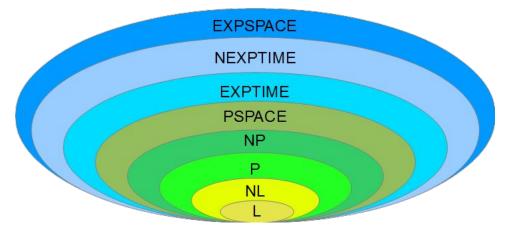
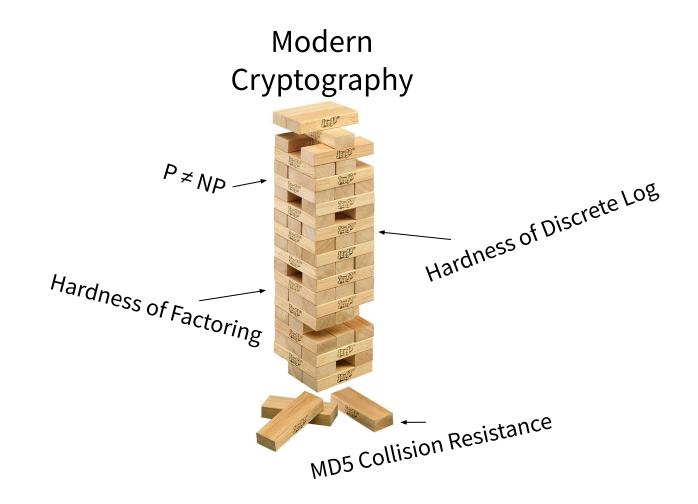
Fine-grained Cryptography

Nagaganesh Jaladanki

Fine-grained Cryptography





Fine-Grained Cryptography

(also called moderately hard cryptography [Dwork-Naor])

- Honest prover: complexity class **C**_{hon}
- Adversary: complexity class **C**_{adv} > **C**_{hon}

Examples:

C_{hon} = Time(n)	C_{adv} = Time(n²)
C_{hon} = Space(s)	C _{adv} = Space(s ²)
C_{hon}= ParTime(d)	C_{adv} = ParTime(d ²)

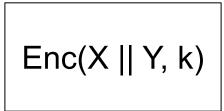
Time resource bounds Space resource bounds Parallel time resource bounds

Time resource bounds Space resource bounds Parallel time resource bounds

Merkle Puzzles [Mer78]

- **C**_{hon} = Time(n)
- $C_{adv} = Time(n^2)$
- Key exchange protocol

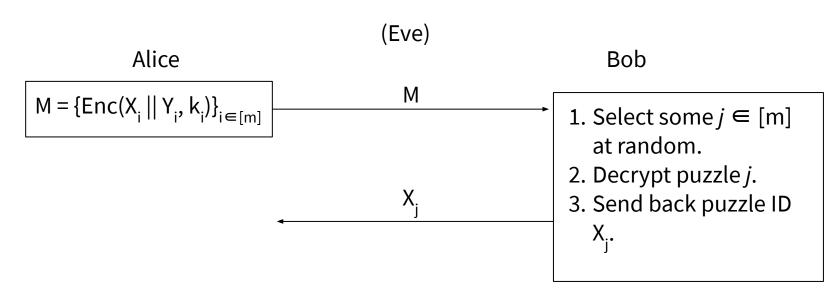
Merkle Puzzles [Mer78]



X = message ID (think UUID) Y = randomly generated symmetric key k = randomly generated encryption key

> $k \in \mathbf{K}$ such that $|\mathbf{K}| = n$ Time to break: O(n)

Merkle Puzzles [Mer78]



Key Exchange: both parties know Y_j at the end. Honest party time: O(m + n) Adversary time: O(mn)

Recent advances

- [VLW15] gave a key-exchange protocol extending Merkle's Puzzles to exchange a lg(n) bit key in time n^{2k-g} for the honest prover and O(n^{3k-2g}) for an adversary.
 - Constants k, g depend on the difficulty of particular "puzzle" used for the protocol. Described 3 sufficient properties needed of a computational problem to work with this protocol.
- [BRSV17] used specific reductions in fine-grained complexity to obtain a worst-case to average-case reduction, used to build a Proof Of Work cryptographic primitive.
 - Unfortunately, they showed that building a true one-way function using their approach would violate NSETH, a popular hardness assumption.

Time resource bounds Space resource bounds Parallel time resource bounds

- **C**_{hon} = Space(s)
- $C_{adv} = Space(s^2)$
- Key exchange protocol

Alice	(Eve)	Bob
1. Select q uniform and pairwise independent indices T₁,, T_g ∈ [n]. Record values of stream	$\mathbf{M} \in \{0,1\}^n$	 J. Select q uniform and pairwise independent indices V₁,, V_g ∈ [n]. Record values of stream at
at those indices.	V ₁ ,, V _q	those indices.
 Compute common indices: S = T ∩ V. Compute key K as values of stream at common indices. 	Τ ₁ ,, Τ _q	 2. Compute common indices: S = T ∩ V. 3. Compute key K as values of stream at common indices.

Lemma 1: The expected number of common indices $\mathbf{l} = \mathbf{q}^2 / \mathbf{n}$.

So, for a constant key size **c**, we would expect to set **q** = O(sqrt(**n**))

Lemma 2: If $\mathbf{T}_1, ..., \mathbf{T}_q$ and $\mathbf{V}_1, ..., \mathbf{V}_q$ are independent sequences of uniform and pairwise independent random variables, then their intersection $\{\mathbf{S}_1, ..., \mathbf{S}_l\} = \mathbf{T} \cap \mathbf{V}$ is pairwise independent.

So, Eve has no hope but to store all information from the stream until the indices are exchanged between Alice and Bob.

Theorem: This protocol uses $O(\mathbf{s})$ space for the honest party and $O(\mathbf{s}^2)$ space for any adversary with a constant probability of guessing the key, where $\mathbf{s} = O(\operatorname{sqrt}(\mathbf{n}))$.

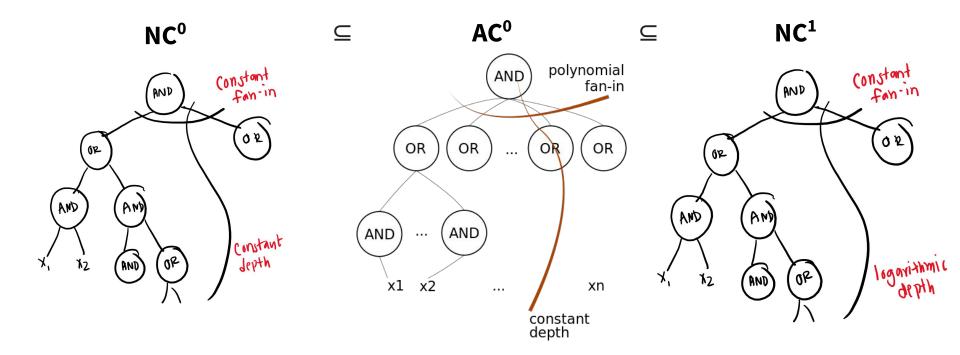
For a constant key size **c**, we would expect to set **q** = sqrt(**cn**). Alice and Bob only need to save sqrt(**cn**) information, but Alice needs to store the entire stream of **n** bits.

Recent advances

- Lots of recent advances with memory-bounded adversaries
 - Oblivious Transfer [Ding01] [Ding04]
 - Randomness Extractors [Vad03]
 - Quantum Adversaries [Ding01]

Time resource bounds Space resource bounds Parallel time resource bounds

Circuit Complexity



Definition: (One-Way Function). Let $\mathbf{F} = {\mathbf{f}_n : \{0, 1\}^n \rightarrow \{0, 1\}^{l(n)}}$ be a function family. \mathbf{F} is a \mathbf{C}_1 -One-Way Function against \mathbf{C}_2 if:

- Computability: for each **n**, \mathbf{f}_n is deterministic and can be computed in \mathbf{C}_1 .
- One-wayness: for any $\mathbf{G} = \{\mathbf{g}_n : \{0, 1\}^{l(n)} \rightarrow \{0, 1\}^n\} \in \mathbf{C}_2$, and any \mathbf{n} , we have: $\Pr[\mathbf{f}_n(\mathbf{g}_n(\mathbf{y}) = \mathbf{y} \mid \mathbf{y} \in \mathbf{f}_n(\mathbf{x})] < \operatorname{negl}(\mathbf{n})$

We show a NC⁰-One-Way Function against AC⁰.

Theorem: (OWFs against AC⁰) Let:

$$\mathbf{f}_{\mathbf{n}}(\mathbf{x}) = (\mathbf{x}_{1} \oplus \mathbf{x}_{2}, \mathbf{x}_{2} \oplus \mathbf{x}_{3}, \dots, \mathbf{x}_{n-1} \oplus \mathbf{x}_{n}, \mathbf{x}_{n})$$

Then $\mathbf{f}_{\mathbf{n}}(\mathbf{x})$ is an NC⁰-One-Way Function against AC⁰.

Proof: Computability is satisfied, since **f**_n is deterministic.

Note that \mathbf{f}_n is bijective. That is, every \mathbf{y} has a unique inverse under \mathbf{f}_n , which is

 $(\bigoplus_{i=1}^{n} y_i, \bigoplus_{i=2}^{n} y_i, \dots, y_{n-1} \oplus y_n, y_n)$. In particular, the first bit of the inverse is PARITY(y).

Proof: (ctd). Consider any AC⁰ function family $\mathbf{G} = \{\mathbf{g}_n\}$. Then, we can define another function family $\mathbf{H} = \{\mathbf{h}_n\}$, where \mathbf{h}_n does the following on input **y**:

- 1. Compute $z \in g_n(y)$
- 2. Check whether **f**_n(**z**) = **y**
- 3. If so, output the first bit of **z**.
- 4. If not, output a random bit.

Note **H** is also an AC⁰ function family, because \mathbf{f}_n and \mathbf{g}_n can be computed in equal depth, as well as checking equality.

Proof: (ctd). By that observation, we get that for any **n**:

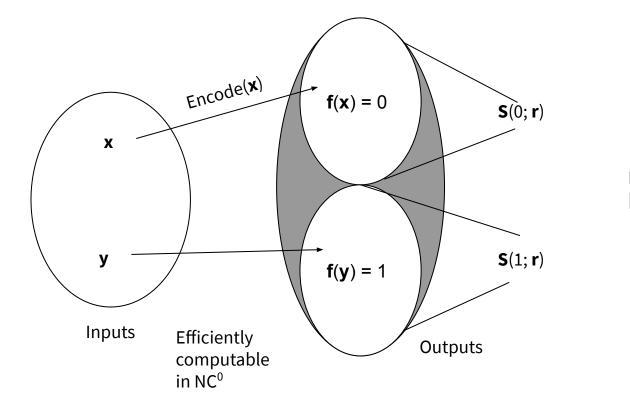
$$Pr[\mathbf{h}_{n}(\mathbf{y}) = PARITY(\mathbf{y})] = Pr[\mathbf{g}_{n}(\mathbf{y}) = \mathbf{f}_{n}^{-1}(\mathbf{y})] + 0.5 Pr[\mathbf{g}_{n}(\mathbf{y}) \neq \mathbf{f}_{n}^{-1}(\mathbf{y})]$$
$$= Pr[\mathbf{g}_{n}(\mathbf{y}) = \mathbf{f}_{n}^{-1}(\mathbf{y})] + 0.5 (1 - Pr[\mathbf{g}_{n}(\mathbf{y}) = \mathbf{f}_{n}^{-1}(\mathbf{y})])$$
$$= 0.5 + 0.5 Pr[\mathbf{g}_{n}(\mathbf{y}) = \mathbf{f}_{n}^{-1}(\mathbf{y})]$$

However, a seminal result from Hastad shows that no AC⁰ function can compute parity with probability greater than:

 $Pr[\mathbf{h}_{n}(\mathbf{y}) = PARITY(\mathbf{y})] \le 0.5 + 2^{-O(n / (\log s(n)))}$

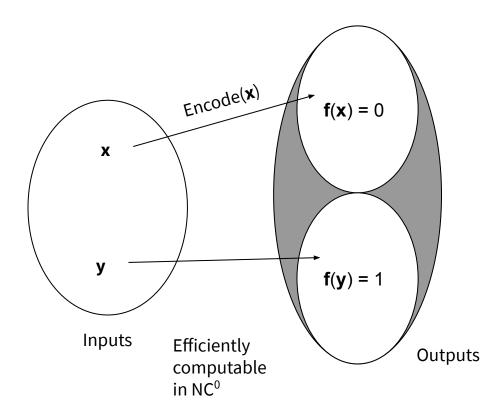
So, there cannot be an AC⁰ family of functions **G** that has a non-negligible advantage in inverted **F**.

Randomized Encodings [IK00, AIK04]



Decode(Encode(**x**)) = **f**(**x**) [expensive operation]

Randomized Encodings [IK00, AIK04]



Surjective Perfect Randomized Encoding:

Given a deterministic function $\mathbf{f} : \{0, 1\}^n \rightarrow \{0, 1\}^t$, we say that the deterministic function $\mathbf{g} : \{0, 1\}^n$ $x \{0, 1\}^m \rightarrow \{0, 1\}^s$ is a *perfect randomized encoding* of \mathbf{f} if the following conditions are satisfied:

- 1. Input independence
- 2. Output disjointness
- 3. Uniformity
- 4. Balance
- 5. Stretch preservation
- 6. Surjectivity

Theorem: [AIK04] Any logspace **f** has NC⁰ randomized encodings.

OWFs against NC¹ [BVV15]

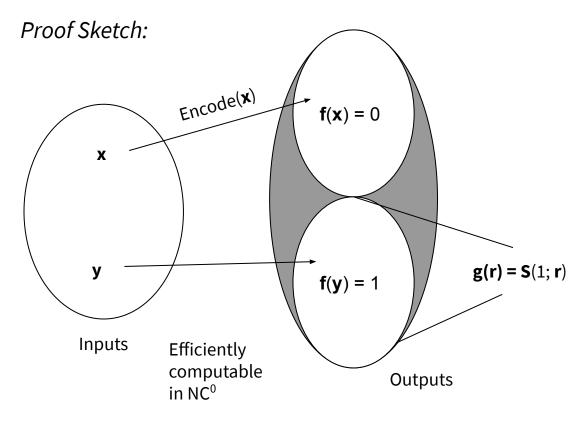
Assumption: $L \neq NC^1$. Then, there must exist some $f \in L$, $f \notin NC^1$.

Construction:

g(**r**) = **S**(1; **r**)

is a one-way function secure against NC¹ adversaries.

OWFs against NC¹ [BVV15]



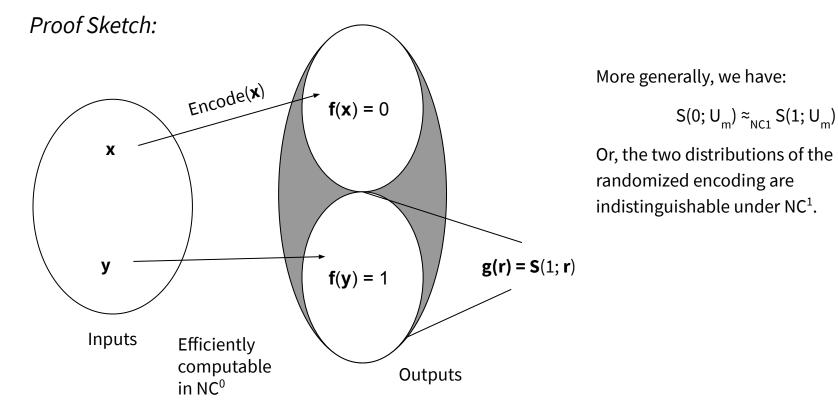
Assume an NC¹ adversary could invert **g**(**r**).

Then, if we fed the adversary Encode(**x**) (where **f**(**x**) = 1), the adversary would tell us what **x** was.

If we fed them Encode(**x**) (where **f**(**x**) = 0), the adversary cannot invert it, since the two distributions are disjoint.

So, we have a decider for the language **f**(**x**) that runs in NC¹. This is a contradiction, since we took **f** to be in **L** but not NC¹.

OWFs against NC¹ [BVV15]



We open the black box of randomized encodings [IK00]:

$$\mathbf{M}_{0}^{\mathsf{n}} = \begin{pmatrix} 0 & \cdots & 0 & 0 \\ 1 & 0 & & & 0 \\ 0 & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & 0 & \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}, \mathbf{M}_{1}^{\mathsf{n}} = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 1 & 0 & & & 0 \\ 0 & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & 0 & \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

LSamp(**n**):

1. Output an **n** × **n** upper triangular matrix where all entries in the diagonal are 1 and all other entries in the upper triangular part are chosen at random.

Rsamp(**n**):

- 1. Sample at random $\mathbf{r} \in \{0, 1\}^{n-1}$.
- 2. Output \mathbf{M}_0 with the last column $[\mathbf{r} \ \mathbf{1}]^T$.

We open the black box of randomized encodings [IK00]:

$$\mathbf{M}_{0}^{\mathsf{n}} = \begin{pmatrix} 0 & \cdots & 0 & 0 \\ 1 & 0 & & & 0 \\ 0 & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & 0 & \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}, \mathbf{M}_{1}^{\mathsf{n}} = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 1 & 0 & & & 0 \\ 0 & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & 0 & \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

LSamp(**n**):

1. Output an **n** × **n** upper triangular matrix where all entries in the diagonal are 1 and all other entries in the upper triangular part are chosen at random.

Rsamp(**n**):

- 1. Sample at random $\mathbf{r} \in \{0, 1\}^{n-1}$.
- 2. Output \mathbf{M}_0 with the last column $[\mathbf{r} \ \mathbf{1}]^T$.

Randomized Encoding scheme:

- Sample $\mathbf{R}_1 \leftarrow \text{LSamp}(\mathbf{n})$ and $\mathbf{R}_2 \leftarrow \text{RSamp}(\mathbf{n})$.
- When $\mathbf{f}(\mathbf{x}) = 0$, sample and return matrix $\mathbf{M} \in \mathbf{R}_1 \mathbf{M}_0^n \mathbf{R}_2$. This matrix has rank (**n**-1).
- When $\mathbf{f}(\mathbf{x}) = 1$, sample and return matrix $\mathbf{M} \in \mathbf{R}_1 \mathbf{M}_1^n \mathbf{R}_2$. This matrix has rank **n**.

We know from earlier that

 $M_{f(x)=1} \approx_{NC1} M_{f(x)=0}$

In other words, the two distributions are indistinguishable to an NC¹ adversary.

Theorem: Assume ⊕L/poly ⊈ NC¹. Then, the following construction is an AC⁰[2]-Public Key Encryption Scheme against NC¹.

KeyGen_n:

- 1. Sample $\mathbf{R}_1 \leftarrow \text{LSamp}(\mathbf{n})$ and $\mathbf{R}_2 \leftarrow \text{RSamp}(\mathbf{n})$.
- 2. Let $\mathbf{k} = (\mathbf{r} \ \mathbf{1})^T$ be the last column of \mathbf{R}_2 .
- 3. Compute $\mathbf{M} = \mathbf{R}_1 \mathbf{M}_0^n \mathbf{R}_2$.
- 4. Output (pk = **M**, sk = **k**).

*Enc*_{*n*}(*pk* = *M*, *b*):

- 1. Sample $\mathbf{r} \in \{0, 1\}^n$.
- 2. Let $\mathbf{t}^{\mathsf{T}} = (0 \dots 0 1)$ of length \mathbf{n} .
- 3. Output $\mathbf{c}^{\mathsf{T}} = \mathbf{r}^{\mathsf{T}}\mathbf{M} + \mathbf{b}\mathbf{t}^{\mathsf{T}}$.

 $Dec_n(sk = \mathbf{k}, \mathbf{c})$:

1. Output (**c, k**).

ZeroSamp(**n**):

- 1. Sample $\mathbf{R}_1 \leftarrow \text{LSamp}(\mathbf{n})$ and $\mathbf{R}_2 \leftarrow \text{RSamp}(\mathbf{n})$.
- 2. Output $\mathbf{R}_1 \mathbf{M}_0 \mathbf{R}_2$.

OneSamp(**n**):

- 1. Sample $\mathbf{R}_1 \leftarrow \text{LSamp}(\mathbf{n})$ and $\mathbf{R}_2 \leftarrow \text{RSamp}(\mathbf{n})$.
- 2. Output $\mathbf{R}_1 \mathbf{M}_1 \mathbf{R}_2$.

Theorem: [IK00, AIK04] For any boolean function family $\mathbf{F} = {\mathbf{f}_n}$ in \oplus L/poly, there exists a polynomial \mathbf{p} and a perfect randomized encoding \mathbf{g}_n for \mathbf{f}_n such that the distribution of \mathbf{g}_n is identical to ZeroSamp($\mathbf{p}(\mathbf{n})$) when $\mathbf{f}_n(\mathbf{x}) = 0$ and identical to OneSamp($\mathbf{p}(\mathbf{n})$) when $\mathbf{f}_n(\mathbf{x}) = 1$.

Essentially, this theorem implies that if there is some function in \oplus L/poly that is hard to compute in the worst-case, then it is hard to distinguish between samples from **S**(0; **r**) and **S**(1; **r**).

So, this means that:

 $(pk, Enc_n(pk, 0)) = (\mathbf{M}, \mathbf{r}^T \mathbf{M} | \mathbf{M} \in ZeroSamp(\mathbf{p(n)}), \mathbf{r}) \approx_{NC1} (\mathbf{M}, \mathbf{r}^T \mathbf{M} | \mathbf{M} \in OneSamp(\mathbf{p(n)}), \mathbf{r})$

However, the output of OneSamp is always full rank. So, the distribution of **r**^T**M** is just uniform over {0, 1}ⁿ. s a result, we get:

$$(\mathbf{M}, \mathbf{r}^{\mathsf{T}}\mathbf{M} | \mathbf{M} \leftarrow \text{OneSamp}(\mathbf{p(n)}), \mathbf{r}) = (\mathbf{M}, \mathbf{r}^{\mathsf{T}}\mathbf{M} + \mathbf{t}^{\mathsf{T}} | \mathbf{M} \leftarrow \text{OneSamp}(\mathbf{p(n)}), \mathbf{r})$$

since flipping the last bit does not change the distribution. Using the same idea as above, we get:

$$(\mathbf{M}, \mathbf{r}^{\mathsf{T}}\mathbf{M} \mid \mathbf{M} \leftarrow \mathsf{OneSamp}(\mathbf{p(n)}), \mathsf{r}) \approx_{\mathsf{NC1}} (\mathbf{M}, \mathbf{r}^{\mathsf{T}}\mathbf{M} + \mathbf{t}^{\mathsf{T}} \mid \mathbf{M} \leftarrow \mathsf{ZeroSamp}(\mathbf{p(n)}), \mathsf{r}) = (\mathsf{pk}, \mathsf{Enc}_{\mathsf{n}}(\mathsf{pk}, 1))$$

Since the distributions are the same regardless of which bit we've encrypted, we have shown semantic security.

Conclusion

Thank you!