. The main tool used in the MV algorithm is the Voronoi cell V (L) of a lattice,
which is the polytope consisting of the points which are closer to 0 than to any other lattice vector.

7-5

Definition 9. The Voronoi cell V (L) of a lattice L is the set

{x ∈ Rn : ‖x‖ ≤ ‖x− v‖∀v ∈ L(B)}.

The following theorem is due to Voronoi.

Theorem 10. The number of (n − 1)-dimensional facets of the Voronoi cell of an n-dimensional lattice is
at most 2(2n − 1) .

The proof will follow from the following reductions:

• Voronoin
2n

≤ CVPn, that is, we can solve Voronoin by solving at most 2n instances of CVPn.

• CVPn
2n

≤ Voronoin.

• CVPn
2n

≤ CVPn−1.

Putting these together, we have:

Voronoin
2n

≤ CVPn
2n

≤ CVPn−1
2n

≤ Voronoin−1.

It looks like we haven’t made any progress, since solving the n-dimensional problem requires solving 2O(n)

instances of the n − 1-dimensional problem. However, the same Voronoi cell of dimension (n − 1) is used
by each of the subproblems! Consequently we can compute this Voronoi cell once and use it each time it is
needed, so the recurrence is T (n) = 2O(n) + T (n − 1) rather than T (n) = 2O(n) · T (n − 1). This will result
in a total running time 2O(n).

References

[1] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In
Proc. 33rd ACM Symp. on Theory of Computing, pages 601–610, 2001.

[2] M. Khanevsky and O. Regev, Scribe notes for Oded Regev’s class on Lattices in Computer Science,
Lecture 8, http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/svpalg.pdf, 2004.

[3] D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for most lattice prob-
lems based on Voronoi cell computations. In Proc. 42nd ACM Symp. on Theory of Computing, 2010.

7-6

	Sieving
	The AKS Algorithm
	Analysis
	A mental experiment

	A preview of next time: the MV algorithm for CVP

