
Ring-SIS and Ideal Lattices

Noah Stephens-Davidowitz
(for Vinod Vaikuntanathan’s class)

1 Recalling hA, and its inefficiency

As we have seen, the SIS problem yields a very simple collision-resistant hash function that is
provably secure if worst-case lattice problems are hard: hA(e) = Ae mod q where the key A ∈
[q]m×n is uniformly random and the input is e ∈ {0, 1}m. (Here, we are being less general than
before and assuming that our input set is simply {0, 1}m.) Recall that finding an hA collision is
equivalent to solving the SIS problem, whose definition we reproduce below.

Definition 1. For parameters n,m, q, the (average-case) Short Integer Solutions (SIS) problem is
defined as follows. The input is a uniformly random matrix A ∈ [q]n×m. The goal is to find a
non-zero vector e ∈ {−1, 0, 1}m such that Ae = 0 mod q.

hA has a lot going for it as a hash function. It is remarkably simple—a linear collision-resistant
hash function! And, we saw that it is provably secure under the assumption that certain well-
studied worst-case lattice problems are hard. If those two things are not enough, hA is also worthy
of study because of its close relationship with LWE, the topic of this course and an extremely
important problem for cryptographers.

Unfortunately, hA is quite inefficient, since just reading the public key takes time roughly
nm log q > n2 (where the inequality follows from the fact that we must have m > n in order for
hA to be a compressing function). But, hA is breakable in time 2O(m) (even by brute-force search).
Ideal ly, we would hope for a hash function that can be broken in time 2O(m) to run in time roughly
linear in m ≈ n. Our goal is therefore to show a variant of hA whose running time is in fact roughly
linear in n.

2 The cyclic shift matrix, and the ring Z[x]/(xn − 1)

Since just reading the key of hA requires time greater than n2, any attempt to speed up the
computation of hA will presumably have to compress the key size. E.g., we could take some short
uniformly random seed r (with bit length, say, O(n)) and set A = H(r) for some suitable expanding
function H. If H is a PRG modeled as a random oracle, then the resulting hash function hH(r)

retains its security. (This idea is actually quite useful in practice [BCD+16] in the context of LWE.)
However, if H is an arbitrary function, then we do not expect to be able to compute hH(r)(e) in
time faster than n2. So, though this idea immediately yields a hash function with a smaller key,
we need to do more work to get a faster hash function.

In order to speed up our computation, we presumably need our matrix A to be a very special
function of the seed. To that end, we take our short random seed to be ` = m/n uniformly random

1



vectors a1, . . . ,a` ∈ [q]n, and we take the columns of our matrix A to be the vectors a1, . . . ,a`

together with all “cyclic rotations” of the ai. I.e., for a = (a1, . . . , an)T ∈ Zn, we define

Rot(a) :=



a1 an · · · a3 a2

a2 a1 · · · a4 a3

a3 a2 · · · a5 a4
...

...
. . .

...
...

an−2 an−3 · · · an an−1

an−1 an−2 · · · a1 an
an an−1 · · · a2 a1


∈ Zn×n ,

where each column is a simple cyclic permutation of the previous column.1 Matrices of the form
Rot(a) are sometimes referred to as “cyclic matrices” or “circulant matrices.” We then take

A = (Rot(a1),Rot(a2), . . . ,Rot(a`)) ∈ Zn×m .

We claim that for A with this structure, we can compute Ae mod q in time n` · polylog(n, q).
This is because the set of all integer cyclic matrices, R̃ := {Rot(a) : a ∈ Zn} is actually a very
nice set with nice algebraic structure. In particular, we can write

Rot(a) = (a, Xa, . . . , Xn−1a) ,

where

X :=


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ∈ {0, 1}n×n

is the “cyclic shift” matrix. Notice that R̃ ⊂ Zn×n is a lattice in n×n dimensions with rank n and
basis In, X,X

2, . . . , Xn−1. Indeed, for any a = (a1, . . . , an)T ∈ Zn, we can write

Rot(a) = a1In + a2X + · · ·+ anX
n−1 .

This identity immediately shows us that R̃ is actually closed under (matrix) multiplication, and
that multiplication is commutative over R̃. I.e., R̃ is a ring!

In fact, R̃ is isomorphic to the polynomial ring R := Z[x]/(xn − 1). I.e., R is the ring of
polynomials in the variable x of degree at most n−1 and integral coefficients, with addition defined
in the obvious way and multiplication defined by the distributive law together with the identity

x · xi =

{
xi+1 i < n− 1

1 i = n− 1
.

(The polynomial xn − 1 is the characteristic polynomial of the cyclic shift matrix X, which is why
it arises in this context.) To see that these two rings are isomorphic, one only needs to check that
the map X 7→ x is a bijection that preserves addition and multiplication of basis elements.

1Notice that the definition of Rot does not depend at all on q. It is convenient to forget about q for now and to
think of a as some arbitrary vector in Zn.

2



So, there’s no reason to drag these n×nmatrices around, and we can instead think of Rot(a) ∈ R̃
as the corresponding polynomial a ∈ R of degree at most n− 1. (I.e., we change notation slightly.)
We can therefore identify our matrix A ∈ [q]n×m with a tuple of ring elements (a1, . . . , a`)

T ∈ R`
[q],

and similarly the input e ∈ {0, 1}m is a tuple of ring elements (e1, . . . , e`)
T ∈ R`

{0,1}, where we use
the notation RS to represent the set of polynomials in R with coefficients in S. Therefore, our hash
function is now ha1,...,a`(e1, . . . , e`) = a1e1 + · · · + a`e` mod qR.2 For convenience, we abbreviate
this by ha(e).

Now, to gain in efficiency, we simply recall that we can multiply two elements in R[q] in
time n · polylog(n, q) via the fast Fourier transform. Therefore, we can compute ha in time
`n · polylog(n, q) = m · polylog(n, q), which is a tremendous speedup over the nm · polylog(q)
running time of the original hA. Indeed, we typically think of q = poly(n) and ` = polylog(n), so
that this running time is quasilinear in n.

2.1 (In)security of this new hash function, and Ring-SIS

Of course, this is not very useful if ha is not secure. In fact, Micciancio showed that ha is secure
as a one-way function (under a plausible worst-case lattice assumption) [Mic07]. I.e., with certain
reasonable parameters, it is difficult to invert ha on a random input. This result is really quite
remarkable, but we will not state it formally, since we will soon see that another hash function
appears to be a much better choice.

Unfortunately, ha is not a collision-resistant hash function. To see this, it helps to define the
Ring-SIS problem, which is the analogue of SIS in this setting.

Definition 2. For a ring R, integer modulus q ≥ 2, and integer ` ≥ 1, the (average-case) Ring-SIS
problem is defined as follows. The input is a1, . . . , a` ∈ R[q] sampled independently and uniformly
at random. The goal is to output e1, . . . , e` ∈ R{−1,0,1} not all zero such that a1e1 + · · · + a`e` =
0 mod qR.

One can easily see that finding a collision in ha is equivalent to solving Ring-SIS, just like
finding a collision in hA is equivalent to solving SIS. Unfortunately, Ring-SIS over Z[x]/(xn − 1) is
not hard. The issue is that the ring Z[x]/(xn − 1) has non-trivial zero divisors (i.e., it is not an
integral domain). To see this, let ẽ = 1 + x + x2 + · · · + xn−1 ∈ Z[x]/(xn − 1), and notice that
(x−1)ẽ = xn−1 = 0. (In terms of Rot and R̃, this corresponds to the fact that Rot(u) is singular,
where u = (1, 1, . . . , 1)T 6= 0.) This leads to an attack.

Claim 2.1. For any integer modulus q ≥ 2 and integer n ≥ 1, let R := Z[x]/(xn − 1) and let
ẽ = 1 + x+ x2 + · · ·+ xn−1 ∈ R−1,0,1. Then, aẽ = 0 mod qR with probability 1/q when a ∈ R[q] is
sampled uniformly at random.

In particular, ẽ, 0, . . . , 0 ∈ R{−1,0,1} is a solution to Ring-SIS over R with probability 1/q, and
the hash function ha can be broken efficiently with probability 1/q.

Proof. Suppose that a ∈ R[q] is divisible by x − 1 modulo qR. I.e., a = (x − 1)a′ mod qR. Then,
ẽa = ẽ(x−1)a′ = 0 mod qR. The result follows by noting that a ∈ R[q] is divisible by x−1 modulo

2Here, we have chosen to think of the ei as ring elements as well. This is formally justified by the identity

Rot(a) · Rot(e) = Rot
(
Rot(a) · e

)
.

The reduction mod qR simply means that we reduce the coefficients of the result of our polynomial multiplication
modulo q.

3



qR with probability 1/q. (Notice that being divisible by x − 1 is equivalent to having coefficients
that sum to zero mod q.)

If our original hash function hA is in fact 2Ω(n) secure, then this result makes ha uninteresting
as a collision-resistant hash function. In particular, in order for ha to have a chance of matching
this security, we would need to take q = 2Ω(n), in which case ha is actually a slower hash function
than hA.

One might complain that the above attack is a bit unsatisfying because it can be thwarted simply
by throwing out “bad keys” (i.e., keys a1, . . . , a` such that x − 1 divides one of the ai modulo q).
Plus, the above attack might not be too damaging if it turns out that SIS is not actually 2Ω(n)

hard. So, for completeness, we note that Ring-SIS over Z[x]/(xn − 1) actually reduces to SIS with
n = 1 and m = `, which shows that ha is completely useless as a collision-resistant hash function.
We might as well take n = 1, in which case Z[x]/(xn − 1) is just the integers!

Claim 2.2. For any integer modulus q ≥ 2 and integers n, ` ≥ 1, let R := Z[x]/(xn − 1). Then,
Ring-SIS over R with parameters (q, `) reduces efficiently to SIS with parameters (q, n = 1,m = `).

I.e., ha with n > 1 is no more secure (as a collision-resistant hash function) than ha with n = 1!

Proof. For i = 1, . . . , `, let αi = ai mod (q, x − 1) ∈ [q]. (I.e., αi is the sum of the coordinates
of ai modulo q.) The reduction calls its SIS oracle on input α1, . . . , α` and receives as output
ε1, . . . , ε` ∈ {−1, 0, 1} not all zero such that ε1α1 + · · · + ε`α` = 0 mod q. Finally, the reduction
simply outputs ε1ẽ, · · · , ε`ẽ ∈ R{−1,0,1}, where ẽ = 1 + x+ · · ·+ xn−1.

To see that this reduction is correct, notice that A := a1ε1 + · · · + a`ε` is divisible by x − 1
modulo q. Since (x− 1)ẽ = 0, we immediately see that Aẽ = 0 mod qR, as needed.

3 The ring Z[x]/(xn + 1), ideal lattices, and a secure collision-
resistant hash function

Recall that our attack on ha over Z[x]/(xn−1) relied on the fact that xn−1 has a nontrivial factor
over the integers, xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ 1). So, it is natural to try replacing xn − 1
with an irreducible polynomial. Indeed, one can easily show that Z[x]/(p(x)) for some polynomial
p(x) ∈ Z[x] is an integral domain if and only if p is irreducible.

We strongly prefer sparse polynomials with small coefficients (both because they are easy to
work with and because this ensures that our ring has nice “geometric” properties). Since xn − 1
failed, we try xn + 1. This is irreducible over Z if and only if n is a power of two.3 So, we take
R := Z[x]/(xn + 1) for n some power of two. I.e., R is the ring of polynomials over Z of degree at
most n− 1 with addition defined in the obvious way and multiplication defined by

x · xi =

{
xi+1 i < n− 1

−1 i = n− 1
.

3If p > 1 is a non-trivial odd factor of n, then xn/p + 1 is a non-trivial factor of xn + 1. If n has no odd factors,
then xn + 1 is the 2nth cyclotomic polynomial—i.e., the minimal polynomial over Z of any primitive 2nth root of
unity.

4



From the matrix perspective of the previous section, this corresponds to taking

Rot(a) = (a, Xa, . . . , Xn−1a) =



a1 −an · · · −a3 −a2

a2 a1 · · · −a4 −a3

a3 a2 · · · −a5 −a4
...

...
. . .

...
...

an−2 an−3 · · · −an −an−1

an−1 an−2 · · · a1 −an
an an−1 · · · a2 a1


∈ Zn×n ,

where

X :=


0 0 · · · 0 −1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ∈ {0, 1}n×n .
Notice that X differs in just one entry from our choice in the previous section. Matrices of the
form Rot(a) as above are occasionally called “anti-cyclic.”

As before, we define our hash function ha(e) = a1e1 + · · · + a`e` mod qR, where the ai are
chosen uniformly ai ∈ R[q] and ei ∈ R{0,1}. But, we stress that the underlying ring has changed
from Z[x]/(xn − 1) to R = Z[x]/(xn + 1), so that this is not the same hash function as before.
(Formally, we should include the ring as a parameter in h, i.e. ha,Z[x]/(xn+1), to distinguish it, but
we prefer to keep the notation uncluttered.) As before, finding a collision for this hash function is
equivalent to solving Ring-SIS, now over this new ring, Z[x]/(xn + 1). As we will see, Ring-SIS is
in fact hard over this ring, under a reasonable worst-case complexity assumption.

Remark. The author feels compelled to note that the ring R is rather special; it is the ring of
integers of the cyclotomic number field Q[x]/(xn + 1). Number fields and their rings of integers are
very well-studied and very interesting objects, and these notes stop just short of presenting some
of the beautiful mathematics that is lurking beneath the surface here. (The fact that R is such a
rich mathematical object also seems relevant for the security of ha. In particular, we will mention
later that there are algorithmic results for related problems that exploit rather deep properties of
R [Ber14, CGS14, CDPR16, CDW17].)

3.1 Ideal lattices

In order to present the worst-case hardness assumption that will imply the security of our hash
function, we will need to introduce a special class of lattices known as ideal lattices. Recall that a
lattice is an additive subgroup of Zn. I.e., a subset of Zn closed under addition and subtraction.
An ideal I ⊆ R is an additive subgroup of a ring R that is closed under multiplication by any ring
element. I.e., I is closed under addition and subtraction, and for any y ∈ I and r ∈ R, we have
ry ∈ I.

For our choice of ring, we can view I as a lattice by embedding R in Zn via the trivial embedding
that maps xi to the unit vector ei. So, I can equivalently be viewed as a lattice I ⊆ Zn that is
invariant under the linear transformation X. I.e., I ⊆ Zn is a lattice such that (y1, . . . , yn)T ∈ I if

5



and only if (−yn, y1, y2, . . . , yn−1)T ∈ I. Such lattices are sometimes called “anti-cyclic,” and the
corresponding lattices over Z[x]/(xn − 1) are often called “cyclic.”

In particular, this embedding allows us to consider the geometry of an ideal I, as a subset of
Zn. E.g., we can define the `2 norm and the inner product over I by taking the `2 norm and the
inner product over Zn.4 We then see that ideal lattices I are a strange class of lattices in which
non-zero lattice elements y ∈ I can be divided into groups of n linearly independent elements,
y, xy, x2y, . . . , xn−1y, all with the same length, ‖xiy‖ = ‖xjy‖. In particular λ1(I) = λn(I).
(Notice that we move freely between the representation of R as Zn and the representation of R
as a polynomial ring. I.e., we can think of y1, y2 ∈ R as scalars, written in plain font, as opposed
to boldface vectors y1,y2 ∈ Zn. We can still talk about their norms ‖y1‖, ‖y2‖ and inner product
〈y1, y2〉.)

Remark. Ideals are very important objects in the study of rings, and they have a rich history that
we do not discuss here. In fact, much of the early study of lattices was motivated by the study of the
geometry of ideals, going back all the way to the seminal work of Minkowski, Dirichlet, and others
in the middle of the 19th century.

3.2 SVP over ideal lattices and worst-case hardness

For our purposes, this view of ideals as lattices is useful because it allows us to extend computational
lattice problems to ideals. I.e., for some fixed ring R, we can define the computational problems
γ-IdealSVP, γ-IdealSIVP, γ-GapIdealSVP, etc., as the corresponding computational problems re-
stricted to ideal lattices. In fact, the above discussion shows that γ-IdealSVP and γ-IdealSIVP are
equivalent over our ring R = Z[x]/(xn + 1). A slightly more sophisticated argument shows that
γ-GapIdealSVP is easy over R for γ >

√
n because the length of the shortest vector in an ideal

can be approximated up to a factor of
√
n by the determinant. We therefore only present a formal

definition of γ-IdealSVP.

Definition 3. For a ring R (with an associated norm ‖ · ‖) and approximation factor γ ≥ 1, γ-
IdealSVP over R is the approximate search problem defined as follows. The input is (a basis for)
an ideal lattice I over R. The goal is to output a non-zero element y ∈ I with ‖y‖ ≤ γλ1(I)

With this, we can present the worst-case to average-case hardness of Ring-SIS, which was dis-
covered independently by Peikert and Rosen [PR06] and by Lyubashevsky and Micciancio [LM06].

Theorem 3.1 ([PR06, LM06]). For any power of two n, integer ` ≥ 1, and integer modulus
q ≥ 2n2`, γ-Ideal SVP over R = Z[x]/(xn + 1) can be efficiently reduced to Ring-SIS over R, where
γ = ` · poly(n).

3.3 Regarding the hardness of IdealSVP

Of course, Theorem 3.1 is only interesting if γ-IdealSVP is hard over the ring Z[x]/(xn + 1). Until
very recently, our best algorithms for this problem were essentially no better than our generic
algorithms for γ-SVP over general n-dimensional lattices. However, very recently, polynomial-time

4For more general rings of integers over number fields, there is actually a different notion of geometry obtained
via the “canonical embedding” of I into Cn, which has very nice properties. E.g., in the canonical embedding, ring
multiplication is coordinate-wise. For our very special choice of ring, Z[x]/(xn + 1) for n a power of two, these two
embeddings actually yield the same geometry.

6



quantum algorithms for γ-IdealSVP with the very large approximation factor γ = 2Õ(
√
n) were

discovered in a series of works [Ber14, CGS14, CDPR16, CDW17]. (The best known algorithms for
2
√
n-SVP run in time roughly 2

√
n, even on a quantum computer. And, our best polynomial-time

algorithms for γ-SVP only achieve an approximation factor of γ = 2Θ̃(n). So, this is a very big
improvement.)

These algorithms are not known to extend to attacks on Ring-SIS for two reasons. First, the

approximation factor γ = 2Õ(
√
n) is much larger than the approximation factors that are relevant to

Ring-SIS. Second, Ring-SIS is not exactly an ideal lattice problem. Instead, notice that a solution
to Ring-SIS consists of a vector of ring elements (e1, . . . , e`) ∈ R`. Indeed, Ring-SIS is technically
a lattice problem over rank ` modules. It is therefore not currently known how to efficiently reduce
Ring-SIS to IdealSVP.

As a result of all of this, the status of Ring-SIS is a bit unclear at the moment. The barriers
mentioned in the previous paragraph seem to be quite hard to overcome, so perhaps this new line
of research will not lead to an attack. As far as we know, Ring-SIS is just as hard as SIS, and
indeed, as far as we know, it could yield a collision-resistant hash function that is computable in
Õ(n) time and only breakable in time 2Ω(n).

3.4 The reduction

Finally, we present the worst-case to average-case reduction for Ring-SIS, which is a slight variant
of the reduction that we have already seen for SIS. For simplicity, we leave out some details, sweep
some technical issues under the rug, and assume that the reader is familiar with the presentation
of the SIS reduction from an earlier lecture.

Proof of Theorem 3.1. The reduction receives as input some ideal I ⊆ R. We may assume without
loss of generality that it is also given some parameter s such that s/2 ≤

√
nλn(I) ≤ s and some

non-zero element b ∈ I in the ideal with not-too-large norm, say ‖b‖ ≤ 2nλn(I). (Such an element
b can be found by running the LLL algorithm, and we can simply try many different parameters
si =

√
n‖b‖/2i/2 for i = 0, . . . , 2n to obtain s.) As in the reduction for SIS, we will show a reduction

that makes “slow progress.” I.e., it finds a non-zero b′ ∈ I with

‖b′‖ ≤ `n2‖b‖/q + `n1.5s .

We may repeat this procedure, say, 10n times to eventually find a vector of length at most, say,

10`n1.5s ≤ 20n2λn(I) = 20n2`λ1(I) ,

as needed.
For simplicity, we first assume that I is a principal ideal generated by b. I.e., every element in

I can be written as rb for some r ∈ R. This is definitely not true in general,5 and we will sketch
how to remove this assumption at the end of the proof.

The reduction samples y1, . . . ,y` ∈ Rn from the (continuous) Gaussian distribution with pa-
rameter s. Let b ∈ Zn be the vector of coefficients of b, and let y′i ∈ I/q be yi with its co-
ordinates in Rot(b) rounded to the nearest integer multiple of 1/q. Let y′i ∈ R/q be the as-
sociated polynomial with coefficients given by the vector y′i. Finally, let ai ∈ R[q] such that

5Most ideals are not principal at all—i.e., there is no element b that generates the ideal. Even if our ideal is
principal, our specific b will typically not be a generator.

7



bai = qy′i mod qR. The reduction calls the Ring-SIS oracle on input a1, . . . , a`, receiving as output
non-zero e1, . . . , e` ∈ R{−1,0,1} such that a1e1 + · · ·+ a`e` = 0 mod qR. (We might actually need to
repeat this procedure many times to receive valid output from the oracle, but we ignore this here.)
The reduction outputs

b′ = y′1e1 + · · ·+ y′`e` .

We first note that the input a1, . . . , a` ∈ R[q] is statistically close to random because of our
choice of s >

√
nλn(I), just like in the reduction for SIS. So, the input to the Ring-SIS oracle is

distributed correctly.
We next notice that b′ ∈ I. In particular, we see from the definition of ai that

b′ = (ba1e1 + · · ·+ ba`e`)/q mod I .

Since the right-hand side is in I, b′ is as well.
We next study the length of b′. To do this, we need the inequality ‖ye‖ ≤

√
n‖y‖‖e‖ for

any e, y ∈ R, which follows from the definition of polynomial multiplication together with the
Cauchy-Schwarz inequality. Therefore,

‖b′‖ ≤
∑̀
i=1

‖y′iei‖ ≤
√
n
∑̀
i=1

‖y′i‖‖ei‖ ≤ n
∑̀
i=1

‖y′i‖ ≤ `n2‖b‖/q + n
∑̀
i=1

‖yi‖ ,

where the last inequality follows from the fact that ‖y′i − yi‖ ≤
∑
‖xjb‖/q = n‖b‖/q. And, since

‖yi‖ was sampled from a Gaussian with parameter s, we have ‖yi‖ ≤
√
n · s except with negligible

probability. The result follows.
So, b′ is a short element in the ideal, but we must still show that it is non-zero. Notice that the

oracle’s input depends only on the coset yi mod I, and if ei 6= 0, there is at most one value of yi in
this coset that yields b′ = 0. (Notice that this fact is true over an integral domain, when there are
no non-trivial zero divisors in our ring. If we used the ring Z[x]/(xn − 1) instead, then there could
potentially be many values of yi that cause b′ = 0, such as when ei = ẽ from our earlier attack.)
Just like in the SIS case, our choice of parameter s >

√
nλn(I) guarantees that yi has high entropy,

even conditioned on its coset. Therefore, b′ will often be non-zero.
Finally, we sketch how to remove the assumption that I is principal. The basic idea is just to

still do the reduction but to work with the lattice I ′ generated by b. The problem is that we might
have λn(I ′) > s/

√
n. (Indeed I ′ might not have any vectors shorter than b.) This causes issues in

two steps of the proof: when we argue that ai is uniformly random, and when we argue that b′ is
non-zero.

To ensure that ai is still uniformly random, we add to each yi an element vi ∈ I that is
uniformly random mod I ′. We can then “subtract out” vi later to ensure that it does not increase
the length of b′. This effectively gives us a short vector in a coset I ′ + v, where v is an R-linear
combination of the vi. In fact, once we have done this, we can show that the distribution over vi

of the input to the oracle depends only on the coset of yi modulo I. It follows that our output
vector b′ has high entropy and is therefore rarely zero.

References

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Niko-
laenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical,
quantum-secure key exchange from lwe. In CCS, 2016.

8



[Ber14] Daniel J. Bernstein. A subfield-logarithm attack against ideal lattices, 2014.

[CDPR16] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short generators
of principal ideals in cyclotomic rings. In EUROCRYPT, 2016.

[CDW17] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stickelberger class rela-
tions and application to ideal-svp. 2017.

[CGS14] Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: a cautionary tale. ETSI
2nd Quantum-Safe Crypto Workshop, 2014.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are col-
lision resistant. In ICALP (2), 2006.

[Mic07] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Computational Complexity, 16(4), 2007.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case as-
sumptions on cyclic lattices. In TCC, 2006.

9


	Recalling h_A, and its inefficiency
	The cyclic shift matrix, and the ring Z[x]/(xn-1)
	(In)security of this new hash function, and Ring-SIS

	The ring Z[x]/(xn+1), ideal lattices, and a secure collision-resistant hash function
	Ideal lattices
	SVP over ideal lattices and worst-case hardness
	Regarding the hardness of IdealSVP
	The reduction


