
6.876 Lecture 8: Micciancio-Voulgaris CVP algorithm

1 The CV PP Problem

The main idea of this lecture is to solve the CV PP (CV P with precomputation) problem.
We define CV PP as follows:

Definition 1.1. Given a basis for a lattice L, and unbounded precomputation, we define
the CV PP problem as the problem getting as input a point t ∈ Rn, and returning as an
output the v ∈ L closest to t.

Remark 1.1. CV PP is known to be NP -hard, while CV PP√n is in P. The gap here
is smaller than for CV P.

Our strategy for solving CV P will involve two parts: first we will solve CV PP, and
then we will see how to solve CV P given CV PP.

2 Voronoi Cell

For the CV PP algorithm, our precomputation will involve computing the Voronoi cell:

Definition 2.1 (Voronoi cell). V (L) = {x ∈ Rn : |x| < |x − v| for all v ∈ L\0} (i.e all
points closer to origin than to any other lattice point) similarly, define V (L) = {x ∈ Rn :
|x| ≤ |x− v| for all v ∈ L\0}.

Let Hv be the set of all points that are closer to the origin than to v. We note that
V (L) is the intersection of all of the Hv.

We want an efficient way to encode the Voronoi cell of a lattice. Our solution will be
to encode the Voronoi cell as the intersection of a finite number of halfspaces Hv.

Definition 2.2 (Voronoi Relevant). V R ⊆ L is Voronoi relevant if V (L) = ∩v∈V RHv,
and V R is minimal. A vector in V R is called a Voronoi relevant vector.

Fact: there exists a Voronoi relevant set V R such that |V R| ≤ 2(2n − 1). In general
this is a tight bound.

So how is this related to CV P? Here is our strategy for relating CV PP to CV P
(below, by V orn we mean the problem of finding a Voronoi relevant subset of L):

1. Reduce V orn to CV Pn in 2n time.

2. Reduce CV Pn to CV Pn−1 in time 2n/2.

3. Reduce CV Pn−1 to V orn−1 in 22n time (this is where we use the CV PP routine).

In summary: V orn ≤ CV Pn ≤ CV Pn−1 ≤ V orn−1 (where the reductions are in
time 2n, 2n/2, 22n, respectively). Note that it’s not enough to just use the recursion from
the CV Pn ≤ CV Pn−1 reduction, because in the reduction we will have to call CV Pn−1
many times, so it’s more efficient for us to precompute the Voronoi cell once, and then
CV Pn−1 will be solved fast.

We can now solve for the time complexity of CV Pn. We have the recursion T (n) =
2n2n/222n + T (n− 1), so T (n) = O(23.5n).

3 The CV PP Algorithm

We begin with a proposition, which we will not prove.

Proposition 3.1. Let t, t′ ∈ Rn, and t′ ∈ L+ t. Then the following three statements are
equivalent:

1. t′ is a shortest vector in L+ t.

2. t− t′ is a closest vector to t in L.

3. t′ ∈ (L+ t) ∩ V (L).

We now present some corollaries to our proposition.

Corollary 3.2. Suppose t1, t2 ∈ (L+ t) ∩ V (L). Then |t1| = |t2|.

Proof. We see that the third condition from our proposition holds for both t1 and t2.
Therefore, the first condition from our proposition holds, and so both t1 and t2 are
shortest vectors in L+ t, and therefore they have the same length.

Corollary 3.3. Fix t ∈ Rn. Then for all k ∈ Z,

|{|t′| : t′ ∈ (L+ t) ∩ V (kL)}| ≤ kn.

We will not prove this corollary. We will later invoke this corollary for the case k = 2.
The following lemma should solve the problem of finding t′′ ∈ (L + t) ∩ V (L) given

t′ ∈ (L+ t) ∩ 2V (L).

Lemma 3.4. Pick any t /∈ V (L). Let v ∈ V R(L) such that v = argmaxv∈V R

(
2〈t,v〉
〈v,v〉

)
,

and α = 2〈t,v〉
〈v,v〉 . Then the following two statements hold:

1. t− v ∈ V (αL).

2. |t− v| < |t|.

We will prove the lemma next lecture.
Strategy for the algorithm: we start with t, and then we subtract lattice vectors from

t until we land inside the Voronoi cell. With the lemma, we to argue that it will not take
too many steps to get into the Voronoi cell. The trick is that at every step we decrease
the length of our vector. However, there are at most 2n possible lengths by Corollary
3.3, so after 2n steps the algorithm terminates.

We are left to show that we can quickly find a vector to subtract from t that will
decrease the size of the vector. For all t ∈ V (L), we have that |t| ≤ |t− v| for v as in the

lemma. Therefore, 〈t,v〉〈v,v〉 ≤
1
2 , and so 2〈t,v〉

〈v,v〉 ≤ 1.

For α and v in the lemma, 2〈t, v〉 = α〈v, v〉 and for all u 6= v, 2〈t, u〉 ≤ α〈u, u〉.
We now have an algorithm taking input satisfying t ∈ 2V (L), and outputting t′ ∈

(L+ t) ∩ V (L) :

1. Find v out of the Voronoi relevant cells that maximizes 2〈t,v〉
〈v,v〉 .

2. Set t← t− v.

3. If t ∈ V (L), output t.

4. Else repeat.

The correctness of the algorithm follows from the lemma, and the runtime of the
algorithm is O(|V R| · 2n) = O(22n).

4 V orn ≤ CV Pn

This reduction will rely on the following theorem:

Theorem 4.1 (Voronoi). v ∈ L is a Voronoi relevant vector if and only if ±v are the
only shortest vectors in v + 2L.

We do not prove this theorem in this lecture.

	The CVPP Problem
	Voronoi Cell
	The CVPP Algorithm
	Vorn CVPn

