
(Leveled) Fully Homomorphic Encryption

without Bootstrapping

Zvika Brakerski∗

Stanford University
Craig Gentry†

IBM Research
Vinod Vaikuntanathan‡

University of Toronto

Abstract

We present a novel approach to fully homomorphic encryption (FHE) that dramatically
improves performance and bases security on weaker assumptions. A central conceptual contri-
bution in our work is a new way of constructing leveled fully homomorphic encryption schemes
(capable of evaluating arbitrary polynomial-size circuits), without Gentry’s bootstrapping proce-
dure.

Specifically, we offer a choice of FHE schemes based on the learning with error (LWE) or
Ring LWE (RLWE) problems that have 2λ security against known attacks. We construct:

• A leveled FHE scheme that can evaluate depth-L arithmetic circuits (composed of fan-in 2
gates) using Õ(λ·L3) per-gate computation. That is, the computation is quasi-linear in the
security parameter. Security is based on RLWE for an approximation factor exponential
in L. This construction does not use the bootstrapping procedure.

• A leveled FHE scheme that can evaluate depth-L arithmetic circuits (composed of fan-
in 2 gates) using Õ(λ2) per-gate computation, which is independent of L. Security is
based on RLWE for quasi-polynomial factors. This construction uses bootstrapping as an
optimization.

We obtain similar results for LWE, but with worse performance. All previous (leveled) FHE
schemes required a per-gate computation of Ω̃(λ3.5), and all of them relied on sub-exponential
hardness assumptions.

We introduce a number of further optimizations to our scheme based on the Ring LWE
assumption. As an example, for circuits of large width – e.g., where a constant fraction of levels
have width Ω(λ) – we can reduce the per-gate computation of the bootstrapped version to Õ(λ),
independent of L, by batching the bootstrapping operation.

At the core of our construction is a much more effective approach for managing the noise level
of lattice-based ciphertexts as homomorphic operations are performed, using new techniques
recently introduced by Brakerski and Vaikuntanathan (FOCS 2011).

∗E-mail: zvika@stanford.edu. Supported by a Simons Postdoctoral Fellowship.
†E-mail: cbgentry@us.ibm.com. Sponsored by the Air Force Research Laboratory (AFRL). Disclaimer: This

material is based on research sponsored by DARPA under agreement number FA8750-11-C-0096. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of DARPA or the U.S.
Government. Approved for Public Release, Distribution Unlimited.
‡E-mail: vinodv@cs.toronto.edu. This material is based on research sponsored by DARPA under Agreement

number FA8750-11-2-0225. All disclaimers as above apply.

1

1 Introduction

Fully homomorphic encryption (FHE) [RAD78, Gen09b] allows a computationally powerful worker
to receive encrypted data and perform arbitrarily complex, dynamically chosen computations on
that data while it remains encrypted, despite not having the secret decryption key. Until recently,
all FHE schemes [Gen09b, DGHV10, SV10, GH11b, CMNT, BV11a] followed the same blueprint,
namely, the one laid out in Gentry’s original construction [Gen09b, Gen09a].

The first step in Gentry’s blueprint is to construct a somewhat homomorphic encryption (SWHE)
scheme, namely an encryption scheme capable of evaluating “low-degree” multivariate polynomials
homomorphically. Starting with Gentry’s original construction based on ideal lattices [Gen09b],
there are by now a number of such schemes in the literature [DGHV10, SV10, GH11b, CMNT,
BV11a, LNV11], all of which based on lattices (either directly or implicitly). The ciphertexts in all
these schemes are “noisy”, where the noise grows slightly during homomorphic addition and explo-
sively during homomorphic multiplication, and hence, the limitation of low-degree polynomials.

To obtain FHE, Gentry provided a remarkable bootstrapping theorem which states that given a
SWHE scheme that can evaluate its own decryption function (plus an additional operation), one
can transform it into a “leveled”1 FHE scheme. Bootstrapping “refreshes” a ciphertext by running
the decryption function on it homomorphically using an encrypted secret key (given in the public
key), resulting in a reduced noise.

Thus, to finish the construction, it is sufficient to design a SWHE scheme that is capable
of homomorphically evaluating its own decryption circuit (plus some). Unfortunately, until very
recently, natural SWHE schemes used to be incapable of evaluating their own decryption circuits
without making significant modifications to the scheme. (We discuss recent exceptions [GH11a,
BV11b] below.) Thus, the final step in Gentry’s blueprint is to squash the decryption circuit of the
SWHE scheme, namely transform the scheme into one with the same homomorphic capacity but a
decryption circuit that is simple enough to allow bootstrapping. Gentry [Gen09b] showed how to
do this by adding a “hint” – namely, a large set of numbers with a secret sparse subset that sums
to the original secret key – to the public key. Of course, the hint can be seen as useful information
about the secret key, and the security of the scheme in the presence of the hint relies on a new
“sparse subset sum” assumption (which, roughly speaking, can be thought of as saying that the
hint is useless to a computationally bounded adversary).

1.1 Efficiency of FHE

The efficiency of fully homomorphic encryption has been a (perhaps, the) big question following
its invention. In this paper, we are concerned with the per-gate computation overhead of the FHE
scheme, defined as the ratio between the time it takes to compute a circuit homomorphically on en-
crypted inputs to the time it takes to compute it on plaintext inputs.2 Unfortunately, FHE schemes
that follow Gentry’s blueprint (some of which have actually been implemented [GH11b, CMNT])
have fairly poor performance: their per-gate computation overhead is p(λ), a large polynomial in

1In a “leveled” FHE scheme, the parameters of the scheme may depend on the depth of the circuits that the
scheme can evaluate (but not on their size). The schemes we construct in this work are all leveled FHE schemes.
One can obtain a “pure” FHE scheme (with a constant-size public key) from these leveled FHE schemes by assuming
“circular security”, namely that it is “safe” to encrypt the leveled FHE secret key under its own public key. With
this understanding, and when there is no cause for confusion, we will omit the term “leveled” throughout this work.

2Other measures of efficiency, such ciphertext/key size and encryption/decryption time, are also important. In
fact, the schemes we present in this paper are very efficient in these aspects (as are the schemes in [GH11a, BV11b]).

2

the security parameter. In fact, as we argue below, this penalty in performance seems somewhat
inherent for schemes that follow this blueprint.

First, the complexity of (known approaches to) bootstrapping is inherently at least the com-
plexity of decryption times the bit-length of the individual ciphertexts that are used to encrypt the
bits of the secret key. The reason is that bootstrapping involves evaluating the decryption circuit
homomorphically – that is, in the decryption circuit, each secret-key bit is replaced by a (large) ci-
phertext that encrypts that bit – and both the complexity of decryption and the ciphertext lengths
must each be Ω(λ).

Second, the undesirable properties of known SWHE schemes conspire to ensure that the real cost
of bootstrapping for FHE schemes that follow this blueprint is actually much worse than quadratic.
Known FHE schemes start with a SWHE scheme that can evaluate polynomials of degree D (mul-
tiplicative depth logD) securely only if the underlying lattice problem is hard to 2D-approximate.
To achieve hardness against 2λ time adversaries, the lattice must have dimension Ω(D · λ). This
is because we have lattice algorithms in n dimensions that compute 2n/λ-approximations of short

vectors in time 2Õ(λ). Moreover, the coefficients of the vectors used in the scheme have bit length
Ω(D) to allow the ciphertext noise room to expand to 2D. Therefore, the size of “fresh” ciphertexts
(e.g., those that encrypt the bits of the secret key) is Ω̃(D2 · λ). Since the SWHE scheme must
be “bootstrappable” – i.e., capable of evaluating its own decryption function – D must exceed
the degree of the decryption function. Typically, the degree of the decryption function is Ω(λ).
Thus, overall, “fresh” ciphertexts have size Ω̃(λ3). So, the real cost of bootstrapping – even if we
optimistically assume that the “stale” ciphertext that needs to be refreshed can be decrypted in
only Θ(λ)-time – is Ω̃(λ4).

The analysis above ignores a nice optimization by Stehlé and Steinfeld [SS10], which so far has
not been useful in practice, that uses Chernoff bounds to asymptotically reduce the decryption
degree down to O(

√
λ). With this optimization, the per-gate computation of FHE schemes that

follow the blueprint is Ω̃(λ3).3

1.2 Recent Deviations from Gentry’s Blueprint, and the Hope for Better Effi-
ciency

Recently, Gentry and Halevi [GH11a], and Brakerski and Vaikuntanathan [BV11b], independently
found very different ways to construct FHE without using the squashing step, and thus without the
sparse subset sum assumption. These schemes are the first major deviations from Gentry’s blueprint
for FHE. Surprisingly, Brakerski and Vaikuntanathan [BV11b] showed how to base security entirely
on LWE (for sub-exponential approximation factors), avoiding reliance on ideal lattices.

From an efficiency perspective, however, these results are not a clear win over previous schemes.
Both of the schemes still rely on the problematic aspects of Gentry’s blueprint – namely, bootstrap-
ping and an SWHE scheme with the undesirable properties discussed above. Thus, their per-gate
computation is still more than Ω̃(λ4). Nevertheless, the techniques introduced in these recent con-
structions are very interesting and useful to us. In particular, we use the tools and techniques
introduced by Brakerski and Vaikuntanathan [BV11b] in an essential way to achieve remarkable
efficiency gains.

3We note that bootstrapping lazily – i.e., applying the refresh procedure only at a 1/L fraction of the circuit levels
for L > 1 – cannot reduce the per-gate computation further by more than a logarithmic factor for schemes that follow
this blueprint, since these SWHE schemes can evaluate only log multiplicative depth before it becomes absolutely
necessary to refresh – i.e., L = O(log λ).

3

An important, somewhat orthogonal question is the strength of assumptions underlying FHE
schemes. All the schemes so far rely on the hardness of short vector problems on lattices with a
subexponential approximation factor. Can we base FHE on the hardness of finding a polynomial
approximation?

1.3 Our Results and Techniques

We leverage Brakerski and Vaikuntanathan’s techniques [BV11b] to achieve asymptotically very
efficient FHE schemes. Also, we base security on lattice problems with quasi-polynomial approx-
imation factors. (All previous schemes relied on the hardness of problems with sub-exponential
approximation factors.) In particular, we have the following theorem (informal):

• Assuming Ring LWE for an approximation factor exponential in L, we have a leveled FHE
scheme that can evaluate L-level arithmetic circuits without using bootstrapping. The scheme
has Õ(λ · L3) per-gate computation (namely, quasi-linear in the security parameter).

• Alternatively, assuming Ring LWE is hard for quasi-polynomial factors, we have a leveled
FHE scheme that uses bootstrapping as an optimization, where the per-gate computation
(which includes the bootstrapping procedure) is Õ(λ2), independent of L.

We can alternatively base security on LWE, albeit with worse performance. We now sketch our
main idea for boosting efficiency.

In the BV scheme [BV11b], like ours, a ciphertext vector c ∈ Rn (where R is a ring, and
n is the “dimension” of the vector) that encrypts a message m satisfies the decryption formula
m =

[
[〈c, s〉]q

]
2
, where s ∈ Rn is the secret key vector, q is an odd modulus, and [·]q denotes

reduction into the range (−q/2, q/2). This is an abstract scheme that can be instantiated with
either LWE or Ring LWE – in the LWE instantiation, R is the ring of integers mod q and n is a
large dimension, whereas in the Ring LWE instantiation, R is the ring of polynomials over integers
mod q and an irreducible f(x), and the dimension n = 2.

We will call [〈c, s〉]q the noise associated to ciphertext c under key s. Decryption succeeds as long
as the magnitude of the noise stays smaller than q/2. Homomorphic addition and multiplication
increase the noise in the ciphertext. Addition of two ciphertexts with noise at most B results in
a ciphertext with noise at most 2B, whereas multiplication results in a noise as large as B2. 4

We will describe a noise-management technique that keeps the noise in check by reducing it after
homomorphic operations, without bootstrapping.

The key technical tool we use for noise management is the “modulus switching” technique de-
veloped by Brakerski and Vaikuntanathan [BV11b]. Jumping ahead, we note that while they use
modulus switching in “one shot” to obtain a small ciphertext (to which they then apply Gentry’s
bootstrapping procedure), we will use it (iteratively, gradually) to keep the noise level essentially
constant, while stingily sacrificing modulus size and gradually sacrificing the remaining homomor-
phic capacity of the scheme.

1.4 Modulus Switching

The essence of the modulus-switching technique is captured in the following lemma. In words,
the lemma says that an evaluator, who does not know the secret key s but instead only knows a

4The noise after multiplication is in fact a bit larger than B2 due to the additional noise from the BV “re-
linearization” process. For the purposes of this exposition, it is best to ignore this minor detail.

4

bound on its length, can transform a ciphertext c modulo q into a different ciphertext modulo p
while preserving correctness – namely, [〈c′, s〉]p = [〈c, s〉]q mod 2. The transformation from c to
c′ involves simply scaling by (p/q) and rounding appropriately! Most interestingly, if s is short
and p is sufficiently smaller than q, the “noise” in the ciphertext actually decreases – namely,
|[〈c′, s〉]p| < |[〈c, s〉]q|.

Lemma 1. Let p and q be two odd moduli, and let c be an integer vector. Define c′ to be the integer
vector closest to (p/q) ·c such that c′ = c mod 2. Then, for any s with |[〈c, s〉]q| < q/2−(q/p) ·`1(s),
we have

[
〈
c′, s

〉
]p = [〈c, s〉]q mod 2 and

|[
〈
c′, s

〉
]p| < (p/q) · |[〈c, s〉]q|+ `1(s)

where `1(s) is the `1-norm of s.

Proof. For some integer k, we have [〈c, s〉]q = 〈c, s〉 − kq. For the same k, let ep = 〈c′, s〉 − kp ∈
Z. Since c′ = c and p = q modulo 2, we have ep = [〈c, s〉]q mod 2. Therefore, to prove the
lemma, it suffices to prove that ep = [〈c′, s〉]p and that it has small enough norm. We have
ep = (p/q)[〈c, s〉]q + 〈c′ − (p/q)c, s〉, and therefore |ep| ≤ (p/q)[〈c, s〉]q + `1(s) < p/2. The latter
inequality implies ep = [〈c′, s〉]p.

Amazingly, this trick permits the evaluator to reduce the magnitude of the noise without know-
ing the secret key, and without bootstrapping. In other words, modulus switching gives us a very
powerful and lightweight way to manage the noise in FHE schemes! In [BV11b], the modulus
switching technique is bundled into a “dimension reduction” procedure, and we believe it deserves
a separate name and close scrutiny. It is also worth noting that our use of modulus switching does
not require an “evaluation key”, in contrast to [BV11b].

1.5 Our New Noise Management Technique

At first, it may look like modulus switching is not a very effective noise management tool. If p
is smaller than q, then of course modulus switching may reduce the magnitude of the noise, but
it reduces the modulus size by essentially the same amount. In short, the ratio of the noise to
the “noise ceiling” (the modulus size) does not decrease at all. Isn’t this ratio what dictates the
remaining homomorphic capacity of the scheme, and how can potentially worsening (certainly not
improving) this ratio do anything useful?

In fact, it’s not just the ratio of the noise to the “noise ceiling” that’s important. The absolute
magnitude of the noise is also important, especially in multiplications. Suppose that q ≈ xk, and
that you have two mod-q SWHE ciphertexts with noise of magnitude x. If you multiply them, the
noise becomes x2. After 4 levels of multiplication, the noise is x16. If you do another multiplication
at this point, you reduce the ratio of the noise ceiling (i.e. q) to the noise level by a huge factor of
x16 – i.e., you reduce this gap very fast. Thus, the actual magnitude of the noise impacts how fast
this gap is reduced. After only log k levels of multiplication, the noise level reaches the ceiling.

Now, consider the following alternative approach. Choose a ladder of gradually decreasing
moduli {qi ≈ q/xi} for i < k. After you multiply the two mod-q ciphertexts, switch the ciphertext
to the smaller modulus q1 = q/x. As the lemma above shows, the noise level of the new ciphertext
(now with respect to the modulus q1) goes from x2 back down to x. (Let’s suppose for now that

5

`1(s) is small in comparison to x so that we can ignore it.) Now, when we multiply two ciphertexts
(wrt modulus q1) that have noise level x, the noise again becomes x2, but then we switch to modulus
q2 to reduce the noise back to x. In short, each level of multiplication only reduces the ratio (noise
ceiling)/(noise level) by a factor of x (not something like x16). With this new approach, we can
perform about k (not just log k) levels of multiplication before we reach the noise ceiling. We have
just increased (without bootstrapping) the number of multiplicative levels that we can evaluate by
an exponential factor!

This exponential improvement is enough to achieve leveled FHE without bootstrapping. For
any polynomial L, we can evaluate circuits of depth L. The performance of the scheme degrades
with L – e.g., we need to set q = q0 to have bit length proportional to L – but it degrades only
polynomially with L.

Our main observation – the key to obtaining FHE without bootstrapping – is so simple that it
is easy to miss and bears repeating: We get noise reduction automatically via modulus switching,
and by carefully calibrating our ladder of moduli {qi}, one modulus for each circuit level, to be
decreasing gradually, we can keep the noise level very small and essentially constant from one
level to the next while only gradually sacrificing the size of our modulus until the ladder is used
up. With this approach, we can efficiently evaluate arbitrary polynomial-size arithmetic circuits
without resorting to bootstrapping.

In terms of performance, this scheme trounces previous FHE schemes (at least asymptotically;
the concrete performance remains to be seen). Instantiated with ring-LWE, it can evaluate L-level
arithmetic circuits with per-gate computation Õ(λ · L3) – i.e., computation quasi-linear in the
security parameter. Since the ratio of the largest modulus (namely, q ≈ xL) to the noise (namely,
x) is exponential in L, the scheme relies on the hardness of approximating short vectors to within
an exponential in L factor.

1.6 Bootstrapping for Better Efficiency and Better Assumptions

In our FHE-without-bootstrapping scheme, the per-gate computation depends polynomially on the
number of levels in the circuit that is being evaluated. While this approach is efficient (in the
sense of “polynomial time”) for polynomial-size circuits, the per-gate computation may become
undesirably high for very deep circuits. So, we re-introduce bootstrapping as an optimization5

that makes the per-gate computation independent of the circuit depth, and that (if one is willing
to assume circular security) allows homomorphic operations to be performed indefinitely without
needing to specify in advance a bound on the number of circuit levels. The main idea is that
to compute arbitrary polynomial-depth circuits, it is enough to compute the decryption circuit of
the scheme homomorphically. Since the decryption circuit has depth ≈ log λ, the largest modulus
we need has only polylog(λ) bits, and therefore we can base security on the hardness of lattice
problems with quasi-polynomial factors. Since the decryption circuit has size Õ(λ) for the RLWE-
based instantiation, the per-gate computation becomes Õ(λ2) (independent of L). See Section 6
for details.

We then consider batching as an optimization. The idea behind batching is to pack multiple

5We are aware of the seeming irony of trumpeting “FHE without bootstrapping” and then proposing bootstrapping
“as an optimization”. But, first, FHE without bootstrapping is exciting theoretically, independent of performance.
Second, whether bootstrapping actually improves performance depends crucially on the number of levels in the circuit
one is evaluating. For example, for circuits of depth sub-polynomial in the security parameter, it will be more efficient
asymptotically to forgo the bootstrapping optimization.

6

plaintexts into each ciphertext so that a function can be homomorphically evaluated on multiple
inputs with approximately the same efficiency as homomorphically evaluating it on one input.

An especially interesting case is batching the decryption function so that multiple ciphertexts –
e.g., all of the ciphertexts associated to gates at some level in the circuit – can be bootstrapped
simultaneously very efficiently. For circuits of large width (say, width λ), batched bootstrapping
reduces the per-gate computation in the RLWE-based instantiation to Õ(λ), independent of L. We
give the details in Section 6.

1.7 Related and Subsequent Work

Prior to Gentry’s construction, there were already a few interesting homomorphic encryptions
schemes that could be called “somewhat homomorphic”, including Boneh-Goh-Nissim [BGN05]
(that evaluates quadratic formulas using bilinear maps), Aguilar Melchor-Gaborit-Herranz [MGH10]
(that evaluates constant degree polynomials using lattices) and Ishai-Paskin [IP07] (that evaluates
branching programs).

Our work has inspired a number of follow-up works, building upon it and extending it in both
theoretical and practical directions.

Our RLWE-based FHE scheme without bootstrapping requires only Õ(λ · L3) per-gate com-
putation where L is the depth of the circuit being evaluated, while the bootstrapped version has
only Õ(λ2) per-gate computation. For circuits of width Ω(λ), we can use batching to reduce the
per-gate computation of the bootstrapped version by another factor of λ. In a follow-up work,
Gentry, Halevi and Smart [GHS12b] showed how to reduce the per-gate evaluation overhead to
polylogarithmic, making clever use of sorting networks to avoid packing/unpacking after every
batched operation. They further suggested [GHS12a] choices of parameters so as to optimize the
implementation of RLWE-based schemes. However, the polylogarithmic factors in these construc-
tions are still too large to offer improvement for any “reasonable” value of the security parameter.
One future direction toward a truly practical scheme is to tighten up these polylogarithmic factors
considerably.

Using the ideas from this work in an essential way, Gentry, Halevi and Smart [GHS12c] imple-
mented a variant of our scheme and presented benchmarks for homomorphic evaluation of the AES
function.

Brakerski [Bra12] showed how to achieve comparable performance to ours without using mod-
ulus switching, for arbitrary values of “initial” q. This is achieved by scaling the ciphertexts at
the beginning of time rather than doing so after every operation. Gentry, Halevi, Peikert and
Smart [GHPS12] extended our ideas from Section 4 and showed how to perform ideal reduction in
the general case (and not just for the rings that we consider).

2 Preliminaries

2.1 Basic Notation

In our construction, we will use a ring R. In the concrete instantiations, we prefer to use either
R = Z (the integers) or the polynomial ring R = Z[x]/(xd + 1), where d is a power of 2.

We write elements of R in lowercase – e.g., r ∈ R. We write vectors in bold – e.g., v ∈ Rn.
The notation v[i] refers to the i-th coefficient of v. We write the dot product of u,v ∈ Rn as
〈u,v〉 =

∑n
i=1 u[i] · v[i] ∈ R. When R is a polynomial ring, ‖r‖ for r ∈ R refers to the Euclidean

7

norm of r’s coefficient vector. We say γR = max{‖a · b‖/‖a‖‖b‖ : a, b ∈ R} is the expansion factor
of R. For R = Z[x]/(xd + 1), the value of γR is at most

√
d by Cauchy-Schwarz. (The canonical

embedding [LPR10] provides a better, tighter way of handling the geometry of cyclotomic rings.
We instead use the expansion factor, defined above, for its simplicity, and since it suffices for our
asymtotic results.)

For integer q, we use Rq to denote R/qR. Sometimes we will use abuse notation and use R2 to
denote the set of R-elements with binary coefficients – e.g., when R = Z, R2 may denote {0, 1},
and when R is a polynomial ring, R2 may denote those polynomials that have 0/1 coefficients. We
use Rq,d when we also want to specify the degree of the polynomial associated to R. When it is
obvious that q is not a power of two, we will use dlog qe to denote 1 + blog qc. For a ∈ R, we use
the notation [a]q to refer to a mod q, with coefficients reduced into the range (−q/2, q/2].

2.2 Homomorphic Encryption

We start with a generic definition of homomorphic encryption that captures both fully and non-fully
homomorphic schemes. A homomorphic encryption scheme is a tuple (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval)
of probabilistic polynomial time algorithms. In this work, the message space of the scheme will
always be some ring RM and our computational model will be arithmetic circuits over this ring
(i.e. addition and multiplication gates).

1. HE.KeyGen takes the security parameter (and possibly other parameters of the scheme) and
produces a secret key sk and a public key pk.

2. HE.Enc takes the public key pk a message m and produces a ciphertext c which is the en-
cryption of m.

3. HE.Dec takes the secret key sk and a ciphertext c and produces a message m.

4. HE.Eval takes the public key pk, an arithmetic circuit f over RM, and ciphertexts c1, . . . , c`,
where ` is the number of inputs to f , and outputs a ciphertext cf .

Definition 1. We say that a homomorphic encryption correctly evaluates a circuit family F if for
all f ∈ F and for all m1, . . . ,m` ∈ RM it holds that if sk, pk were properly generated by HE.KeyGen
with security parameter λ, and if ci = HE.Encpk(mi) for all i, and cf = HE.Evalpk(f, c1, . . . , c`),
then

Pr[HE.Decsk(cf) 6= f(m1, . . . ,m`)] = negl(λ) ,

where the probability is taken over all the randomness in the experiment.
We say that the scheme compactly evaluates the family if in addition the running time of the

decryption circuit only depends on λ and not on its input.

The security notion we use is standard semantic security (or equivalently security under chosen
plaintext attack).

Definition 2. A homomorphic scheme is secure if any polynomial time adversary that first gets a
properly generated pk, then specifies m0,m1 ∈ RM and finally gets HE.Encpk(mb) for a random b,
cannot guess the value of b with probability > 1/2 + negl(λ).

8

Most of this paper will focus on the construction of a leveled fully homomorphic scheme, in the
sense that the parameters of the scheme depend (polynomially) on the depth of the circuits that
the scheme is capable of evaluating.

Definition 3 (Leveled FHE [Gen09a]). We say that a family of homomorphic encryption schemes
{E(L) : L ∈ Z+} is leveled fully homomorphic if, for all L ∈ Z+, they all use the same decryption
circuit, E(L) compactly evaluates all circuits of depth at most L, and the computational complexity
of E(L)’s algorithms is polynomial (the same polynomial for all L) in the security parameter, L,
and (in the case of the evaluation algorithm) the size of the circuit.

Gentry’s bootstrapping theorem allows to transform schemes that enjoy some level of homo-
morphism (bootstrappable schemes) into leveled FHE schemes. Let us first define what a boot-
strappable scheme is:

Definition 4. We say that a homomorphic encryption scheme E is bootstrappable if E compactly
evaluates all circuits of depth at most (D+ 1), where D is the depth of E’s decryption circuit,6 and
the computational complexity of E’s algorithms is polynomial in the security parameter and (in the
case of the evaluation algorithm) the size of the circuit.

We can now state the bootstrapping theorem:

Theorem 1 (Bootstrapping [Gen09a]). If there exists a bootstrappable encryption scheme E, then
there also exists a leveled FHE scheme {E(L)} with related security.

Letting S be the size of E’s decryption circuit, the per-gate evaluation complexity of the leveled
FHE is exactly the complexity of evaluating a (2S+ 1)-gate circuit using the bootstrappable scheme.

2.3 The Learning with Errors (LWE) Problem

The learning with errors (LWE) problem was introduced by Regev [Reg05]. It is defined as follows.

Definition 5 (LWE). For security parameter λ, let n = n(λ) be an integer dimension, let q = q(λ) ≥
2 be an integer, and let χ = χ(λ) be a distribution over Z. The LWEn,q,χ problem is to distinguish
the following two distributions: In the first distribution, one samples (ai, bi) uniformly from Zn+1

q .
In the second distribution, one first draws s ← Znq uniformly and then samples (ai, bi) ∈ Zn+1

q by
sampling ai ← Znq uniformly, ei ← χ, and setting bi = 〈a, s〉+ ei. The LWEn,q,χ assumption is that
the LWEn,q,χ problem is infeasible.

Regev [Reg05] proved that for certain moduli q and Gaussian error distributions χ, the LWEn,q,χ
assumption is true as long as certain worst-case lattice problems are hard to solve using a quantum
algorithm. We state this result using the terminology of B-bounded distributions, which is a
distribution over the integers where the magnitude of a sample is bounded with high probability.
A definition follows.

Definition 6 (B-bounded distributions). A distribution ensemble {χn}n∈N, supported over the
integers, is called B-bounded if

Pr
e←χn

[|e| > B] = negl(n) .

6The size and depth of the decryption circuit are measured when the secret key is treated as the input, and the
decrypted ciphertext is treated as constant.

9

We can now state Regev’s worst-case to average-case reduction for LWE.

Theorem 2 (Regev [Reg05]). For any integer dimension n, prime integer q = q(n), and B =
B(n) ≥ 2n, there is an efficiently samplable B-bounded distribution χ such that if there exists
an efficient (possibly quantum) algorithm that solves LWEn,q,χ, then there is an efficient quantum
algorithm for solving Õ(qn1.5/B)-approximate worst-case SIVP and gapSVP.

Peikert [Pei09] de-quantized Regev’s results to some extent – that is, he showed the LWEn,q,χ
assumption is true as long as certain worst-case lattice problems are hard to solve using a classical
algorithm. (See [Pei09] for a precise statement of these results.)

Applebaum et al. [ACPS09] showed that if LWE is hard for the above distribution of s, then it
is also hard when s’s coefficients are sampled according to the noise distribution χ.

2.4 The Ring Learning with Errors (RLWE) Problem

The ring learning with errors (RLWE) problem was introduced by Lyubaskevsky, Peikert and Regev
[LPR10]. We will use an simplified special-case version of the problem that is easier to work with
[Reg10, BV11a].

Definition 7 (RLWE). For security parameter λ, let f(x) = xd + 1 where d = d(λ) is a power of
2. Let q = q(λ) ≥ 2 be an integer. Let R = Z[x]/(f(x)) and let Rq = R/qR. Let χ = χ(λ) be
a distribution over R. The RLWEd,q,χ problem is to distinguish the following two distributions: In
the first distribution, one samples (ai, bi) uniformly from R2

q . In the second distribution, one first
draws s ← Rq uniformly and then samples (ai, bi) ∈ R2

q by sampling ai ← Rq uniformly, ei ← χ,
and setting bi = ai · s+ ei. The RLWEd,q,χ assumption is that the RLWEd,q,χ problem is infeasible.

The RLWE problem is useful, because the well-established shortest vector problem (SVP) over
ideal lattices can be reduced to it, specifically:

Theorem 3 (Lyubashevsky-Peikert-Regev [LPR10]). For any d that is a power of 2, ring R =
Z[x]/(xd + 1), prime integer q = q(d) = 1 mod d, and B = ω(

√
d log d), there is an efficiently

samplable distribution χ that outputs elements of R of length at most B with overwhelming proba-
bility, such that if there exists an efficient algorithm that solves RLWEd,q,χ, then there is an efficient
quantum algorithm for solving dω(1) · (q/B)-approximate worst-case SVP for ideal lattices over R.

Typically, to use RLWE with a cryptosystem, one chooses the noise distribution χ according
to a Gaussian distribution, where vectors sampled according to this distribution have length only
poly(d) with overwhelming probability. This Gaussian distribution may need to be “ellipsoidal” for
certain reductions to go through [LPR10]. It has been shown for RLWE that one can equivalently
assume that s is alternatively sampled from the noise distribution χ [LPR10].

2.5 The General Learning with Errors (GLWE) Problem

The learning with errors (LWE) problem and the ring learning with errors (RLWE) problem are
syntactically identical, aside from using different rings (Z versus a polynomial ring) and different
vector dimensions over those rings (n = poly(λ) for LWE, but n is constant – namely, 1 – in the
RLWE case). To simplify our presentation, we define a “General Learning with Errors (GLWE)”
Problem, and describe a single “GLWE-based” FHE scheme, rather than presenting essentially the
same scheme twice, once for each of our two concrete instantiations.

10

Definition 8 (GLWE). For security parameter λ, let n = n(λ) be an integer dimension, let f(x) =
xd + 1 where d = d(λ) is a power of 2, let q = q(λ) ≥ 2 be a prime integer, let R = Z[x]/(f(x)) and
Rq = R/qR, and let χ = χ(λ) be a distribution over R. The GLWEn,f,q,χ problem is to distinguish
the following two distributions: In the first distribution, one samples (ai, bi) uniformly from Rn+1

q .
In the second distribution, one first draws s ← Rnq uniformly and then samples (ai, bi) ∈ Rn+1

q by
sampling ai ← Rnq uniformly, ei ← χ, and setting bi = 〈ai, s〉+ ei. The GLWEn,f,q,χ assumption is
that the GLWEn,f,q,χ problem is infeasible.

LWE is simply GLWE instantiated with d = 1. RLWE is GLWE instantiated with n = 1. Interestingly,
as far as we know, instances of GLWE between these extremes have not been explored. One would
suspect that GLWE is hard for any (n, d) such that n ·d = Ω(λ log(q/B)), where B is a bound (with
overwhelming probability) on the length of elements output by χ. For fixed n · d, perhaps GLWE
gradually becomes harder as n increases (if it is true that general lattice problems are harder than
ideal lattice problems), whereas increasing d is probably often preferable for efficiency.

If q is much larger than B, the associated GLWE problem is believed to be easier (i.e., there is
less security). Previous FHE schemes required q/B to be sub-exponential in n or d to give room
for the noise to grow as homomorphic operations (especially multiplication) are performed. In our
FHE scheme without bootstrapping, q/B will be exponential in the number of circuit levels to
be evaluated. However, since the decryption circuit can be evaluated in logarithmic depth, the
bootstrapped version of our scheme will only need q/B to be quasi-polynomial, and we thus base
security on lattice problems for quasi-polynomial approximation factors.

By the GLWE assumption, the distribution {(ai, 〈ai, s〉+t·ei)} is computational indistinguishable
from uniform for any t relatively prime to q. This fact will be convenient for encryption, where, for
example, a message m may be encrypted as (a, 〈a, s〉+ 2e+m), and this fact can be used to argue
that the second component of this message is indistinguishable from random.

3 (Leveled) FHE without Bootstrapping: Our Construction

The plan of this section is to present our “leveled FHE without bootstrapping” construction in
modular steps. First, we describe a plain GLWE-based encryption scheme with no homomorphic
operations. Next, we augment the plain scheme with variants of the “relinearization” and “di-
mension reduction” techniques of [BV11b]. Finally, in Section 3.4, we lay out our full-fledged
construction of FHE without bootstrapping.

3.1 The Basic Encryption Scheme

We begin by presenting a basic GLWE-based encryption scheme with no homomorphic operations.
Let λ be the security parameter, representing our goal of achieving 2λ-security against known

attacks. (λ = 100 is, for example, a reasonable value.) Let R = R(λ) be a ring. Specifically, we
will be interested in two instantiations:

• R = Z, which will give us a scheme based on (standard) LWE, and

• R = Z[x]/f(x) where (e.g.) f(x) = xd + 1 and d = d(λ) is a power of 2, which will give us a
scheme based on RLWE with the appropriate parameteres.

11

Let the “dimension” n = n(λ), the degree d = d(λ), an odd positive integer modulus q = q(λ),
and a “noise” distribution χ = χ(λ) over R be parameters of the system which come from the GLWE
assumption. Let Rq := R/R. For simplicity, assume for now that the plaintext space is R2 := R/2R,
though we will discuss the issue of supporting larger plaintext spaces in the sequel. In addition to
the usual GLWE parameters, we will use an additional parameter N = N(λ) = n · polylog(q) which
we will discuss following the description of the scheme.

We go ahead and stipulate here – even though it only becomes important when we introduce
homomorphic operations – that the noise distribution χ will be supported over a set [−B, . . . , B]
where B is set to be as small as possible (while maintaining security).

The Basic GLWE-Based Encryption Scheme. The scheme E = (E.Setup,E.SecretKeyGen,
E.PublicKeyGen,E.Enc,E.Dec) works as follows.

• E.Setup(1λ, 1µ, b): Use the bit b ∈ {0, 1} to determine whether we are setting parameters for
a LWE-based scheme (where d = 1) or a RLWE-based scheme (where n = 1). Choose a µ-bit
modulus q and choose the parameters d = d(λ, µ, b), n = n(λ, µ, b), N = N(λ, µ, b) and χ =
χ(λ, µ, b) appropriately to ensure that the scheme is based on a GLWE instance that achieves
2λ security against known attacks. Let R = Z[x]/(xd + 1) and let params = (q, d, n,N, χ).

• E.SecretKeyGen(params): Sample t← χn. Output

sk = s← (1, t[1], . . . , t[n]) ∈ Rn+1
q

• E.PublicKeyGen(params, sk): Takes as input a secret key sk = s = (1, t) with s[0] = 1 and
t ∈ Rnq and the parameters params. Generate a matrix B ← RN×nq uniformly and a vector

e← χN and set b := Bt+2e. Set A to be the (n+1)-column matrix consisting of b followed
by the n columns of −B. Set the public key pk = A.

Remark: Observe that A · s = 2e.

• E.Enc(params, pk,m): To encrypt a message m ∈ R2, set m := (m, 0, . . . , 0) ∈ Rn+1
q , sample

r← RN2 and output the ciphertext

c := m + AT r ∈ Rn+1
q

• E.Dec(params, sk, c): Output m := [[〈c, s〉]q]2.

Let us now describe, informally, why this scheme is correct and secure. Correctness is easy to see:
decryption works correctly because

[[〈c, s〉]q]2 = [[(mT + rTA) · s]q]2 = [[m+ 2rTe]q]2 = [m+ 2rTe]2 = m

where the third equality holds because e and r are so short that the value m+ 2rTe is guaranteed
not to wrap around modulo q.

It is straightforward to base security on special cases (depending on the parameters) of the
GLWE assumption (and one can find such proofs of special cases in prior work). To sketch the main
ideas, first note that if an attacker can distinguish the public key A from a uniformly random matrix

12

over R
N×(n+1)
q , then the attacker can be used to solve the GLWE problem (for specific parameters).

Therefore, assuming the GLWE problem is hard, an attacker cannot efficiently distinguish. Second,

if A was indeed chosen uniformly from R
N×(n+1)
q , the encryption procedure generates ciphertexts

that are statistically independent from m (by the leftover hash lemma), and therefore the attacker
has negligible advantage in guessing m.

For the LWE case, it suffices to take N > 2n log q [Reg05]. For RLWE, it does not necessarily
work just to take N > 2n log q = 2 log q due to subtle distributional issues – in particular, the
problem is that Rq may have many zero divisors. Micciancio’s regularity lemma [Mic07] assures

us that if A ∈ R
N×(n+1)
q and r ∈ RN2 are uniform, then AT r has negligible statistical distance

from uniform when N = log(q · λω(1)). Lyubashevsky et al. [LPR10] (full version of the paper)
give a stronger result when all of the ring elements in the matrix A are in R∗q (non-zero-divisors)

– namely, the distribution is within 2−Ω(d) of uniform when the ring elements in the r are chosen
from a discrete Gaussian distribution of width dq1/N . (Using this result would necessitate some
changes to the encryption scheme above.)

To achieve 2λ security against known lattice attacks, one must have n · d = Ω(λ · log(q/B))
where B is a bound on the length of the noise. Since n or d depends logarithmically on q, and since
the distribution χ (and hence B) depends sub-linearly on n or d, the distribution χ (and hence
B) depends sub-logarithmically on q. This dependence is weak, and one should think of the noise
distribution as being essentially independent of q.

An Alternate Encryption Scheme Based on RLWE. While we think our description of encryption
above is useful in that it highlights the high-level similarity of LWE and RLWE, the distributional
issues discussed above make it more desirable, in practice, to use a slightly different approach to
encryption in the RLWE setting. In particular, Lyubashevsky et al. [LPR10] streamline public key
generation and encryption in the RLWE setting as follows:

• E.PublicKeyGen(params, sk): As above, except N = 1.

• E.Enc(params, pk,m): To encrypt a message m ∈ R2, set m := (m, 0) ∈ R2
q , sample r ← χ

and e← χ2. Output the ciphertext

c := m + 2 · e + AT · r ∈ R2
q

(That is c ∈ R2
q is the sum of m, a small even vector, and r (a small ring element) times the

single encryption of zero given in the public key (namely AT)).

The security of LPR encryption relies on RLWE: assuming RLWE, AT is computationally indis-
tinguishable from uniform in R2

q . Then, invoking the RLWE assumption once again, the two ring
elements m+a1·r+e1 and a2·r+e2 of the ciphertext generated during encryption are pseudorandom.

In what follows, some of our schemes will invoke the function E.PublicKeyGen(params, sk,N)
with an integer parameter N . In that case, it invokes the first version of E.PublicKeyGen (not the
alternate LPR version presented above) with the specified value of N .

3.2 Key Switching

We start by reminding the reader that in the basic GLWE-based encryption scheme above, the
decryption equation for a ciphertext c that encrypts m under key s can be written as m = [[Lc(s)]q]2

13

where Lc(x) is a ciphertext-dependent linear equation over the coefficients of x given by Lc(x) =
〈c,x〉.

Suppose now that we have two ciphertexts c1 and c2, encrypting m1 and m2 respectively under
the same secret key s. The way homomorphic multiplication is accomplished in [BV11b] is to
consider the quadratic equation Qc1,c2(x) := Lc1(x) · Lc2(x). Assuming the noises of the initial
ciphertexts are small enough, we obtain m1 ·m2 = [Qc1,c2(s)]q]2, as desired. If one wishes, one can

view Qc1,c2(x) as a linear equation Llongc1,c2(x⊗x) over the coefficients of x⊗x – that is, the tensoring
of x with itself – where x ⊗ x’s dimension is roughly the square of x’s. Using this interpretation,
the ciphertext represented by the coefficients of the linear equation Llong is decryptable by the long
secret key s1⊗s1 via the usual dot product. Of course, we cannot continue increasing the dimension
like this indefinitely and preserve efficiency.

Thus, Brakerski and Vaikuntanathan convert the long ciphertext represented by the linear
equation Llong and decryptable by the long tensored secret key s1 ⊗ s1 into a shorter ciphertext
c2 that is decryptable by a different secret key s2. (The secret keys need to be different to avoid
a “circular security” issue). Encryptions of s1 ⊗ s1 under s2 are provided in the public key as a
“hint” to facilitate this conversion. They call this the relinearization procedure.

The starting point of our key switching procedure is to observe that Brakerski and Vaikun-
tanathan’s relinearization procedure is actually quite a bit more general. It can be used to not only
reduce the dimension of the ciphertext, but more generally, can be used to transform a ciphertext
c1 that is decryptable under one secret key vector s1 to a different ciphertext c2 that encrypts the
same message, but is now decryptable under a second secret key vector s2. The vectors c2, s2 may
not necessarily be of lower degree or dimension than c1, s1. Because of this generality, we prefer to
call this the key switching procedure, which we now describe in detail.

Two Useful Subroutines. The procedures will use some subroutines that, given two vectors
c and s, “expand” these vectors to get longer (higher-dimensional) vectors c′ and s′ such that
〈c′, s′〉 = 〈c, s〉 mod q. We describe these subroutines first.

• BitDecomp(x ∈ Rnq , q) decomposes x into its bit representation. Namely, write x =
∑blog qc

j=0 2j ·
uj with all uj ∈ Rn2 . Output (u0,u1, . . . ,ublog qc) ∈ R

n·dlog qe
2 .

• Powersof2(x ∈ Rnq , q) outputs (x, 2 · x, . . . , 2blog qc · x) ∈ Rn·dlog qe
q .

Observe that:

Lemma 2. For vectors c, s of equal length, we have

〈BitDecomp(c, q),Powersof2(s, q)〉 = 〈c, s〉 mod q .

Proof. The proof follows by a simple calculation from the definitions of the procedures BitDecomp
and Powersof2 above. In particular,

〈BitDecomp(c, q),Powersof2(s, q)〉 =

blog qc∑
j=0

〈
uj , 2

j · s
〉

=

blog qc∑
j=0

〈
2j · uj , s

〉
=

〈blog qc∑
j=0

2j · uj , s

〉
= 〈c, s〉

14

We remark that this obviously generalizes to decompositions with respect to bases other than the
powers of 2. Also, as an optimization, if one knows a priori that x has coefficients in [0, B] for
B � q, then BitDecomp can be optimized in the obvious way to output a shorter decomposition in

R
n·dlogBe
2 .

The Key Switching Procedure. Key switching consists of two procedures: first, an algorithm
SwitchKeyGen(s1, s2, n1, n2, q), which takes as input the two secret key vectors, the respective di-
mensions of these vectors, and the modulus q, and outputs some auxiliary information τs1→s2 that
enables the switching; and second, an algorithm SwitchKey(τs1→s2 , c1, n1, n2, q), that takes this
auxiliary information and a ciphertext encrypted under s1 and outputs a new ciphertext c2 that
encrypts the same message under the secret key s2. (Below, we often suppress the additional
arguments n1, n2, q.)

SwitchKeyGen(s1 ∈ Rn1
q , s2 ∈ Rn2

q):

1. Run A← E.PublicKeyGen(s2, N) for N = n1 · dlog qe.

2. Add Powersof2(s1) ∈ RNq to A’s first column to get a matrix B. Output τs1→s2 = B.

SwitchKey(τs1→s2 , c1): Output c2 = BitDecomp(c1)T ·B ∈ Rn2
q .

Note that, in SwitchKeyGen, the matrix A basically consists of encryptions of 0 under the key
s2. Then, pieces of the key s1 are added to these encryptions of 0. Thus, in some sense, the matrix
B consists of encryptions of pieces of s1 (in a certain format) under the key s2. We now establish
that the key switching procedures are meaningful, in the sense that they preserve the correctness
of decryption under the new key.

As before, the processes above are adapted to the plaintext space R2, but are easy to generalize.

Lemma 3. [Correctness] Let s1, s2, q,A,B = τs1→s2 be as in SwitchKeyGen(s1, s2), and let A ·
s2 = 2e2 ∈ RNq . Let c1 ∈ Rn1

q and c2 ← SwitchKey(τs1→s2 , c1). Then,

〈c2, s2〉 = 2 〈BitDecomp(c1), e2〉+ 〈c1, s1〉 mod q

Proof.

〈c2, s2〉 = BitDecomp(c1)T ·B · s2

= BitDecomp(c1)T · (2e2 + Powersof2(s1))

= 2 〈BitDecomp(c1), e2〉+ 〈BitDecomp(c1),Powersof2(s1)〉
= 2 〈BitDecomp(c1), e2〉+ 〈c1, s1〉

Note that the dot product of BitDecomp(c1) and e2 is small, since BitDecomp(c1) is in RN2 . Overall,
we have that c2 is a valid encryption of m under key s2, with noise that is larger by a small additive
factor.

We will need in the sequel the following lemma which says that the key switching parameter
generated by SwitchKeyGen(s1, s2) is computationally indistinguishable from random for any s1 ∈

15

Rn1
q and a uniformly random s2 ∈ Rn2

q . This is simply because of the properties of the basic scheme
E which states that the matrix A ← E.PublicKeyGen(s2, N) is computationally indistinguishable
from uniform.

Lemma 4 (Security). For every s1 ∈ Rn2
q and a uniformly random s2 ← Rn1

q , the following two
distributions are computationally indistinguishable:{

(A, τs1→s2) : A← E.PublicKeyGen(s2, N), τs1→s2 ← SwitchKeyGen(s1, s2)

}
≈{

(A, τs1→s2) : A← RN×(n2+1)
q , τs1→s2 ← RN×(n2+1)

q

}
is computationally indistinguishable from uniform, where the randomness is over the choice of
s2 ← Rn2

q , and the coins of E.PublicKeyGen and SwitchKeyGen.

3.3 Modulus Switching

Suppose c is a valid encryption of m under s modulo q (i.e., m = [[〈c, s〉]q]2), and that s is a short
vector. Suppose also that c′ is basically a simple scaling of c – in particular, c′ is the R-vector
closest to (p/q) · c such that c′ = c mod 2. Then, it turns out (subject to some qualifications)
that c′ is a valid encryption of m under s modulo p using the usual decryption equation – that is,
m = [[〈c′, s〉]p]2! In other words, we can change the inner modulus in the decryption equation – e.g.,
to a smaller number – while preserving the correctness of decryption under the same secret key!
The essence of this modulus switching idea, a variant of Brakerski and Vaikuntanathan’s modulus
reduction technique, is formally captured in Lemma 5 below.

Definition 9 (Scale). For integer vector x and integers q > p > m, we define x′ ← Scale(x, q, p, r)
to be the R-vector closest to (p/q) · x that satisfies x′ = x mod r.

Definition 10 (`
(R)
1 norm). The (usual) norm `1(s) over the reals equals

∑
i ‖s[i]‖. We extend this

to our ring R as follows: `
(R)
1 (s) for s ∈ Rn is defined as

∑
i ‖s[i]‖.

Lemma 5. Let d be the degree of the ring (e.g., d = 1 when R = Z). Let q > p > r be positive
integers satisfying q = p = 1 mod r. Let c ∈ Rn and c′ ← Scale(c, q, p, r). Then, for any s ∈ Rn

with ‖[〈c, s〉]q‖ < q/2− (q/p) · γR · (r/2) ·
√
d · `(R)

1 (s), we have

[
〈
c′, s

〉
]p = [〈c, s〉]q mod r and

‖[
〈
c′, s

〉
]p‖ < (p/q) · ‖[〈c, s〉]q‖+ γR · (r/2) ·

√
d · `(R)

1 (s)

Proof. (Lemma 5) We have

[〈c, s〉]q = 〈c, s〉 − kq

for some k ∈ R. For the same k, let

ep =
〈
c′, s

〉
− kp ∈ R

16

Note that ep = [〈c′, s〉]p mod p. We claim that ‖ep‖ is so small that ep = [〈c′, s〉]p. We have:

‖ep‖ = ‖ − kp+ 〈(p/q) · c, s〉+
〈
c′ − (p/q) · c, s

〉
‖

≤ ‖ − kp+ 〈(p/q) · c, s〉 ‖+ ‖
〈
c′ − (p/q) · c, s

〉
‖

≤ (p/q) · ‖[〈c, s〉]q‖+ γR ·
n∑
j=1

‖c′[j]− (p/q) · c[j]‖ · ‖s[j]‖

≤ (p/q) · ‖[〈c, s〉]q‖+ γR · (r/2) ·
√
d · `(R)

1 (s)

< p/2

Furthermore, modulo r, we have [〈c′, s〉]p = ep = 〈c′, s〉 − kp = 〈c, s〉 − kq = [〈c, s〉]q.

The lemma implies that an evaluator, who does not know the secret key but instead only knows
a bound on its length, can potentially transform a ciphertext c that encrypts m under key s for
modulus q – i.e., m = [[〈c, s〉]q]r – into a ciphertext c that encrypts m under the same key s for
modulus p – i.e., m = [[〈c, s〉]p]r. Specifically, the following corollary follows immediately from
Lemma 5.

Corollary 1. Let p and q be two odd moduli. Suppose c is an encryption of bit m under key
s for modulus q – i.e., m = [[〈c, s〉]q]r. Moreover, suppose that s is a fairly short key and the
“noise” eq ← [〈c, s〉]q has small magnitude – precisely, assume that ‖eq‖ < q/2 − (q/p) · (r/2) ·√
d · γR · `(R)

1 (s). Then c′ ← Scale(c, q, p, r) is an encryption of of bit m under key s for modulus
p – i.e., m = [[〈c, s〉]p]r. The noise ep = [〈c′, s〉]p of the new ciphertext has magnitude at most

(p/q) · ‖[〈c, s〉]q‖+ γR · (r/2) ·
√
d · `(R)

1 (s).

Amazingly, assuming p is smaller than q and s has coefficients that are small in relation to q,
this trick permits the evaluator to reduce the magnitude of the noise without knowing the secret
key! (Of course, this is also what Gentry’s bootstrapping transformation accomplishes, but in a
much more complicated way.)

3.4 (Leveled) FHE Based on GLWE without Bootstrapping

We now present our scheme FHE. Given the machinery that we have described in the previous
subsections, the scheme itself is remarkably simple.

In our scheme, we will use a parameter L indicating the number of levels of arithmetic circuit
that we want our FHE scheme to be capable of evaluating. Note that this is an exponential
improvement over prior schemes, that would typically use a parameter d indicating the degree of
the polynomials to be evaluated.

(Note: the linear polynomial Llong, used below, is defined in Section 3.2.)

Our FHE Scheme without Bootstrapping.

• FHE.Setup(1λ, 1L, b): Takes as input the security parameter, a number of levels L, and a bit b.
Use the bit b ∈ {0, 1} to determine whether we are setting parameters for a LWE-based scheme
(where d = 1) or a RLWE-based scheme (where n = 1). Let µ = µ(λ, L, b) = θ(log λ+logL) be
a parameter that we will specify in detail later. For j = L (input level of circuit) to 0 (output
level), run paramsj ← E.Setup(1λ, 1(j+1)·µ, b) to obtain a ladder of parameters, including a

17

ladder of decreasing moduli from qL ((L + 1) · µ bits) down to q0 (µ bits). (The ring degree
dj , dimension nj , and noise distribution χj do not necessarily need to vary (decrease) with
the circuit level. In the procedure below, we allow nj and χj to vary, but defer the case of
decreasing dj to Section 4.)

• FHE.KeyGen({paramsj}): For j = L down to 0, do the following:

1. Run sj ← E.SecretKeyGen(paramsj) and Aj ← E.PublicKeyGen(paramsj , sj).

2. Set s′j ← sj ⊗ sj ∈ R
(nj+1

2
)

qj . That is, s′j is a tensoring of sj with itself whose coefficients
are each the product of two coefficients of sj in Rqj .

3. Run τs′j+1→sj ← SwitchKeyGen(s′j+1, sj). (Omit this step when j = L.)

The secret key sk consists of the sj ’s and the public key pk consists of the Aj ’s and τs′j+1→sj ’s.
7

• FHE.Enc(params, pk,m): Take a message in R2. Run E.Enc(paramsL,AL,m).

• FHE.Dec(params, sk, c): Suppose the ciphertext is under key sj . Run E.Dec(paramsj , sj , c).
(The ciphertext could be augmented with an index indicating which level it belongs to.)

• FHE.Add(pk, c1, c2): Takes two ciphertexts encrypted under the same sj . (If needed, use
FHE.Refresh (below) to make it so.) Set c3 ← c1 + c2 mod qj . Interpret c3 as a ciphertext
under s′j (s′j ’s coefficients include all of sj ’s since s′j = sj ⊗ sj and sj ’s first coefficient is 1)
and output:

c4 ← FHE.Refresh(c3, τs′j→sj−1
, qj , qj−1)

• FHE.Mult(pk, c1, c2): Takes two ciphertexts encrypted under the same sj . (If needed, use
FHE.Refresh (below) to make it so.) First, multiply: the new ciphertext, under the secret key

s′j = sj ⊗ sj , is the coefficient vector c3 of the linear equation Llongc1,c2(x⊗ x). Then, output:

c4 ← FHE.Refresh(c3, τs′j→sj−1
, qj , qj−1)

• FHE.Refresh(c, τs′j→sj−1
, qj , qj−1): Takes a ciphertext encrypted under s′j , the auxiliary infor-

mation τs′j→sj−1
to facilitate key switching, and the current and next moduli qj and qj−1. Do

the following:

1. Switch Keys: Set c1 ← SwitchKey(τs′j→sj−1
, c, qj), a ciphertext under the key sj−1 for

modulus qj .

2. Switch Moduli: Set c2 ← Scale(c1, qj , qj−1, 2), a ciphertext under the key sj−1 for mod-
ulus qj−1.

Remark 1. We mention the obvious fact that, since addition increases the noise much more slowly
than multiplication, one does not necessarily need to refresh after additions, even high fan-in ones.

7As observed by Gentry [Gen09b] in a similar context, it is possible to take all keys {sj} to be the same (rather
than drawing each one independently). This will make the sizes of the keys independent of L, but the security will
need rely on a circular assumption.

18

The key step of our new FHE scheme is the Refresh procedure. If the modulus qj−1 is chosen to
be smaller than qj by a sufficient multiplicative factor, then Corollary 1 implies that the noise of the
ciphertext output by Refresh is smaller than that of the input ciphertext – that is, the ciphertext
will indeed be a “refreshed” encryption of the same value. We elaborate on this analysis in the
next section.

One can reasonably argue that this scheme is not “FHE without bootstrapping” since τs′j→sj−1

can be viewed as an encrypted secret key, and the SwitchKey step can viewed as a homomorphic
evaluation of the decryption function. We prefer not to view the SwitchKey step this way. While
there is some high-level resemblance, the low-level details are very different, a difference that
becomes tangible in the much better asymptotic performance. To the extent that it performs
decryption, SwitchKey does so very efficiently using an efficient (not bit-wise) representation of the
secret key that allows this step to be computed in quasi-linear time for the RLWE instantiation,
below the quadratic lower bound for bootstrapping. Certainly SwitchKey does not use the usual
ponderous approach of representing the decryption function as a boolean circuit to be traversed
homomorphically. Another difference is that the SwitchKey step does not actually reduce the noise
level (as bootstrapping does); rather, the noise is reduced by the Scale step.

4 Trading Off Degree for Dimension in GLWE

The definition of a leveled FHE scheme requires the complexity of the decryption circuit to be
independent of L, the number of levels the leveled FHE scheme can evaluate. This required property
is not superfluous. With this property, it is easy to argue that, assuming circular security, we
can use bootstrapping to convert a leveled FHE into a “pure” FHE scheme whose parameters
are independent of levels; without this property, such a conversion may still be possible, but the
argument is less immediate.

In the LWE setting, the parameters n0, q0 and bound Bχ0 on the distribution χ0 can all be chosen
independently of L, the number of levels the leveled FHE scheme can evaluate. Consequently, the
(final) ciphertext length and decryption complexity (at level 0) do not depend on L, and we therefore
have a leveled FHE scheme based on LWE.

Unfortunately, in the RLWE setting, things are not so simple. For security reasons, the dimension
dj of the ring used at level j must grow linearly with the bit-length of qj , which (as we will see)
grows at least linearly in j. Therefore, if we use a fixed ring throughout, we cannot claim that
the (final) ciphertext length and decryption complexity (at level 0) are independent of L. Until we
address this issue, we do not have a leveled FHE scheme without bootstrapping based on RLWE.
The question arises: is there a way to reduce the dimension of the ring as we progress through the
circuit?

4.1 Techniques

Here, we show that there is an interplay between the dimension n of a GLWE problem and the degree
d of the modulus polynomial. We show that an GLWEn,xd+1,q,χ ciphertext can be efficiently broken
into two GLWE2n,xd/2+1,q,χ ciphertexts.

We slightly deviate from the notation in the body of the paper and denote use GLWEn,d,q,χ to
denote GLWEn,xd+1,q,χ (recall that d is always a power of 2). We further denote Rq,d = Z[x]/(xd+1).

We begin by presenting a formal decomposition of elements from Rq,d into elements of Rq,d/2. We

19

show that each element a = a(x) ∈ Rq,d can be represented using a(even), a(odd) ∈ Rq,d/2. Recalling
that an element in Rq,d is a polynomial with d coefficients over Zq, the task seems very simple.
We embed half of the coefficients of the polynomial a as coefficients of a(even) and the other half as
coefficients of a(odd). However, in order to preserve an algebraic structure over the the new elements,
it is critical that the coefficients are divided between them in a special way.

Specifically, we define a(even), a(odd) to be the elements of Rq,d/2 for which

a(x) = a(even)(x2) + x · a(odd)(x2) .

In other words, a(even) assumes the even coefficients of a, and a(odd) the odd ones.
To see that the algebraic properties are preserved, suppose we have an equation c(x) = a(x)·b(x)

over Rq,d, then it holds that

c(even)(x2) + xc(odd)(x2)

= (a(even)(x2) + xa(odd)(x2)) · (b(even)(x2) + xb(odd)(x2))

= a(even)(x2) · b(even)(x2) + x2a(odd)(x2) · b(odd)(x2)

+x[a(even)(x2) · b(odd)(x2) + a(odd)(x2) · b(even)(x2)] .

Noting that the parity of a power of x cannot change by reducing modulo xd+1 (since d is a power
of 2 and thus always even), it follows that we can separate odd and even powers in the expression
above:

c(even)(x2) = a(even)(x2) · b(even)(x2) + x2a(odd)(x2) · b(odd)(x2)

c(odd)(x2) = a(even)(x2) · b(odd)(x2) + a(odd)(x2) · b(even)(x2) .

The equations above are still over the ring Rq,d. In order to switch down to the ring Rq,d/2,
we consider the following fact. In general, if w(x2) = u(x2) · v(x2) over Rq,d – i.e., modulo q and
xd + 1 – then it holds that w(x) = u(x) · v(x) over Rq,d/2 – i.e., modulo q and xd/2 + 1. This follows
syntactically by replacing x2 everywhere with x.

Therefore, we have that the following holds over Rq,d/2:

c(even)(x) = a(even)(x) · b(even)(x) + xa(odd)(x) · b(odd)(x)

c(odd)(x) = a(even)(x) · b(odd)(x) + a(odd)(x) · b(even)(x) .

Suppose that we have a ciphertext vector c ∈ Rn+1
q,d that encrypts m ∈ R2 under key s ∈ Rn+1

q,d ;
that is, m = [[〈c, s〉]q]2. Applying the facts above recursively, we conclude we can decompose c and
s into vectors c(even), c(odd), s(even), s(odd) ∈ Rn+1

q,d/2 such that

m(even) = [[
〈
c(even), s(even)

〉
+ x

〈
c(odd), s(odd)

〉
]q]2

m(odd) = [[
〈
c(even), s(odd)

〉
+
〈
c(odd), s(even)

〉
]q]2 .

We therefore have two ciphertexts, one that encrypts m(even) under secret key (s(even), s(odd)) and
one that encrypts m(odd) under secret key (s(odd), s(even)). In fact, by a simple re-ordering of the ring
elements within the second ciphertext, the two ciphertexts are made to be under the same secret
key (s(even), s(odd)). Assuming the hardness of GLWEn,d/2,q,χ, we can use key switching to reduce the
dimension of these ciphertexts from 2n+ 2 to n+ 1.

20

It should clear that, when d is a power of 2, our observations for moving from a GLWEn,d,q,χ ci-
phertext to two GLWE2n,d/2,q,χ ciphertexts can be generalized to move from a GLWEn,d,q,χ ciphertext

to 2k GLWE2kn,d/2k,q,χ ciphertexts for any 2k up to d.
Observe that, if we only encode messages in the even coefficients from the beginning, and

encode the associated m(odd)’s as zeroes, then the m(odd)’s are zeroes throughout the intermediates
stages of the computation, and we obtain the final output message as the m(even) of the final
ciphertext. In particular, the second ciphertext can be ignored, and therefore does not affect
decryption complexity.

With this technique, we achieve leveled FHE with no bootstrapping based on RLWE. The
decryption complexity of the final level-0 ciphertext in Rn0+1

q0,d0
is independent of the homomorphic

capacity L of the leveled FHE scheme. Of course, for this magic to work, we need GLWEnj ,dj ,qj ,χj

to be a hard problem for all j.

Generalizations. We suspect that our techniques can be extended to subfields of cyclotomics
other than x2k + 1, but we leave this for future work.

5 Correctness, Parameter Settings, Performance, and Security

Here, we will show how to set the parameters of the scheme so that the scheme is correct. Mostly,
this involves analyzing each of the steps within FHE.Add and FHE.Mult – namely, the addition or
multiplication itself, and then the SwitchKey and Scale steps that make up FHE.Refresh – to establish
that the output of each step is a decryptable ciphertext with bounded noise. This analysis will
lead to concrete suggestions for how to set the ladder of moduli and to asymptotic bounds on the
performance of the scheme.

Let us begin by considering how much noise FHE.Enc introduces initially. Throughout, Bχ
denotes a bound such that R-elements sampled from the the noise distribution χ have length at
most Bχ with overwhelming probability.

5.1 The Initial Noise from FHE.Enc

Recall that FHE.Enc simply invokes E.Enc for suitable parameters (paramsL) that depend on λ
and L. In turn, the noise of ciphertexts output by E.Enc depends on the noise of the initial
“ciphertext(s)” (the encryption(s) of 0) implicit in the matrix A output by E.PublicKeyGen, whose
noise distribution is dictated by the distribution χ.

Lemma 6. Let q, d, n, N be the parameters associated to FHE.Enc. Let γR be the expansion
factor associated to R. (γR and d are both 1 in the LWE case R = Z.) The length of the noise in
ciphertexts output by FHE.Enc is at most

√
d+ 2 · γR ·

√
d ·N ·Bχ.

Proof. We have A · s = 2e where s ← E.SecretKeyGen, A ← E.PublicKeyGen(s, N), and e ← χN .
Recall that encryption works as follows: c ← m + AT r mod q where r ∈ RN2 . We have that the
noise of this ciphertext is [〈c, s〉]q = [m+ 2〈r, e〉]q. The magnitude of this element is at most

√
d+ 2 · γR ·

N∑
j=1

‖r[j]‖ · ‖e[j]‖ ≤
√
d+ 2 · γR ·

√
d ·N ·Bχ

21

One can easily obtain a similar small bound on the noise of ciphertexts output by LPR encryp-
tion in the RLWE setting: a small polynomial in the security parameter λ, L, and log q.

The correctness of decryption for ciphertexts output by FHE.Enc, assuming the noise bound
above is less than q/2, follows directly from the correctness of the basic encryption and decryption
algorithms E.Enc and E.Dec.

5.2 Correctness and Performance of FHE.Add and FHE.Mult (before FHE.Refresh)

Consider FHE.Mult. One begins FHE.Mult(pk, c1, c2) with two ciphertexts under key sj for modulus
qj that have noises ei = [Lci(sj)]qj , where Lci(x) is simply the dot product 〈ci,x〉. To multiply
together two ciphertexts, one multiplies together these two linear equations to obtain a quadratic
equation Qc1,c2(x) ← Lc1(x) · Lc2(x), and then interprets this quadratic equation as a linear

equation Llongc1,c2(x ⊗ x) = Qc1,c2(x) over the tensored vector x ⊗ x. The coefficients of this long

linear equation compose the new ciphertext vector c3. Clearly, [〈c3, sj ⊗ sj〉]qj = [Llongc1,c2(sj⊗sj)]qj =
[e1 · e2]qj . Thus, if the noises of c1 and c2 have length at most B, then the noise of c3 has length at
most γR ·B2, where γR is the expansion factor of R. If this length is less than qj/2, then decryption
works correctly. In particular, if mi = [〈ci, sj〉]qj]2 = [ei]2 for i ∈ {1, 2}, then over R2 we have
[〈c3, sj ⊗ sj〉]qj]2 = [[e1 · e2]qj]2 = [e1 · e2]2 = [e1]2 · [e2]2 = m1 ·m2. That is, correctness is preserved
as long as this noise does not wrap modulo qj .

The correctness of FHE.Add and FHE.Mult, before the FHE.Refresh step is performed, is formally
captured in the following lemmas.

Lemma 7. Let c1 and c2 be two ciphertexts under key sj for modulus qj, where ‖[〈ci, sj〉]qj‖ ≤ B
and mi = [[〈ci, sj〉]qj]2. Let s′j = sj ⊗ sj, where the “non-quadratic coefficients” of s′j (namely, the
‘1’ and the coefficients of sj) are placed first. Let c′ = c1 + c2, and pad c′ with zeros to get a vector
c3 such that 〈c3, s

′
j〉 = 〈c′, sj〉. The noise [〈c3, s

′
j〉]qj has length at most 2B. If 2B < qj/2, c3 is an

encryption of m1 +m2 under key s′j for modulus qj – i.e., m1 ·m2 = [[〈c3, s
′
j〉]qj]2.

Lemma 8. Let c1 and c2 be two ciphertexts under key sj for modulus qj, where ‖[〈ci, sj〉]qj‖ ≤ B
and mi = [[〈ci, sj〉]qj]2. Let the linear equation Llongc1,c2(x ⊗ x) be as defined above, let c3 be the
coefficient vector of this linear equation, and let s′j = sj ⊗ sj. The noise [〈c3, s

′
j〉]qj has length at

most γR ·B2. If γR ·B2 < qj/2, c3 is an encryption of m1 ·m2 under key s′j for modulus qj – i.e.,
m1 ·m2 = [[〈c3, s

′
j〉]qj]2.

The computation needed to compute the tensored ciphertext c3 is Õ(djn
2
j log qj). For the RLWE

instantiation, since nj = 1 and since (as we will see) dj (resp. log qj) depend only quasi-linearly
(resp. logarithmically) on the security parameter and linearly (resp. linearly) on L, the computation
here is only quasi-linear in the security parameter. For the LWE instantiation, the computation is
quasi-quadratic.

5.3 Correctness and Performance of FHE.Refresh

FHE.Refresh consists of two steps: Switch Keys and Switch Moduli. We address each of these steps
in turn.

Correctness and Performance of the Switch-Key Step. In the Switch Keys step, we take as input
a ciphertext c under key s′j for modulus qj and set c1 ← SwitchKey(τs′j→sj−1

, c, qj), a ciphertext

22

under the key sj−1 for modulus qj . In Lemma 3, we proved the correctness of key switching and
showed that the noise grows by the additive factor 2 〈BitDecomp(c, qj), e〉, where BitDecomp(c, qj)
is a (short) bit-vector and e is a (short and fresh) noise vector with elements sampled from χ. In
particular, if the noise originally had length B, then after the Switch Keys step it has length at
most B+2·γR ·Bχ ·

∑wj

i=1 ‖BitDecomp(c, qj)[i]‖ ≤ B+2·γR ·Bχ ·wj ·
√
dj , where wj ≤

(nj+1
2

)
·dlog qje

is the dimension of BitDecomp(c, qj).
We capture the correctness of the Switch-Key step in the following lemma.

Lemma 9. Let c be a ciphertext under the key s′j = sj⊗sj for modulus qj such that e1 ← [〈c, s′j〉]qj
has length at most B and m = [e1]2. Let c1 ← SwitchKey(τs′j→sj−1

, c, qj), and let e2 = [〈c1, sj−1〉]qj .

Then, e2 (the new noise) has length at most B + 2 · γR ·Bχ ·
(nj+1

2

)
· dlog qje ·

√
dj and (assuming

this noise length is less than qj/2) we have m = [e2]2.

The Switch-Key step involves multiplying the transpose of wj-dimensional vector BitDecomp(c, qj)
with a wj × (nj + 1) matrix B. This computation is Õ(djn

3
j log2 qj). Still this is quasi-linear in the

RLWE instantiation.

Correctness and Performance of the Switch-Moduli Step. The Switch Moduli step takes as input
a ciphertext c1 under the secret bit-vector sj−1 for the modulus qj , and outputs the ciphertext
c2 ← Scale(c1, qj , qj−1, 2), which we claim to be a ciphertext under key sj−1 for modulus qj−1. Note
that sj−1 is a short secret key. By Corollary 1, and using the fact that `1(sj−1) ≤ (nj−1 +1) ·Bχ, the
following is true: if the noise of c1 has length at most B < qj/2−(qj/qj−1) ·

√
dj ·γR ·(nj−1 +1) ·Bχ,

then correctness is preserved and the noise of c2 is bounded by (qj−1/qj)·B+
√
dj ·γR ·(nj−1+1)·Bχ.

Of course, the key feature of this step for our purposes is that switching moduli may reduce the
length of the moduli when qj−1 < qj .

We capture the correctness of the Switch-Moduli step in the following lemma.

Lemma 10. Let c1 be a ciphertext under the key sj−1, sampled from χnj−1, such that ej ←
[〈c1, sj−1〉]qj has length at most B and m = [ej]2. Let c2 ← Scale(c1, qj , qj−1, 2), and let ej−1 =

[〈c2, sj−1〉]qj−1. Then, ej−1 (the new noise) has length at most (qj−1/qj)·B+
√
dj ·γR ·(nj−1+1)·Bχ,

and (assuming this noise length is less than qj−1/2) we have m = [ej−1]2.

The computation in the Switch-Moduli step is Õ(djnj−1 log qj).

5.4 Putting the Pieces Together: Parameters, Correctness, Performance

So far we have established that the scheme is correct, assuming that the noise does not wrap modulo
qj or qj−1. Now we need to show that we can set the parameters of the scheme to ensure that such
wrapping never occurs.

Our strategy for setting the parameters is to pick a “universal” bound B on the noise length,
and then prove, for all j, that a valid ciphertext under key sj for modulus qj has noise length at
most B. This bound B is quite small: polynomial in λ and log qL, where qL is the largest modulus
in our ladder. It is clear that such a bound B holds for fresh ciphertexts output by FHE.Enc.
(Recall the discussion from Section 3.1 where we explained that we use a noise distribution χ that
is essentially independent of the modulus.) The remainder of the proof is by induction – i.e., we will
show that if the bound holds for two ciphertexts c1, c2 at level j, our lemmas above imply that the
bound also holds for the ciphertext c′ ← FHE.Mult(pk, c1, c2) at level j − 1. (FHE.Mult increases
the noise strictly more in the worst-case than FHE.Add for any reasonable choice of parameters.)

23

Specifically, after the first step of FHE.Mult (without the Refresh step), the noise has length at
most γR ·B2. Then, we apply the SwitchKey function, which introduces an additive term ηSwitchKey,j .
Finally, we apply the Scale function. The noise is now at most

(qj−1/qj) ·
(
γR ·B2 + ηSwitchKey,j

)
+ ηScale,j

where ηScale,j is another additive term. Now we want to choose our parameters so that this bound
is at most B.

Suppose we set our ladder of moduli and the bound B such that the following two properties
hold:

• Property 1: B ≥ 2 · (ηScale,j + ηSwitchKey,j) for all j.

• Property 2: qj/qj−1 ≥ 2 ·B · γR for all j.

Then we have

(qj−1/qj) ·
(
γR ·B2 + ηSwitchKey,j

)
+ ηScale,j

< (qj−1/qj) · γR ·B2 + ηScale,j + ηSwitchKey,j

≤ 1

2 ·B · γR
· γR ·B2 +

1

2
·B

≤ B

It only remains to set our ladder of moduli and B so that Properties 1 and 2 hold.
Unfortunately, there is some circularity in Properties 1 and 2: qL depends on B, which depends

on qL, albeit only polylogarithmically. However, it is easy to see that this circularity is not fatal.
As a non-optimized example to illustrate this, set B = λa ·Lb for very large constants a and b, and
set qj ≈ 2(j+1)·ω(log λ+logL). If a and b are large enough, B dominates ηScale,L + ηSwitchKey,L, which
is polynomial in λ and log qL, and hence polynomial in λ and L (Property 1 is satisfied). Since
qj/qj−1 is super-polynomial in both λ and L, it dominates 2 · B · γR (Property 2 is satisfied). In
fact, it works fine to set qj as a modulus having (j + 1) · µ bits for some µ = θ(log λ+ logL) with
small hidden constant.

Overall, we have that qL, the largest modulus used in the system, is θ(L · (log λ+ logL)) bits,
and dL · nL must be approximately that number times λ for 2λ security.

Theorem 4. For some µ = θ(log λ+logL), FHE is a correct L-leveled FHE scheme – specifically, it
correctly evaluates circuits of depth L with Add and Mult gates over R2. The per-gate computation
is Õ(dL · n3

L · log2 qj) = Õ(dL · n3
L · L2). For the LWE case (where d = 1), the per-gate computation

is Õ(λ3 · L5). For the RLWE case (where n = 1), the per-gate computation is Õ(λ · L3).

The bottom line is that we have a RLWE-based leveled FHE scheme with per-gate computation
that is only quasi-linear in the security parameter, albeit with somewhat high dependence on the
number of levels in the circuit.

Let us pause at this point to reconsider the performance of previous FHE schemes in comparison
to our new scheme. Specifically, as we discussed in the Introduction, in previous SWHE schemes,
the ciphertext size is at least Õ(λ ·d2), where d is the degree of the circuit being evaluated. One may
view our new scheme as a very powerful SWHE scheme in which this dependence on degree has been
replaced with a similar dependence on depth. (Recall the degree of a circuit may be exponential
in its depth.) Since polynomial-size circuits have polynomial depth, which is certainly not true of
degree, our scheme can efficiently evaluate arbitrary circuits without resorting to bootstrapping.

24

5.5 Security

The security of FHE follows by a standard hybrid argument from the security of E, the basic scheme
described in Section 3.1.

Theorem 5 (security). Let n = n(λ), d = d(λ), q = q(λ), χ = χ(λ) and L = L(λ) be functions
of the security parameter. Let N := n · polylog(q, λ). The scheme FHE is CPA secure under the
GLWE assumption with parameters n, d, q and χ.

In a high level, the idea is this: the view of a CPA adversary for our scheme is very similar to
that for the basic scheme E, except that our adversary also gets to see the key switching parameters.
However, the key switching parameters are made up of a sequence of outputs of the SwitchKeyGen
algorithm which, by Lemma 4, are indistinguishable from uniform. A formal proof follows by a
hybrid argument.

Proof. We proceed with the proof using a sequence of hybrids. Let A be an IND-CPA adversary
for FHE. We consider a series of hybrids where AdvH [A] denotes the success probability of A in
hybrid H.

• Hybrid H0: This is identical to the IND-CPA game, where the adversary gets a properly
distributed public key, generated by FHE.KeyGen, and an encryption of either 0 or 1 computed
using FHE.Enc. Recall that the public key consists of:

– a matrix AL ← E.PublicKeyGen(sL); and

– pairs (A`, τs(`+1)→s`) for ` = L − 1 downto 0, where A` ← E.PublicKeyGen(s`) and
τs(`+1)→s` ← SwitchKeyGen(s`+1 ⊗ s`+1, s`).

For the sake of contradiction, assume that there is a polynomial function p(·) such that

AdvH0 [A] :=
∣∣Pr[A(pk,FHE.Enc(pk, µ0) = 1]−Pr[A(pk,FHE.Enc(pk, µ1) = 1]

∣∣ > 1/p(λ). (1)

• Hybrid H`, for ` ∈ [L]: The hybrids H` are identical to H`−1 except that the public key
A`−1 and the key switching parameter τs`→s`−1

are chosen to be uniformly random from the
appropriate domains. We claim that

|AdvH`
[A]− AdvH`−1

[A]| ≤ negl(λ). (2)

Assume for contradiction that there is an adversary A that distinguishes between H` and
H`−1 with non-negligible advantage 1/q(λ) for some polynomial q(·). Then, we construct a
distinguisher B that distinguishes between a correctly generated pair (A`, τs(`+1)→s`) and a
uniformly random tuple of the same dimensions, for some s`−1. Such a distinguisher cannot
exist, by Lemma 4.

The distinguisher B picks vectors s`, . . . , sL−1 uniformly at random and generates pairs
(A`, τs(`+1)→s`) where

A` ← E.PublicKeyGen(s`) and τs(`+1)→s` ← SwitchKeyGen(s`+1 ⊗ s`+1, s`)

and also generates AL ← E.PublicKeyGen(sL). B then sets (A`−1, τs`→s`−1
) to be its own

challenge input, and chooses the rest of the components of the public key at random from

25

their respective domains. Finally, it encrypts a random bit b and feeds it to the distinguisher
A. If A returns a bit b′ = b, then output 1, else output 0.

It is easy to see that the distribution generated by B is either H`−1 or H` depending on
whether its challenge input was correctly generated or random. This proves our claim.

Note that in hybrid HL, all the pairs (A`−1, τs`→s`−1
) are uniformly random for every ` ∈ [L].

• Hybrid HL+1: Hybrid HL+1 is identical to HL except that the matrix AL is chosen uniformly
at random rather than being generated as an output of E.PublicKeyGen(sL). It follows that

|AdvHL+1
[A]− AdvHL

[A]| ≤ negl(λ). (3)

by an argument essentially identical to the one above.

Note that in HL+1, all the elements of the public key are uniformly random and independent of
the message. Thus, invoking the semantic security of the basic encryption scheme E, we get that

AdvHL+1
[A] = AdvE,cpa[A] = negl(λ) . (4)

Putting equations 2, 3 and 4 together, we get

AdvH0 [A] ≤ AdvHL+1
[A] +

L∑
`=0

|AdvH`
[A]− AdvH`+1

[A]| = negl(λ)

contradicting equation 1. The theorem follows.

6 Optimizations: Reducing the Per-gate Computation Overhead

Despite the fact that the RLWE-based version of our new FHE scheme has per-gate computation
only quasi-linear in the security parameter, it has a rather large dependence on the number of levels
in the circuit (see Theorem 4). In this section, we show how to reduce the per-gate computation
overhead to quasi-linear in the security parameter, independent of the number of levels in the circuit
to be evaluated. To this end, we present several significant optimizations.

Our first optimization (Section 6.1) is batching. Batching allows us to evaluate a function f
homomorphically in parallel on ` = Ω(λ) blocks of encrypted data, paying only a polylogarithmic
(in the security parameter λ) overhead over evaluating f on the unencrypted data. (The overhead
is still polynomial in the depth L of the circuit computing f .) Thus, batching allows us to reduce
the per-gate computation from quasi-linear in the security parameter to polylogarithmic, in an
amortized sense. Batching works essentially by packing multiple plaintexts into each ciphertext.

Secondly, we bring bootstrapping back into the picture as an optimization rather than a necessity
(Section 6.2). Bootstrapping allows us to achieve per-gate computation quasi-quadratic in the
security parameter, independent of the number levels in the circuit being evaluated. Although the
dependence on the security parameter has worsened from Õ(λ) to Õ(λ2), the key win here is that
the per-gate computation does not depend on the depth of the circuit any more! This optimization
applies in a stand-alone setting where the function is evaluated on a single input.

Finally, we obtain our goal of near-linear per-gate computation overhead (in the security pa-
rameter λ) by showing that batching the bootstrapping function is a powerful combination (Section
6.3). With this optimization, circuits that are wide on average, namely ones whose average width
is at least λ, can be evaluated homomorphically with only Õ(λ) per-gate computation, independent
of the number of levels.

26

6.1 Batching

Suppose we want to evaluate the same function f on ` blocks of encrypted data. (Or, similarly,
suppose we want to evaluate the same encrypted function f on ` blocks of plaintext data.) Can we
do this using less than ` times the computation needed to evaluate f on one block of data? Can
we batch?

For example, consider a keyword search function that returns ‘1’ if the keyword is present in
the data and ‘0’ if it is not. The keyword search function is mostly composed of a large number
of equality tests that compare the target word w to all of the different subsequences of data; this
is followed up by an OR of the equality test results. All of these equality tests involve running the
same w-dependent function on different blocks of data. If we could batch these equality tests, it
could significantly reduce the computation needed to perform keyword search homomorphically.

If we use bootstrapping as an optimization (see Section 6.2), then obviously we will be running
the decryption function homomorphically on multiple blocks of data – namely, the multiple cipher-
texts that need to be refreshed. Can we batch the bootstrapping function? If we could, then we
might be able to drastically reduce the average per-gate cost of bootstrapping.

Smart and Vercauteren [SV11] were the first to rigorously analyze batching in the context of
FHE. In particular, they observed that ideal-lattice-based (and RLWE-based) ciphertexts can have
many plaintext slots, associated to the factorization of the plaintext space into algebraic ideals.

When we apply batching to our new RLWE-based FHE scheme, the results are pretty amazing.
Evaluating f homomorphically on ` = Ω(λ) blocks of encrypted data requires only polylogarithmi-
cally (in terms of the security parameter λ) more computation than evaluating f on the unencrypted
data. (The overhead is still polynomial in the depth L of the circuit computing f .) As we will see
later, for circuits whose levels have average width at least λ, batching the bootstrapping function
(i.e., batching homomorphic evaluation of the decryption function) allows us to reduce the per-gate
computation of our bootstrapped scheme from Õ(λ2) to Õ(λ) (independent of L).

To make the exposition a bit simpler, in our RLWE-based instantiation where R = Z[x]/(xd+1),
we will not use R2 as our plaintext space, but instead use a plaintext space Rp, prime p = 1 mod 2d,
where we have the isomorphism Rp ∼= Rp1 × · · · × Rpd of many plaintext spaces (think Chinese
remaindering), so that evaluating a function once over Rp implicitly evaluates the function many
times in parallel over the respective smaller plaintext spaces. The pi’s will be ideals in our ring
R = Z[x]/(xd + 1). (One could still use R2 as in [SV11], but the number theory there is a bit more
involved.)

6.1.1 Some Number Theory

Let us take a very brief tour of algebraic number theory. Suppose p is a prime number satisfying
p = 1 mod 2d, and let a be a primitive 2d-th root of unity modulo p. Then, xd + 1 factors
completely into linear polynomials modulo p – in particular, xd + 1 =

∏d
i=1(x − ai) mod p where

ai = a2i−1 mod p. In some sense, the converse of the above statement is also true, and this is the
essence of reciprocity – namely, in the ring R = Z[x]/(xd + 1) the prime integer p is not actually
prime, but rather it splits completely into prime ideals in R – i.e., p =

∏d
i=1 pi. The ideal pi equals

(p, x− ai) – namely, the set of all R-elements that can be expressed as r1 · p+ r2 · (x− ai) for some
r1, r2 ∈ R. Each ideal pi has norm p – that is, roughly speaking, a 1/p fraction of R-elements are
in pi, or, more formally, the p cosets 0 + pi, . . . , (p− 1) + pi partition R. These ideals are relatively
prime, and so they behave like relatively prime integers. In particular, the Chinese Remainder

27

Theorem applies: Rp ∼= Rp1 × · · · ×Rpd .
Although the prime ideals {pi} are relatively prime, they are close siblings, and it is easy, in some

sense, to switch from one to another. One fact that we will use (when we finally apply batching to
bootstrapping) is that, for any i, j there is an automorphism σi→j over R that maps elements of pi to
elements of pj . Specifically, σi→j works by mapping anR-element r = r(x) = rd−1x

d−1+· · ·+r1x+r0

to r(xeij) = rd−1x
eij(d−1) mod 2d + · · · + r1x

eij + r0 where eij is some number relative prime to 2d.
Notice that this automorphism just permutes the coefficients of r and fixes the free coefficient.
Notationally, we will use σi→j(v) to refer to the vector that results from applying σi→j coefficient-
wise to v.

6.1.2 How Batching Works

We will show that the following holds:

Theorem 6. Let p = 1 mod 2d be a prime of size polynomial in λ. The RLWE-based instantiation
of FHE using the ring R = Z[x]/(xd + 1) can be adapted to use the plaintext space Rp = ⊗di=1Rpi

while preserving correctness and the same asymptotic performance. For any boolean circuit f of
depth L, the scheme can homomorphically evaluate f on ` sets of inputs with per-gate computation
Õ(λ · L3/min{d, `}).

When ` = Ω(λ), and taking d = Ω̃(λ), the per-gate computation is only polylogarithmic in the
security parameter (still cubic in L).

Proof. Deploying batching inside our scheme FHE is quite straightforward. First, we pick a prime
p = 1 mod 2d of size polynomial in the security parameter. (One should exist under the GRH.)

The next step is simply to recognize that our scheme FHE works just fine when we replace the
original plaintext space R2 with Rp. There is nothing especially magical about the number 2. In
the basic scheme E described in Section 3.1, E.PublicKeyGen(params, sk) is modified in the obvious
way so that A · s = p · e rather than 2 · e. (This modification induces a similar modification in
SwitchKeyGen.) Decryption becomes m = [[〈c, s〉]q]p. Homomorphic operations use mod-p gates
rather than boolean gates, and it is easy (if desired) to emulate boolean gates with mod-p gates
– e.g., we can compute XOR(a, b) for a, b ∈ {0, 1}2 using mod-p gates for any p as a + b − 2ab.
For modulus switching, we use Scale(c1, qj , qj−1, p) rather than Scale(c1, qj , qj−1, 2). The larger
rounding error from this new scaling procedure increases the noise slightly, but this additive noise
is still polynomial in the security parameter and the number of levels, and thus is still consistent
with our setting of parameters. In short, FHE can easily be adapted to work with a plaintext space
Rp for p of polynomial size.

The final step is simply to recognize that, by the Chinese Remainder Theorem, evaluating an
arithmetic circuit over Rp on input x ∈ Rnp implicitly evaluates, for each i, the same arithmetic
circuit over Rpi on input x projected down to Rnpi . The evaluations modulo the various prime ideals
do not “mix” or interact with each other.

6.2 Bootstrapping as an Optimization

Bootstrapping is no longer strictly necessary to achieve leveled FHE. However, in some settings, it
may have some advantages:

28

• Performance: The per-gate computation is independent of the depth of the circuit being
evaluated.

• Flexibility: Assuming circular security, a bootstrapped scheme can perform homomorphic
evaluations indefinitely without needing to specify in advance, during Setup, a bound on the
number of circuit levels.

• Memory: Bootstrapping permits short ciphertexts – e.g., encrypted using AES other space-
efficient cryptosystem – to be de-compressed to longer ciphertexts that permit homomorphic
operations. Bootstrapping thus allows us to save memory by storing data encrypted in the
compressed form, while retaining the ability to perform homomorphic operations.

Here, we revisit bootstrapping, viewing it as an optimization rather than a necessity. We also
reconsider the scheme FHE that we described in Section 3, viewing the scheme not as an end
in itself, but rather as a very powerful SWHE whose performance degrades polynomially in the
depth of the circuit being evaluated, as opposed to previous SWHE schemes whose performance
degrades polynomially in the degree. In particular, we analyze how efficiently it can evaluate
its decryption function, as needed to bootstrap. Not surprisingly, our faster SWHE scheme can
also bootstrap faster. The decryption function has only logarithmic depth and can be evaluated
homomorphically in time quasi-quadratic in the security parameter (for the RLWE instantiation),
giving a bootstrapped scheme with quasi-quadratic per-gate computation overall.

To apply the Bootstrapping Theorem (Theorem 1), we need to bound the circuit complexity
of the decryption of our scheme. We start by recalling that the decryption function is m =
[[〈c, s〉]q]2.8 Suppose that we are given the “bits” (elements in R2) of s as input, and we want
to compute [[〈c, s〉]q]2 using an arithmetic circuit that has Add and Mult gates over R2. (When
we bootstrap, of course we are given the bits of s in encrypted form.) Note that we will run the
decryption function homomorphically on level-0 ciphertexts – i.e., when q is small, only polynomial
in the security parameter. What is the complexity of this circuit? Most importantly for our
purposes, what is its depth and size? The answer is that we can perform decryption with Õ(λ)
computation and O(log λ) depth. Thus, in the RLWE instantiation, we can evaluate the decryption
function homomorphically using our new scheme with quasi-quadratic computation. (For the LWE
instantiation, the bootstrapping computation is quasi-quadratic.)

Lemma 11. Let n = O(λ), q = poly(λ) and let c ∈ Znq . Consider the function D(s) = [[〈c, s〉]q]2,
for inputs s ∈ Znq , where the elements of s are represented using standard binary representation.

Then D(·) can be computed by a circuit of size Õ(λ) and depth O(log λ).

Proof. Obviously, each product c[i] · s[i] can be written as the sum of at most log q “shifts” of s[i].
These horizontal shifts of s[i] use at most 2 log q columns. Thus, 〈c, s〉 can be written as the sum
of n · log q numbers, where each number has 2 log q digits. As discussed in [Gen09b], we can use the
three-for-two trick, which takes as input three numbers in binary (of arbitrary length) and outputs
(using constant depth) two binary numbers with the same sum. Thus, with O(log(n · log q)) =
O(log n + log log q) depth and O(n log2 q) computation, we obtain two numbers with the desired

8In the previous section we argued towards using m = [[〈c, s〉]q]p. However, as we explained there, we can emulate
any binary circuit using a modulo-p circuit with only constant blowup. Therefore it is sufficient to consider the binary
complexity of decryption.

29

sum, each having O(log n+log q) bits. We can sum the final two numbers with O(log log n+log log q)
depth and O(log n + log q) computation. So far, we have used depth O(log n + log log q) and
O(n log2 q) computation to compute 〈c, s〉. Reducing this value modulo q is an operation akin
to division, for which there are circuits of size polylog(q) and depth log log q. Finally, reducing
modulo 2 just involves dropping the most significant bits. Overall, since we are interested only in
the case where log q = O(log λ), we have that decryption requires Õ(λ) computation and depth
O(log λ).

The above lemma generalizes to GLWE as follows.

Lemma 12. Let q = poly(λ), n, d s.t. d is a power of 2 and n · d = O(λ), R = Z[x]/(xd + 1), and
c ∈ Rnq . Consider the function D(s) = [[〈c, s〉]q]2, for inputs s ∈ Rnq , where the coefficients of s are
represented using standard binary representation. Then D(·) can be computed by a circuit of size
Õ(λ) and depth O(log λ).

Proof. The proof is practically identical to Lemma 11, except we use DFT to multiply elements in
R instead of “standard” integer multiplication. Since all roots of xd + 1 are 2dth roots of unity, we
can use FFT to achieve multiplication in logarithmic depth and quasi-linear size (in d log q).

The procedure thus proceeds exactly as in Lemma 11 except the last operations of taking
modulo q and then modulo 2 are preformed d times, but since these only require log(q) depth and
polylog(q) size, the bound still holds.

We can now apply the Bootstrapping Theorem to our scheme from Section 3. The relevant
values of n, d, q when applying Lemma 12 are those of the last level (level L) of the scheme, since
these are the values that are actually being decrypted. While modulus reduction guarantees that
the values of qL, nL are independent of L, it is normally the case that dL depend on L (think e.g.
about the case of n = 1). It may seem therefore that the decryption depth depends on L contrary
to the compactness requirement. Using the techniques of Section 4, we can convert dL back down
to d0 which is independent of L. (We remark, however, that even if we don’t make the conversion,
the dependence on L is small enough that our scheme is bootstrappable.)

Putting the pieces together, we get the following.

Theorem 7. The scheme FHE with parameters n, d, L s.t. n · d = O(λ) and L = O(log λ) is
bootstrappable. The per-gate computation is Õ(λ4) for the LWE case (d = 1) and Õ(λ2) for the
RLWE case (n = 1).

Proof. The theorem is a straightforward derivation from combining Theorem 1, Lemma 12 and
Theorem 4.

6.3 Batching the Bootstrapping Operation

Suppose that we are evaluating a circuit homomorphically, that we are currently at a level in
the circuit that has at least d gates (where d is the dimension of our ring), and that we want to
bootstrap (refresh) all of the ciphertexts corresponding to the respective wires at that level. That
is, we want to homomorphically evaluate the decryption function at least d times in parallel. This
seems like an ideal place to apply batching.

However, there are some nontrivial problems. In Section 6.1, our focus was rather limited. For
example, we did not consider whether homomorphic operations could continue after the batched

30

computation. Indeed, at first glance, it would appear that homomorphic operations cannot con-
tinue, since, after batching, the encrypted data is partitioned into non-interacting relatively-prime
plaintext slots, whereas the whole point of homomorphic encryption is that the encrypted data can
interact (within a common plaintext slot). Similarly, we did not consider homomorphic operations
before the batched computation. Somehow, we need the input to the batched computation to come
pre-partitioned into the different plaintext slots.

What we need are Pack and Unpack functions that allow the batching procedure to interface
with “normal” homomorphic operations. One may think of the Pack and Unpack functions as an
on-ramp to and an exit-ramp from the “fast lane” of batching. Let us say that normal homomorphic
operations will always use the plaintext slot Rp1 . Roughly, the Pack function should take a bunch
of ciphertexts c1, . . . , cd that encrypt messages m1, . . . ,md ∈ Zp under key s1 for modulus q and
plaintext slot Rp1 , and then aggregate them into a single ciphertext c under some possibly different
key s2 for modulus q, so that correctness holds with respect to all of the different plaintext slots
– i.e. mi = [[〈c, s2〉]q]pi for all i. The Pack function thus allows normal homomorphic operations
to feed into the batch operation. The Unpack function should accept the output of a batched
computation, namely a ciphertext c′ such that mi = [[〈c′, s′1〉]q]pi for all i, and then de-aggregate
this ciphertext by outputting ciphertexts c′1, . . . , c

′
d under some possibly different common secret

key s′2 such that mi = [[〈c′i, s′2〉]q]p1 for all i. Now that all of the ciphertexts are under a common
key and plaintext slot, normal homomorphic operations can resume. With such Pack and Unpack
functions, we could indeed batch the bootstrapping operation. For circuits of large width (say,
at least d) we could reduce the per-gate bootstrapping computation by a factor of d, making it
only quasi-linear in λ. Assuming the Pack and Unpack functions have complexity at most quasi-
quadratic in d (per-gate this is only quasi-linear, since Pack and Unpack operate on d gates), the
overall per-gate computation of a batched-bootstrapped scheme becomes only quasi-linear.

Here, we describe suitable Pack and Unpack functions. These functions will make heavy use of
the automorphisms σi→j over R that map elements of pi to elements of pj . (See Section 6.1.1.) We
note that Smart and Vercauteren [SV11] used these automorphisms to construct something similar
to our Pack function (though for unpacking they resorted to bootstrapping). We also note that
Lyubashevsky, Peikert and Regev [LPR10] used these automorphisms to permute the ideal factors
qi of the modulus q, which was an essential tool toward their proof of the pseudorandomness of
RLWE.

Toward Pack and Unpack procedures, we begin with the observation that if m is encoded as a
number in {0, . . . , p − 1} and if m = [[〈c, s〉]q]pi , then m = [[〈σi→j(c), σi→j(s)〉]q]pj . That is, we
can switch the plaintext slot but leave the decrypted message unchanged by applying the same
automorphism to the ciphertext and the secret key. (These facts follow from the fact that σi→j
is a homomorphism, that it maps elements of pi to elements of pj , and that it fixes integers.) Of
course, then we have a problem: the ciphertext is now under a different key, whereas we may want
the ciphertext to be under the same key as other ciphertexts. To get the ciphertexts to be back
under the same key, we simply use the SwitchKey algorithm to switch all of the ciphertexts to a
new common key.

Some technical remarks before we describe Pack / Unpack more formally: We mention again
that E.PublicKeyGen is modified in the obvious way so that A · s = p · e rather than 2 · e, and
that this modification induces a similar modification in SwitchKeyGen. Also, let u ∈ R be a short
element such that u ∈ 1 + p1 and u ∈ pj for all j 6= 1. It is obvious that such a u with coefficients
in (−p/2, p/2] can be computed efficiently by first picking any element u′ such that u′ ∈ 1 + p1 and

31

u′ ∈ pj for all j 6= 1, and then reducing the coefficients of u′ modulo p.

PackSetup(s1, s2): Takes as input two secret keys s1, s2. For all i ∈ [1, d], it runs τσ1→i(s1)→s2 ←
SwitchKeyGen(σ1→i(s1), s2).

Pack({ci}di=1, {τσ1→i(s1)→s2}di=1): Takes as input ciphertexts c1, . . . , cd such that mi = [[〈ci, s1〉]q]p1
and 0 = [[〈ci, s1〉]q]pj for all j 6= 1, and also some auxiliary information output by PackSetup. For
all i, it does the following:

• Computes c∗i ← σ1→i(ci). (Observe: We havemi = [[〈c∗i , σ1→i(s1)〉]q]pi while 0 = [[〈c∗i , σ1→i(s1)〉]q]pj
for all j 6= i.)

• Runs c†i ← SwitchKey(τσ1→i(s1)→s2 , c
∗
i) (Observe: Assuming the noise does not wrap, we have

that mi = [[〈c†i , s2〉]q]pi and 0 = [[〈c†i , s2〉]q]pj for all j 6= i.)

Finally, it outputs c ←
∑d

i=1 c†i . (Observe: Assuming the noise does not wrap, we have mi =
[[〈c, s2〉]q]pi for all i.)

UnpackSetup(s1, s2): Takes as input secret keys s1, s2. For all i ∈ [1, d], it runs

τσi→1(s1)→s2 ← SwitchKeyGen(σi→1(s1), s2) .

Unpack(c, {τσi→1(s1)→s2}di=1): Takes as input a ciphertext c such that mi = [[〈c, s1〉]q]pi for all i,

and also some auxiliary information output by UnpackSetup. For all i, it does the following:

• Computes ci ← u·σi→1(c). (Observe: Assuming the noise does not wrap, mi = [[〈ci, σi→1(s1)〉]q]p1
and 0 = [[〈ci, σi→1(s1)〉]q]pj for all j 6= 1.)

• Outputs c∗i ← SwitchKey(τσi→1(s1)→s2 , ci). (Observe: Assuming the noise does not wrap,
mi = [[〈c∗i , s2〉]q]p1 and 0 = [[〈c∗i , s2〉]q]pj for all j 6= 1.)

The properties of the resulting scheme are summarized in the following theorem, which is only
stated for the RLWE setting (since batched bootstrapping only works in the ring setting).

Theorem 8. The scheme FHE with parameters n, d, L s.t. n = 1, d = O(λ) and L = O(log λ)
with batched bootstrapping has per-gate computation Õ(λ) when evaluating circuits of average width
Ω(λ).

Proof. Consider an evaluation of depth t circuit, and let w1, . . . , wt be the width of each of the
levels of the circuit. Then w = (1/t) ·

∑
i∈[t]wi be the average width of the circuit and by the

theorem statement w = Ω(λ). The total number of gates is (naturally) t · w.
The evaluation of level i of the circuit involves a bootstrapping operation of the 2 · wi input

wires into the gates, in addition to wi gate evaluations.
We pack the 2 · wi standalone ciphertexts into d2wi/de ≤ 2wi/d+ 1 packed ciphertexts, where

d = Ω(λ) is the parameter of the ring that also determines the number of ciphertexts that can be
packed. The cost of this packing/unpacking is linear in the input length which is 2wi · Õ(λ).

For each packed ciphertext, we perform bootstrapping which involves a homomorphic evaluation
of the decryption circuit. The total cost per packed ciphertext is thus Õ(λ2). The total complexity
for all packed ciphertexts is therefore at most (2wi/d+ 1) · Õ(λ2).

Finally the evaluation of the wi actual gates has (total) complexity wi · Õ(λ).

32

Summing all of the above, we get that the total complexity of evaluating level i of the circuit is

2wi · Õ(λ) + (2wi/d+ 1) · Õ(λ2) + wi · Õ(λ) = (wi + λ+ wiλ/d) · Õ(λ) .

Summing over all t levels, we get that the total complexity of evaluating the entire circuit is at
most

(t · w + t · λ+ t · wλ/d) · Õ(λ) ,

and the per-gate cost is obtained by dividing by t · w, and recalling that w, d = Ω(λ):

(1 + λ/w + λ/d) · Õ(λ) = Õ(λ) .

The theorem thus follows.

Acknowledgments. We thank Carlos Aguilar Melchor, Boaz Barak, Shafi Goldwasser, Shai
Halevi, Chris Peikert, Nigel Smart, and Jiang Zhang for helpful discussions and insights.

References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast crypto-
graphic primitives and circular-secure encryption based on hard learning problems. In
CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 595–618. Springer,
2009.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts.
In Proceedings of Theory of Cryptography Conference 2005, volume 3378 of LNCS, pages
325–342, 2005.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In Safavi-Naini and Canetti [SNC12], pages 868–886.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In CRYPTO, volume 6841, page 501,
2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Ostrovsky [Ost11], pages 97–106. References are to full
version: http://eprint.iacr.org/2011/344.

[CMNT] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully-
homomorphic encryption over the integers with shorter public-keys. Manuscript, to
appear in Crypto 2011.

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homo-
morphic encryption over the integers. In Advances in Cryptology - EUROCRYPT’10,
volume 6110 of Lecture Notes in Computer Science, pages 24–43. Springer, 2010. Full
version available on-line from http://eprint.iacr.org/2009/616.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. crypto.stanford.edu/craig.

33

http://eprint.iacr.org/2011/344
http://eprint.iacr.org/2009/616
crypto.stanford.edu/craig

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, STOC, pages 169–178. ACM, 2009.

[GH11a] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In Ostrovsky [Ost11], pages 107–109.

[GH11b] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages
129–148. Springer, 2011.

[GHPS12] Craig Gentry, Shai Halevi, Chris Peikert, and Nigel P. Smart. Ring switching in bgv-
style homomorphic encryption. In Ivan Visconti and Roberto De Prisco, editors, SCN,
volume 7485 of Lecture Notes in Computer Science, pages 19–37. Springer, 2012.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Better bootstrapping in fully homomor-
phic encryption. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors,
Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science, pages
1–16. Springer, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with
polylog overhead. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT,
volume 7237 of Lecture Notes in Computer Science, pages 465–482. Springer, 2012. See
also http://eprint.iacr.org/2011/566.

[GHS12c] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the aes
circuit. In Safavi-Naini and Canetti [SNC12], pages 850–867.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
Salil P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages
575–594. Springer, 2007.

[LNV11] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic en-
cryption be practical? Manuscript at http://eprint.iacr.org/2011/405, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer
Science, pages 1–23, 2010.

[MGH10] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additively homomorphic
encryption with -operand multiplications. In Tal Rabin, editor, CRYPTO, volume 6223
of Lecture Notes in Computer Science, pages 138–154. Springer, 2010.

[Mic07] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Computational Complexity, 16(4):365–411, December 2007. Preliminary
version in FOCS 2002.

[Ost11] Rafail Ostrovsky, editor. IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011. IEEE, 2011.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In STOC, pages 333–342. ACM, 2009.

34

http://eprint.iacr.org/2011/566

[RAD78] Ron Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of Secure Computation, pages 169–180, 1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM, 2005.

[Reg10] Oded Regev. The learning with errors problem (invited survey). In IEEE Conference
on Computational Complexity, pages 191–204. IEEE Computer Society, 2010.

[SNC12] Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, volume 7417 of Lecture Notes in Computer Science. Springer, 2012.

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In ASI-
ACRYPT, volume 6477 of Lecture Notes in Computer Science, pages 377–394. Springer,
2010.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Public Key Cryptography - PKC’10, volume 6056 of
Lecture Notes in Computer Science, pages 420–443. Springer, 2010.

[SV11] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic simd operations. IACR
Cryptology ePrint Archive, 2011:133, 2011.

35

	Introduction
	Efficiency of FHE
	Recent Deviations from Gentry's Blueprint, and the Hope for Better Efficiency
	Our Results and Techniques
	Modulus Switching
	Our New Noise Management Technique
	Bootstrapping for Better Efficiency and Better Assumptions
	Related and Subsequent Work

	Preliminaries
	Basic Notation
	Homomorphic Encryption
	The Learning with Errors (LWE) Problem
	The Ring Learning with Errors (RLWE) Problem
	The General Learning with Errors (GLWE) Problem

	(Leveled) FHE without Bootstrapping: Our Construction
	The Basic Encryption Scheme
	Key Switching
	Modulus Switching
	(Leveled) FHE Based on GLWE without Bootstrapping

	Trading Off Degree for Dimension in GLWE
	Techniques

	Correctness, Parameter Settings, Performance, and Security
	The Initial Noise from FHE.Enc
	Correctness and Performance of FHE.Add and FHE.Mult (before FHE.Refresh)
	Correctness and Performance of FHE.Refresh
	Putting the Pieces Together: Parameters, Correctness, Performance
	Security

	Optimizations: Reducing the Per-gate Computation Overhead
	Batching
	Some Number Theory
	How Batching Works

	Bootstrapping as an Optimization
	Batching the Bootstrapping Operation

