
A note on efficient zero-knowledge proofs and arguments.

(extended abstract)

Joe Kilian

NEC Research Institute

Princeton, NJ 08540

Abstract

In this note, we present new zero-knowledge interac-

tive proofs and arguments for languages in NP. To

show that z G L, with an error probability of at

most 2-k, our zero-knowledge proof system requires

O(lzlc’) + O(lg” l~l)k ideal bit commitments, where c1

and cz depend only on L. This construction is the first

in the ideal bit commitment model that achieves large

values of k more efficiently than by running k indepen-

dent iterations of the base interactive proof system. Un-

der suitable complexity assumptions, we exhibit a zer~

knowledge arguments that require O(lg’ Izl)ki bits of

communication, where c depends only on L, and 1 is

the security parameter for the prover.l This is the first

construction in which the total amount of communica-

tion can be less than that needed to transmit the NP
witness. Our protocols are based on efficiently checkable

proofs for NP [4].

~l–&lly~ 1is the size of some problem the poly-time bounded
prover is assumed to be unable to solve.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
diract commercial advantage, the ACM copyright notica and the
title of the publication and its data appaar, and notice is given
that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to rapublish, requiras a fae
and/or spacific permission.
24th ANNUAL ACM STOC - 5/92/VICTORIA, B.C., CANADA
01992 ACM 0-89791 -512-7 /92/0004/0723 ...$1 .50

1 Introduction.

1.1 The problem of efficient security

amplification.

The standard definition of interactive proofs[7] requires

that the verifier accept a correct proof and reject an in-

correct assertion with probability at least #. As there

are few applications where a 1/3 error probability is ac-
ceptable, one usually tries to obtain an error probability

less than 2-h, where k is some easily adjustable secu-

rity parameter. The most obvious way of achieving this

security amplification is take a protocol with a 1/3 er-

ror probability, run it O(k) times, and have the verifier

accept or reject by majority vote. 2 Are there any more

efficient ways of achieving security than by this simple

technique? As we will show, the answer is yes, for a

wide variety of languages, in a well known model for

which no other amplification technique was previously

known.

The work of Boyar, Brasserd end Peralta.

Our work is inspired by Boyar, Brassard and Peralta’s

zerc+knowledge protocol for circuit satisjiabilii!y,g which

for the first time achieved a more efficient security

amplification than by the naive approach [1]. Their

protocol achieved a 2-k error probability using only
o(nl+%+fil+’~) “ex-orable” bit commitments, where

en approaches O as n, the circuit size, approaches in-

finity. By an “ex-orable” bit commitment, we mean

one in which the verifier can take the commitments for

bits bl, ..-, bn, and by himself generate a commitment

z~ proof system where the verifier dways w@PtS a correct

proof, it sutlices to have the modified verifier accept iff he accepted
in every run of the protocol.

~T~t is, .&en a ~rc~t C, with a single output bit, is there

an input on which C will output a 1?

723

for bl @ . . . @ b.. Such a bit commitment scheme may

be based on the (unproven) intractability of computing
quadratic residuosity modulo Blum integers [2].

Thus, after a somewhat expensive initialization pro-

cess, the cost of achieving a 2-k error probability is

only O(@l+’” k) for very large k. In contrast, running

the most efficient known zero-knowledge proof for cir-

cuit satisfiability (e.g., [3]) k times requires $l(nk) bit

commitments.

1.2 The results of this paper.

The work mentioned above leaves open three natural
questions that we will address in this paper. First,

what can be accomplished given an ideal bit commit-

ment primitive, without the extra exclusive-or feature

on which the [1] protocol heavily relies? Second, can

one asymptotically achieve efficient amplification for ar-

bitrary NP languages? While any NP language can be

reduced to circuit satisfiability, the resulting size blow-

up may eliminate the efficiency improvement. Finally,

can one eliminate the expensive initialization step in-

volved in these asymptotically efficient protocols? B.s

cause of this cost, the above technique cannot compete
with the naive approach until k is at lesst Q(n’”).

Our first theorem shows that all IVP languages

have asymptotically efficient zero-knowledge proofs. By

asymptotic eficiency, we mean the behavior of the pr-

tocol as k approaches infinity, in which case its initial

start-up cost becomes negligible.

Theorem: Let c be an arbitrary positive constant. In

the ideal bit commitment model, there exists a zero-

knowledge protocol for the circuit satisfiability problem

that requires

O(d+’ + (lgo(l/’) ?z)k)

bit commitments.

Since lgc’ nca = c~ lgc’ n, we obtain asymptotically

efficient protocols for any NP language. Unfortunately,

we cannot eliminate the large start-up cost incurred

by our protocol in the ideal bit commitment model.

However, under certain complexity assumptions, we can

transform our interactive proofs into arguments, first de
veloped by Brassard and Crdpeau .4 PIthatrewireverY
little total communication. Our result is as follows.

Theorem: Suppose there exists a perfect cryptographic

bit committal scheme (In the argument model), param-

etrized by a security parameter 1, and a family of colli-

sion intractable hssh functions {Fr,~ : X2i -+ Xl. Then

for some constant c there exists an argument for the cir-

cuit satisfiability problem that requires O((lg” n)l) bits

A&.Went~ ~e jnter~tive proofs that involve a Complexity

assumption on the power of the prover. An additional security
parameter, 1, governs the size of the problems that the prover is
assumed unable to solve. For example, the prover maybe assumed
to be unable to factor a product of 2 random t-bit primes.

of communication to achieve an error probability of 1/3.

Note that the smallest known NP witnesses for the

circuit satisfiability problem are O(n), and for all NP-

complete languages, the smallest known witness are of

size Q(nt), for some c >0. Indeed, if this were not the

case for some NP-complete language, then

NP c fl D2VME(2”’),

C>o

which would be unexpected. Thus, arguments may be

more concise than the most efficient NP proofs for ex-

tremely large problems, and reasonable security param-

eters.

1.3 Techniques used.

The results in this paper follow quite easily from three

techniques. First, we use the notion of zero-knowledge

proofs on committed bits, sometimes refer to as “no-

tarized envelopes.” Second, we use the “transparent

proofs” of [4]. Finally, the efficient argument we imple-

ment uses collision-intractable hash functions as part of

its committal protocol.

Notarized envelopes.

Notarized envelopes allow the prover to commit to a set

of bits bl, ..., b., and at some later point in time prove

that some predicate P(bl,..., bn) holds for these bits,

without revealing anything information about these

committed values. Often in zero-knowledge proofs, the

verifier asks the prover to reveal some set of bits, and

then determines if he is happy with their revealed values.

We can often replace this step by having the prover sim-
ply prove to the verifier that he would have been happy

had he seen the revealed values. Since so little infor-

mation is revealed to the verifier, it is possible to reuse

much of the old proof without compromising the overall

security of the proof. We will illustrate this example

by showing how to increaze the efficiency of Goldreich,

Micali and Wigderson’s zero-knowledge proof for graph

3-colorability [8].

Goldreich, Micali and Wigderson [9] based notarized
envelopes (under a different name) on a complexity as-
sumption. More recent constructions implement nota-

rized envelopes bssed on ideal commitment schemes (en-
velopes). To make this note more self contained, we

describe a scheme based on some unpublished work of

Rudich and Bennett, and on the work of Brassard and

Cr6peau [2].

Transparent Proofs.

The main driving power behind this work is a deep the-

orem about NP. Babai, Fortnow, Levin and Szegedy

have shown that any NP statement has a polynomial

/24

sized witness that may be checked in polylogarithmic

time after some initial preprocessing on the statement.

The transparent proofs presented by [4] are somewhat

larger than the ordinary witnesses. For the circuit sat-

isfiability problem, the transparent proof may be made

to be of size O(nl+’), for any e >0, where n is the size

of the circuit. However, the time needed to check their

proof will be lgO(ll’) n, and this tradeoff will manifest

itself in our work as a tradeoff between the initial work

required for our zero-knowledge proof system and its

asymptotic efllciency.

Collision-intractable hash functions.

In our zero-knowledge interactive proof system, the ini-

tial start-up cost is incurred when the prover must com-

mit to all the bits of a large transparent proof. Using

collision-intractable hash functions, it is possible to hash

these bits down to a manageable number, yet still be

able to efficiently reveal individual bits when necessary.

We note that our trick only works if the prover is poly-
nomially time-bounded, and we make some unproven

complexity theoretic assumptions.

1.4 Outline of the paper.

The rest of this paper is outlines as follows. In Section 2,
we outline an implementation of notarized envelopes

based on an ideal bit commitment primitive. and il-

lustrate our approach be speeding up a zero-knowledge

proof system for graph 3-colorability. In Section 3, we

exhibit an asymptotically efficient proof system for cir-

cuit satisfiability, based on an ideal bit commitment

primitive. In Section 4, we exhibit an efficient argument

for circuit satisfiability, based on suitable complexity as-

sumptions.

2 Notarized envelop-

In this section, we outline a well-known, though ap-

parently unpublished scheme for notarized envelopes.

Brassard and Cr6peau essentially reduced notarized

envelopes to envelopes with zero-knowledge proofs of

equality assertions. In turn, researchers such aa Bennett

and Rudich have implemented these equality proofs by

representing bits by “pair blobs,” which we will describe

below.

2.1 Using pair blobs to prove equality

assertions.

The key to proofs of equality is to represent each bit as

a random exclusive-or of two bits. With this represen-

tation, the commit and reveal operations are straight-

forward extensions to the old schemes.

COMMIT(Zj) P uniformly chooses a;, x; c {O, 1}, sub-

ject to z~ = z! @ z;, and commits to z! and c) using
the ideal committal scheme,

REVEAL(~i) The prover reveals Z$ and Zi using the ideal

committal scheme. V computes ~i = z: (B z:.

We say that the value of a pair blob is the exclusive-or of

its two bits. Given the above representation scheme, the

following protocol allows one to prove that two commit-

ted bits are equal, without revealing their value. How-

ever, this scheme will only allow a committed bit to be

involved in a single proof.

PROVE-EQUAL-NAIVE(Zi , zj) /* prove that ~i = Cj */

1. P sends V the value of z! ~ z$.

2. V uniformly chooses b 6 {O, 1}, and sends b to P.

3. P reveals z! and x~, who accepts iff z! ~ z~ is

equal to the value sent in Step 1.

In order to use bits in more than one proof, the

prover simply makes spare copies. The verifier either

checks that the copies are equal to the original, using

PROVE-EQUAL-NAIVE, or checks that the two originals

are equal. In either case, there will be at least one “live”

copy of each committed bit that may be used later in

the protocol.

PROVE-EQUAL(Zi, Zj) /* Prove that XJ = &j,

nondestructively */

1. P commits to xl, z?, x;, z!, where each

equal to the original.

copy is

2. With equal probability, V asks P to show, using

PROVE-EQUAL, that

A. xi = Zf and Zj = a;, and

B. xi = X! and Xj = z;, or

c, x’ -a -~j.

V rejects iff he rejects in the above proofs. The
new representation for (~i, ~j) is taken to be

(z#, z~) in Case A, and (z;, z;) in Cases B and C.

In our protocols, we will want to maintain the secrecy

of the pair-blob representations of our bits as much aa

possible. We want

Definition 1 Let 131,..., B~ be a set of pair blobs, and

let V be some arbi~rary verifier. We say that B1,..,, Bn

is secure against V iff for any (b!, b~), ,,,, (b:, b:) and

(b\”, b{l),..., (b#, b:) such that by (II b: = b~” @ b\l for all

i, we have that

prob(lll,..., Bn = (b$’, b~),.. ., (b~, b~)l~’~ view) and,

prob(lill, ..., l?~ = (b~O,b\l),..., (b:, b~)lV’s view)

are the same.

725

Informally, B1,.,., 13n are secure against ~ if ~ has

learned nothing about their internal representation, as

opposed to knowing about their values. For example,

~ may know that B1 represents a O, but cannot tell
whether B1 = (O, O) or J31 = (1, 1).

The following lemmas can be proven using a finite case

analysis. Lemma 1 says that if P behaves properly in

protocol PROVE-EQUAL, then V will accept. Lemma 2

says that no verifier can gain extra information about

the values of Q and xj, or about their new ptir-blob

representations. Lemma 3 says that if ~i # ZJ, then

V will reject with some constant nonzero probability.

Finally, Lemma 4 says that no prover can try to alter the

committed values of ~i and xj in the protocol without

being detected with some constant nonzero probability.

Lemma 1 If ~i = ~j, and P obeys the protocol, then

V will always accept in protocol PROvE-EQuAL(Zi, Zj).

The new pair blobs for ~i and ~j will have the same

value as the original.

Lemma 2 If ai = xj, then the view of any verifier V,

will be independent of the actual values of ~i and ~j.

If the pair blobs for xi and xj are secure against V at

the begi~ning of the protocol, then they will be secure

against V at the end of the protocol.

Lemma 3 If ~i # ~j, then with probability at least

1/6, V will reject, regardless of the strategy used by the

prover.

Lemma 4 If ZJ = ~j, then regardless of the strategy

used by a (possibly malicious) prover ~, one of the fol-

lowing cases must hold at the conclusion of Step 1 of

prOtOCO1 PROVE-EQUAL:

1. V is guaranteed to reject with probability at least

1/6, or

2. The new pair blobs for ~i and xj are guaranteed to
have the same value as the originals. i

2.2

Given

Proving general predicates.

“primitives” for proving equality for committed

bits, we can now use, for example, the protocol of Bras-
sard and Cr6peau. We note that while a malicious

prover can make false assertions, or even alter the value

of some committed bits, this affects the soundness of

their proof system by only a constant factor. A simi-

lar phenomenon has been noted in the study of other

proof systems (cf. [11]). We state, without proof, the

resulting theorem one obtains.a

Theorem 1 [oral-tradition, [2]] There exists a protocol

PROVE-CIRCUIT(Z1, ..., Zk, C), where Z1, ,.., a~ have

been committed to as random pair-blobs, and C is a

circuit with n gates, such that the following properties

hold:

1.

2.

3.

The protocol requires at most O(n) commit-

ments/revelations and bits of communication.

If C(ZI,..., Q) = 1, and P obeys the protocol,

then

●

●

●

V will always accept,

If the p~ir blobs for Z1,. . . . z~ were secure

against V at the beginning of the protocol, the

(possible different) pair blobs for ZI,..., z,

will be secure against V at the end of the pro-

tocol.

There exists an expected polynomial-time

simulator S(V, C) that can simulate ~, just

by having ~ as an oracle (we will say more

about this simulator shortly).

If C(Z1,. . . , Zk) # 1, then V will reject with prob-

ability ~.

Here, the 1/12 factor is an artifact of our equality-
proving protocol; it is easy to obtain any constant one

wishes using only a constant number of envelopes.

Properties of the PROVE-CIRCUIT simulator.

In order for our own simulator constructions to work,

we need to use special properties of the PROVE-CIRCUIT

simulator. In the ideal bit commitment model, it is not

unreasonably to allow the simulator to wait until it must
reveal a bit before actually deciding on its value. How-

ever, to accommodate certain complexity based proto-

cols, we must require the simulator to decide on the

value of a committed bit at the same time it is commit-

ted. Committed bits may only be changed by saving the

global state of the simulation (including ~’s state) be-

fore the commitment is made, and then later restoring

this state. Our proofs’ committed bits persist through

many iterations of the protocol, so we do not allow our

PROVE-CIRCUIT simulator to tamper with these com-
mitments at all, even by global save/restore operations.

Fortunately, one can easily construct a simulator S for
the PROVE-CIRCUIT protocol with the following proper-

ties:

Immutability y: We assume that bits Z1, ,.., zk are all

O, and t+at their pair-blob representations are secure

against V. S will not change any of these commit-
ments. Note, however, that the pair blob used to repre-

sent Zi may be completely replaced if it is used in the

PROVE-EQUAL protocol.

Genuine Commitments: S does not change the value

of a bit once it has been committed, though it may “back

726

up” the simulation to a time before this commitment

took place.

Black-Box Simulation: Given any vprifier ~, S can

perfectly simula~e the conversation (P, V) by simply in-

teracting with V, but may choose to save and restore

~’s state. S will run in exp~cted polynomial time, not

counting the time used by V. For the simulation to be

correct, we require that the pair-blobs for the actu$

Z1, .,., z~ in the protocol are initially secure against V,

and the pair blobs (all with value O) ~sed by the simu-

lator are also initially secure against V.

Security: If the pair blobs for xl,..., z~ are secure

against V at the beginning of the simulation, the (pos-

sibly different) pair blobs for cl, ..., z~ will be secure

against ~ at the end of the simulation. Furthermore,

the values of these pair-blobs will always be O.

By the immutability property, S makes do with the

faked commitments given to it, and does not try to

change them. By the security property, S leaves the

“faked” commitments for Z1, ..., $k in the same state

ae at the beginning of the protocol (i.e., uniformly com-

mitted O’s). These properties allow us to chain together

a series of PROVE-CIRCUIT prOtOCOh3.

3 Using notarized envelopes to

make protocols more efficient.

In this section, we show that using notarized envelopes

can increaze the efficiency of interactive proof systems,

and combine particularly well with transparent proofs.

We first show how to use notarized envelopes to dramat-

ically increase the efficiency of a well-known protocol for

graph 3-colorability. While of no theoretical value, this

example illustrate the basic idea behind this note, We

next observe that if one uses the same technique with

transparent proofs, one obtains bounds that are sub-

stantially better than any previously known.

3.1 Speeding up a zero-knowledge proof

for 3-colorability.

We consider Goldreich, Micali and Wigderson’s zero-

knowledge proof system for graph 3-colorability. Their

proof system went as follows.

1.

2.

3.

4.

P commits to a randomly permuted coloring x of

the graph G.

V randomly chooses an edge (i, j) of G, and sends

(i, j) to P.

P reveals X(i) and X(j). V rejects if these two

colors are different.

To achieve a 2-k error probability, P and V run

Steps 1-3 O(rrak) times.

727

1

1

i
(

1

[f G is 3-colorable, and P behaves properly, then V will

always accept. If G is not three-colorable, then V will

:hoose a bad edge with probability at least l/m, where

m is the number of G’s edges. The protocol is zero-

knowledge, since only one edge is revealed, and x is a

randomly permuted.

Now, revealing x(h), for an additional node k, will

:ompromise the security of the proof. Hence, all of these

O(n) bit committals must be thrown away after a single

iteration of the protocol. However, by using notarized

mvelopes, one can greatly increase the efficiency of the

protocol, ss follows.

1. P uses pair-blobs to commit to an arbitrary color-

ing x of G.

2. V randomly chooses an edge (i, j) of G, and sends

(i, j) to P.

3. P proves to V in zero-knowledge that X(i) # X(j).

4. To achieve a 2-k error probability, P and V run

Steps 2-3 O(mk) times. V accepts iff he accepts in

each iteration.

We now give some intuition as to why the above pro-

tocol constitutes a proof system. If G is 3-colorable,

and P behaves properly, then V will always accept. If

G is not t$ree-colorable, then no matter what coloring

a prover P commits to, V will choose a bad edge with

probability at least I/m. In this case, no matter what

strategy P uses, V will reject with some nonconstant

probability.

We now give some intuition as to why the proof sys-

tem is zero-knowledge. Regardless of which edge (i, j)

of G a possibly malicious verifier V might send, his view

will consist of a zero-knowledge proof that x(i) # x(j),

which can be easily simulated in the ideal envelope

model. Furthermore, after each iteration of the pro-

tocol, the distribution on P’s commitment to x condi-

tioned on ~’s view, is identical to the initial distribution

on P’s commitment to x. Thus, after the initial com-

mitment has been simulated, the simulation for each

iteration of the protocol is essentially the same.

Finally, we note that the modified protocol is much

more efficient that the original. Suppose that G haa n

nodes and m edges, and we wish to achieve a 2-k er-

ror probability. Both protocols must be iterated O(mk)

times. Each iteration of the original requires O(n) bit

commitments, so O(nmk) bit commitments are required
in all. However, the modified protocol requires a one-

time cost of O(n) bit commitments, after which only

O(1) bits are required for each subsequent iteration.

Thus, only O(n + mk) bit commitments are required

by our modified protocol.

3.2 Combining notarized envelopes and

transparent proofs.

We were able to make the 3-colorability proof more effi-
cient because it consisted of an expensive commitment

stage followed by an inexpensive testing stage. The

same is true for transparent proofs. By performing the

initial commitment stage only once, we can construct

zero-knowledge proofs for NP with previously unattain-

able resource requirements.

Let us first review the general characteristics of the

transparent proofs in [4]. A verification that z E L
proceeds sa follows.s

●

●

●

●

If X

First, x is converted into a string d = c(z), by a

simple, polynomial time algorithm, and x’ is given

to V. This preprocessing step is assumed to be

correct in the [4] scenario. V is also assumed to

know 1~1, which we denote by n.

Prover P furnishes V with w, a transparent proof

that x E L.

V generates r, a sequence of log’ n coin tosses.

V then, in polylogarithmic time, computes q =
Q(n, r), a list of polylogarithmically many indices

of w and X1 that he wishes to see. Thus, V can ask

to see bits 5,11 and 31 of w and bits 3 and 21 of x.

Note that q is essentially independent of w and Xt.

An oracle supplies V with a sequence a, consisting

of the answers to V’s queries. V computes A (r, q, a)

in polylogarithmic time, and accepts iff A(?’, q, a) =

1.

~ L, and P correctly constructs w, then V will al-
ways accept. If z @L then V will reject with probability

at least ~, regardless of the value of w.

In Figure 1, we give a zero-knowledge proof system

for L, based on the existence of a [4] transparent proof

for L.

3.3 Properties of our protocol.

We now argue that EFFICIENT-PROOF is indeed a proof

system, that it can be used to make efficient proofs for

the circuit satisfiability problem (and by extension, to

all of NP), and give some intuition as to why the pr~

tocol is zero-knowledge.

Our protocol is proof system.

Theorem 2 Suppose that (c, C, Q, A) form a transpar-

ent proof system for L, such that

1. Correct proofs are accepted with probability 1.

I EFFICIENT-PROOF(Z, w, k, C, C, Q, A)

1.

2.

3.

4.

P and V compute x’ = C, and n = 1x1. P

commits to w using pair-blobs.

V uniformly chooses T c {O, l}lgc n, and sends

r to P.

P and V compute q = Q(n, r). P gives a zero-

knowledge proof that A(r, q, a) = 1, where a is

defined by q, S’ and the committed value of w.

V accepts iff he accepts this proof.

To achieve a 2-k error probability, P and V run

Steps 2–3 24k times. V accepts iff he accepts

in each iteration.

Figure 1: An asymptotically efficient proof system

for NP.

2. Incorrect assertions are rejected with probability at

least $.

Then, when EFFICIENT-PROOF(Z, w, k, c, c, Q, A) hi run,

the following properties must hold:

1. If w is a correct transparent proof for z c L, then

V will accept with probability 1.

2. If z @L, then V will reject with probability 2-k.

Proofi If w is a correct proof for a c L, then for any

r ● {O, l}lg”n, it will always be the case that A(r, q, a) =

1, where q = Q(lzl, r) and a is consistent with q, z’ and
the committed bits of w, In this case, by Theorem 1, V
will always accept P proof of this correct statement. If

x ~ L, then for any committed w, with probability at

lesat $, r will be such that A(r, q, a) # 1. Whenever this

case occurs, P will have to prove an incorrect assertion

in Step 3 of the protocol, in which case V will reject

with probability 1/12, by Theorem 1. Thus, in each

iteration of Steps 2 and 3, the probability that V will

catch a false statement is at least 1/24, regardless of any

of the previous iterations. Finally, the probability that
P will survive all 24k iterations is at most,

() 1
24k

1 ——
24

< 2-k. ~

Our protocol is efficient.

We now show that for the circuit satisfiability problem,
one can use our construction to create an asymptotically

efficient proof system.
5 MnemoNc~ly, C, Q and A stand for CODE, QUERY ~d ACCEPT,

whose use proved incompatible with two-column formatting.

728

Theorem 3 Let e >0 be a fixed constant. There exists

a transparent proof (c, C, Q, A) for the circuit satisfiabil-

ity problem such that

EFFICIENT-PROOF(2’, W, k, C, C, Q, A)

requires O(nltC + (lgO(l’tJ n)k) ideal bit commitments,

revelations and bits of communication.

Proofi We first bound the running time of our proto-

col by the various operations of the transparent proof.

We then note that a construction of [4] gives us our
desired result. The total number of committals, reve-

lations and bits of communication required for the pro-

tocol is equal to that required for Step 1 of the proto-

col plus 24k times that required for Step 3 of the pro-

tocol. The number of committals required in Step 1

of our protocol is 0(Iw 1). The number of committals,

revelations and communication required for the zero-

knowledge proof in Step 3 of the protocol is bounded

above by some polynomial in the time required to com-

pute A(r, q, a).
Since there is an lg’ n PRAM algorithm for veri&

ing that an n-gate circuit is satisfiable, the general con-

struction of [4] allows one to make a transparent proof

for the circuit satisfiability problem that is of size nit’,

where n is the size of the circuit, and c > 0 is some

arbitrary constant. The verification time for this proof

(which trivially bounds the time required to compute

A(r, q, a)) will be lgO(l’C) n. Plugging these figures in,

we obtain the desired resource bounds. I

Our protocol is zero-knowledge.

We do not have space to include a full proof that our

protocol is zero-knowledge. Such a proof would require

us to delve into the details of the simulator for the

Brassard-Cr&peau protocol as well ss the simulators for

the PROVE-EQUAL protocol. We give the simulator for

the protocol in Figure 2. We assume that the simulator

has access to Iwl, the length of the transparent proof.

The lengths of the proofs in [4] are esaily constructible.

Here is some intuition for why the simulation works.
In Step 1 of the protocol, the prover commits to IwI

bits, and in the ideal bit commitment model, ~’s view

is the same regardless of the values of these bit. Thus,

his view of Step 1 is the sqme as the view obtained by

the simulator. In Step 2, V is just sending a string, so

the equivalence of views will not be broken. The main

subtlety comes in considering the effects of Step 3 of

the protocol and its simulation. Before each iteration of

Steps 2 and 3 of the protocol, w has some fixed value,
~d the pair blobs representing it are secure against

V (by induction, and Part 2 of Theorem 1). Before

each iteration of Steps 2 and 3 of the simulation, w

will consist of all O‘~, whose pair blob representations

are secure against V (by induction, and the security

property of the PROVE-CIRCUXT simulator).

Simulator EFFICIENT-PROOF(C, Itvl, k, c, C, Q, A)

1.

2.

3.

4.

S computes Z’ = c, and n = [zI. S commits to
OIwl using pair-blobs.

~ sends r ~ {O, l}’s”n to S.

S uses the PROVE-CIRCUIT simulator to “fake”

the zero-knowledge proof that A(r, g, a) = 1.

(In fact, the committed bits corresponding to a
are all 0’s.)

To simulate each iteration of Steps 2-3, S runs

Steps 2–3 of the simulation.

Figure 2: A simulator for the efficient proof system

for NP.

Now, regardless of r, the predicate to be proven in

Step 3 will be true. Since both the witness blobs and

the O blobs (used by the prot~col and simulation re-

spectively) are secure against V, the black-box simula-

tion property of the PROVE-CIRCUIT simulator guaran-

tees that the two views will remain equal.

As a corollary, we obtain asymptotically efficient zero-

knowledge proof systems for any language in NP.

Corollary 5 For any language L G NP, there exists

a zero-knowledge proof system for z c L that requires

only O(nc + lgc n)k) ideal bit commitments, revelations

and bits of communication to achieve a 2-k error prob-

ability. Here~ = Iz] and c is some constant depending

only on L.

4 Communication efficient argu-

ments for NP.

In this section, we show how to transform the zero-
knowledge proofs in the previous section into communi-

cation efficient arguments for NP, making a reasonable

complexity assumption. Whereas our proof systems re-

quire an expensive set-up cost, the arguments do not

require any such cost. Indeed, even if one desires ~

error probability, our proofs are much more communi-

cation efficient than any that were previously known.
We first note that one can easily implement the previ-

ous protocols as arguments, given a secure blob system.

Next, we first describe our technique for shrinking our

first stage of the proof system, and then we give the

resulting protocol.

729

4.1 A naive implementation.

Neglecting communication costs, we can straightfor-

wardly transform the proof system in the ideal bit com-

mitment model into an argument (or for that matter,

a cryptography based interactive proof system). Let 1

be the security parameter for the prover. (Note that

1 has nothing to do with bounding the probability of

error, but rather makes a tacit assumption on the com-

putational power of the prover.) First, P and V agree

on some information theoretically secure blob system,

represented by the probabilistic procedures

BLOB~,k : {O, 1} ~ {O, 1}1 x {O, 1}1, and,

CHECKI,~ : {o,1}1 x {o,1}’ + {0,1}.

That is, given a bit 6, BLOBl,k(b) generates a pair (C, R),

such that GHECK(C, R) = b. Here C is the “blob” for b

and R is the string used to reveal b. P commits to b by

generating (C, R) and sending C to V. P reveals b by

sending R to V, who computes CHECK(C, R). The zero-

knowledge argument relies on the assumptions that,

1. The distribution on C induced by 13LOBl,k(0) and

BLOBl,k (1) are identical, and,

2. It is computationally infeasible for P to produce a
triplet (C, R, R’) such that CHECK(C, R) = O and

CHECK(C, R’) = 1.

The generation of the blob system may be performed

once and for all, for all theorems to be proven.

To implement Step 1 of the protocol, P converts w

into a pair-blob representation, and uses BLOB to com-

mit to each of these bits. We’ll denote the resulting

blobs by ~l,...,ll~. Step 2 of the protocol is per-

formed just as before. Finally, Step 3 of the protocol

is implemented as before, but again by using the secure

blob system for the committals and revelations required

for the proof.

4.2 The problem, and how to solve it.

As before, the real cost of the protocol lies in Step 1,
which requires O(nl+c/) bits of communication. Steps 2
and 3 of the protocol require only O(logc /) bits of com-
munication, for some c. The problem is that virtually

all of the bits committed to in Step 1 are not needed-in
a single execution of Steps 2 and 3. We could make our

protocols much more efficient if we only had to pay for

decommitting a bit. In the Brassard-Cr6peau model,

one can achieve this savings, provided that sufficiently

strong cryptographic hash functions exist.

Suppose that there is family {F~,~ } of polynomial time

computable hash functions, such that

1. F/,k is a function from {O, 1}2/ to {O, 1}1, and

2. For every polynomial-sized circuit family {Cl}, the

probability that Cl(k) can produce c, v such that

PACK(I, Cl,..., Czm)

1. V agree on a suitably distributed hash function,

FI,k .

2. Forl~i~n and O~j<2”-i, define C~=

Cj and

C;= Fi,@$l, C&&).

P sends C; to V.

Figure 3: Protocol for cheaply committing to a num-

F[,k(z) = FI,k (Y), where Fl,k is chosen according
to some probabilistic polynomially samplable dis-

tribution, grows smaller than 1-’ for any constant

c.

In Figures 3 and 4, we show how to use such hash func-

tions to cheaply commit to a large number of blobs, and

(reasonably) cheaply reveal a single one of these blobs.

The trick is to use our hash function to make a binary

tree of commitments, where each leaf of the tree corre-

sponds to one of the blobs the prover committed to, A

blob corresponding to a node of a tree is a hashed rep

resentation of it two children. The prover commits to

the entire tree by sending the blob corresponding to the

root of the tree. Finally, the prover reveals the repre-

sentation of a blob (distinct from revealing the contents

of that blob) by revealing each hashed blob along the

path from the root to the leaf, along with the each of

these hashed blob’s children.

Note that our protocol for revealing the represent

tions of blobs will leak a great deal of extraneous infor-

mation about the representations of other blobs, How-

ever, as far as the security of the proof is concerned,

this leakage is irrelevant. Since there exist blob systems

in the [2] that are perfectly and unconditionally secure,

the prover would not mind if the verifier received copies

of all the blobs, which indeed happens in the naive im-

plementation,

Our final protocol is sketched in Figure 5.

What assumptions do we need?

In the argument we have implemented, we need to create

zer~knowledge blobs and secure hash functions. Both

of these requirements may be achieved with claw-free

pairs of permutations [7]. That is, we need to pro-
duce function pairs (F, G) such that it is difficult to

find a pair (z, y) such that F(z) = G(y). For exam-
ple, if n = PIPZ, where PI, P2 are unknown to P, and
a is a random quadratic residue mod n, then one can

set F(z) = Z2 mod n and G(y) = aV2 mod n, where

730

I 2. Forl<i< n, V checks that I
c~lf ~ij =Fl,k (c~i~12iJ,)c~i~~zij+~9

and rejects ifthisis not the case. otherwise, V

reCOveM CI = c?.

1 Figure4: Protocol forextracting a blob.
I

I EFFICIENT-ARGUMENT(Z, W,/, C, C, Q, A) I
O. P and V agree on an information theoreti-

cally secure blob committal scheme, BLOB and

CHECK, and a cryptographically secure hash

function, Pl,k.

1. P and V compute x’ = c(z), and n = Izl. P

breaks w into using pair-blobs, and uses BLOB
to generate blobs (CO, Ro),.., (Cm, &), and

commits to CO,..., cm USing prOtOCOl PACK.
Here, m is assumed to be a perfect power of

2.

2. V uniformly chooses r E {O, I}’g’ n, and sends

I r to P. I
3. P and V compute q = Q(n, r). P gives a zero-

knowledge proof that A(r, q, a) = 1, where a is

defined by q, x’ and the committed value of w.

Whenever P has to reveal a bit represented by

a blob Cz, he first runs

I EXTRACT(~/,k, ~, CI, cm), I
and then sends RI to V. V recovers the re-

vealed bit by computing CHECK(CZ, RI). V ac-

cepts iff he accepts this proof.

I Fizure 5: An efficient anzument for NP. I

z, y # O [?”J. If one could find a colliding pair, (z, y),

then one can find a square root of a, namely ~y-l.

Of course, the verifier must convince P that u is a

quadratic residue; otherwise the proof will no longer be

zero-knowledge.

Somewhat surprisingly, the communication complex-

ity of setting up the blob scheme and the hash function

may well dominate the communication complexity of

the protocol. This is not because it is any harder to set

up such schemes in our framework, rather every other

step of our protocol now has a very low communication

complexity. For example, the cost of proving to P that

a is a quadratic residue mod n is quite large, though

it need be done only once for all time (that is, for all

theorems to be proven).

A really fast way of setting up a claw-free pair of per-

mutations waa proposed by Boyar, Krentel and Kurtz

[5], and independently by Damgfwd. Suppose that it is

hard to compute discrete logarithms modulo a random

prime p, even given the factorization of p- 1. Then given

g, a generator for Z;, and a chosen at random from Z;,

one can set F(z) = go and G(y) = ag~. If F(a) = G(y),

then lgfl y = z-y. V can choose p, g, a such that p– 1 is

of known factorization, and then send this information

to P, Given the factorization of p -1, P can trivially

verify that g is a generator for Z;. The entire protocol

therefore takes only 0(/) bits of communication.

The communication complexity of our

proof system.

Using the most efficiently constructible schemes we

know (such as the one mentioned above, based on a

strong discrete-log assumption), Steps O and 1 require

only 0(/) bits of communication. As before, Step 2 r-

quires only lgc n bits of communication. Step 3 requires

log” n committal and revelations, for some c1. Now

each such operation requires at most O(lg(n)l) bits of

communication, so the total amount of communication

required for the protocol is O(lgC(n)l), for some constant

c.

5 Acknowledgments.

I would like to thank Mihir Bellare and Steven Rudich

for valuable comments and insights.

References

[1] J. Boyar, G. Brassard and R, Peralta. Sub-
quadratic Zero-knowledge Proc. of FOCS91

[2] G. Braasard and C. Cr6peau, Non-Transitive

Transfer of Confidence: A Perfect Zer_Knowledge

Interactive Protocol for SAT and Beyond, Proc. of

FOCS86.

731

[3] G. Brassard, D. Chaum, and C. Cr6peau. Min-

imum Disclosure Proofs of Knowledge, J. Com-

pd. System Sci. 37 (1988), 156-189,

[4] L. Babai, L. Fortnow, L. Levin and M. Szegedy.

Checking computation in polylogarithmic time.

Proc. of STOC91

[5] J. Boyar, M. Krentel and S. Kurtz. A discrete log-

arithm implementation of perfect zero-knowledge

blobs. Journal of Cryptology, Vol. 2, No. 2, pp. 63-

76, 1990.

[6] S. Goldwasaer, S. Micali, and C. Rackoff. The

Knowledge Complexity of Interactive Proof Sys-

tems, SIAM J. Comput. 18 (1989), 186–208.

[7] S. Goldwasser, S. Micali, and R. Rivest. A

Paradoxical Solution to the Signature Problem.

Proc. of. FOCS84

[8] O. Goldreich, S. MicaIi, and A. Wigderson. Proofs

that Yield Nothing but Their Validity and a

Methodology of Cryptographic Protocol Design,

Proc. of FOCS86.

[9] O. Goldreich, S. Micali, and A. Wigderson. How to
Play ANY Mental Game, Proc. of STOC87.

[10] R. Impagliazzo and M. Yung. Direct Minimum-

Knowledge Computation, Proc. of CRYPT087.

[11] J. Kilian, S. Micali and R. Ostrovsky. Mini-

mum Resource Zero-Knowledge Proofs, Proc. of

FOCS89.

732

