History of Succinct Arguments

Nicholas Ward

zkSNARKs

zero knowledge

succinct

non-interactive

argument

of ${\bf k}$ nowledge

Why?

Delegation of Computation

History of Zero Knowledge

[GMR85]: introduced ZKP, with its simulator-based definition, and gave an example

[GKR89]: gave ZKP for an NP-complete problem (3-colorability), and thus for all of NP

History of Non-Interactive Arguments

[FS87]: generically turn public-coin IP into non-interactive proof by generating verifier's next queries from input and conversation so far

(secure assuming random oracle, but heuristically valid)

History of Succinct Arguments

The PCP Theorem

NP ⊆ PCP[O(log n), O(1)] Randomnes Queries

& easy to add ZK!

Send entire PCP? Not succinct!

Verifier sends query locations? Easy for prover to cheat!

[Kil93, Mic94]: Encode PCP over Merkle tree

[Kil93, Mic94]: Encode PCP over Merkle tree

Gives good asymptotics, but *bad* practical efficiency

Linear PCPs

Achieved by moving to the exponent of a group with hard discrete logs

Requires shared *structured reference string*, involving *trusted setup* Introduced in [IKO07], made efficient in [GGPR13] using *pairings*

Linear PCPs

Computation Algebraic Circuit R1CS QAP Linear PCP zkSNARK

IOPs

IP

PCP

IOPs

IOP

Linear IOPs

IOP where each PCP is linear

[GKR08] & protocols based off it

Polynomial IOPs

Special case of linear IOP:

PCP is coefficients

Query is of the form

1	Z	Z ²	z ³	Z ⁴		zn
---	---	----------------	----------------	----------------	--	----

STARK

DARK

PLONK

Marlin!

Polynomial IOPs

- Computation
- Algebraic Circuit
- PRICS
 - Polynomial IOP
 - (using polynomial commitments)
- zksnark

MARLIN:

Preprocessing zkSNARKs with Universal and Updatable Setup

Alessandro Chiesa UC Berkeley
Yuncong Hu UC Berkeley
Mary Maller University College London
Pratyush Mishra UC Berkeley
Noah Vesely University College London
Nicholas Ward UC Berkeley

https://erint.iacr.org/2019/1047

circuit; to be trustworthy, this requires a *global* MPC

Goal: universal setup

Universal Trusted Setup: USETUP $(1^{\lambda}, N) \rightarrow (upk, uvk)$

Circuit-specific deterministic preprocessing:

Goal: updatable setup

Initial Setup: Setup(1^{λ}) \rightarrow (**srs**, ρ)

Each update: UPDATE(1^{λ}, **srs**, (ρ_i)_{i=1,...,n}) \rightarrow (**srs'**, ρ ')

> Verification: VERIFY(1^{λ}, **srs**, (ρ_i)_{i=1,...n}) \rightarrow b

Contributions

Concurrent Work:

Marlin: good for R1CS PLONK: good for CSAT

This Talk

1. Methodology

A. Provides a clean and straightforward way to construct preprocessing SNARKs
 B. Shows that the key to achieving preprocessing is holography

- **Proof of Knowledge**: Whenever **V** accepts, **P** "knows" w such that $(i, x, w) \in R$.
- **Bounded-query ZK**: Whenever (*i*, *x*, *w*) ∈ *R*, a verifier that makes up to *b* queries to polys learns nothing about *w*.

Problem: Verifier is linear in circuit!

- When size of circuit << size of computation (like in machine computations), this is OK.
- When size of circuit = size of computation (like in CSAT/R1CS), this is bad!

Verifier efficiency: |x| +T(Interaction) + T(QUERY) + T(DECISION)

- **Completeness**: Whenever p(z) = v, **R** accepts.
- Extractability: Whenever R accepts, S's commitment cm "contains" a polynomial p of degree at most D.
- Hiding: If **R** makes up to *b* queries, it learns nothing about *p*.

Our compiler needs more

Batch commitment

• Batch opening

Multiple rounds

Per-poly degree bounds

Idea underlying compiler:

Holography \Rightarrow Preprocessing

Preprocessing zkSNARKs

ARG.SETUP $(1^{\lambda}, N) \rightarrow (upk, uvk)$ ARG.INDEX $(upk, i) \rightarrow (ipk, ivk)$ ARG.PROVE $(ipk, x, w) \rightarrow \pi$ ARG.VERIFY $(ivk, x, \pi) \rightarrow b \in \{0, 1\}$

- **Completeness**: Whenever $(i, x, w) \in R$, **V** accepts.
- **Proof of Knowledge**: Whenever **V** accepts, **P** "knows" w such that $(i, x, w) \in R$.
- **Zero Knowledge**: Whenever $(i, x, w) \in R$, **V** learns nothing about w.
- Verifier efficiency: $T(\mathbf{V}) = O(\log(|i|) + |x|)$

Universal Setup

Index-specific Setup

Prove and Verify

Properties

- Completeness: Follows from completeness of PC and AHP.
- Proof of Knowledge: Whenever ARG.VERIFY accepts but
 (*i*, *x*, *w*) ∉ *R*, we can construct either an adversarial prover against
 AHP, or an adversary that breaks extractability of PC.
- Zero Knowledge: Follows from hiding of PC and bounded-query ZK of AHP.
- Verifier efficiency: T(ARG.VERIFY) = T(AHP.VERIFIER) + T(PC.CHECK)

Conclusion

In the talk:

algebraic holographic proof

+

extractable polynomial commitment scheme into a

universal preprocessing zkSNARK

In the paper: Efficient AHP for R1CS:

Protocol to evaluate low-degree extension for arbitrary R1CS matrices

Extending KZG10 to achieve:

- Extractability across multiple rounds
- Batch commitment and opening
- Individual degree bounds

Paper: <u>https://eprint.iacr.org/2019/1047</u> Code: <u>https://github.com/scipr-lab/marlin</u>

[KZG10] Polynomial Commitments

Polynomial Commitments: Definition

PC.Setup(1^{λ} , degree bound **D**) \rightarrow (committer key **ck**, receiver key **rk**)

PC.Commit(**ck**, polynomial **p**) → commitment **c**

PC.Open(**ck**, **p**, eval point **z**) \rightarrow proof **\pi**

PC.Check(**rk**, **c**, **z**, claimed value **v**, π) \rightarrow bit **b**

Polynomial Commitments: Security

Completeness: if **v = p(z)**, then PC.Check outputs **1**

Extractability: anyone who produces a commitment **c** that cause PC.Check to accept "knows" a corresponding poly **p**

Succinctness: **c** and π sizes, PC.Check time independent of D

Hiding: commitment reveals no information about polynomial

What Are Polynomial Commitments?

A Wider View: Oracles & Primitives

Setup(1^{λ} , **D**):

- computes groups G, G_T of prime order p with pairing e
- chooses generator $\mathbf{g} \in \mathbf{G}$, random $\boldsymbol{\alpha}$ from {1, ..., p-1}
- outputs $\mathbf{pk} = \mathbf{rk} = (\mathbf{g}, \alpha \mathbf{g}, \alpha^2 \mathbf{g}, ..., \alpha^t \mathbf{g})$

Commit(**ck**, **p**):

outputs c = p(α)g, pulling monomials from ck

Open(**ck**, **p**, **z**):

- computes witness poly $\phi(\mathbf{x}) := (\mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{z}))/(\mathbf{x} \mathbf{z})$
- outputs proof $\boldsymbol{\pi} = \boldsymbol{\phi}(\boldsymbol{\alpha}) \boldsymbol{g}$

witness poly because it shows the value for **p**(**z**) is correct

Check(**rk**, **c**, **z**, **v**, **π**):

• checks whether

$$\mathbf{e}(\mathbf{c}, \mathbf{g}) = \mathbf{e}(\mathbf{\pi}, (\mathbf{\alpha} - \mathbf{z})\mathbf{g}) \mathbf{e}(\mathbf{g}, \mathbf{g})^{\mathbf{v}}$$

 $\mathbf{e}(\mathbf{c}, \mathbf{g}) = \mathbf{e}(\mathbf{p}(\alpha)\mathbf{g}, \mathbf{g}) = \mathbf{e}(\mathbf{g}, \mathbf{g})^{\mathbf{p}(\alpha)} = \mathbf{e}(\mathbf{g}, \mathbf{g})^{\mathbf{\phi}(\alpha)(\alpha-z)+\mathbf{p}(z)}$

 $= \mathbf{e}(\mathbf{\phi}(\alpha)\mathbf{g}, (\alpha-\mathbf{z})\mathbf{g}) \mathbf{e}(\mathbf{g}, \mathbf{g})^{\mathbf{p}(\mathbf{z})}$

 $= \mathbf{e}(\mathbf{\pi}, (\alpha - \mathbf{z})\mathbf{g}) \mathbf{e}(\mathbf{g}, \mathbf{g})^{\mathbf{v}}$ if $\mathbf{c} = \mathbf{p}(\alpha)\mathbf{g}, \mathbf{v} = \mathbf{p}(\mathbf{z}), \mathbf{\pi} = \mathbf{\phi}(\alpha)\mathbf{g}$