6.892 Computing on Encrypted Data December 09, 2013

Lecture 9

Lecturer: Vinod Vaikuntanathan Scribe: Nathan Rittenhouse

1 Oblivious Database Access

It is often the case that a client wants to obtain data from a server but hide the replies and the access
patterns. Two models, private information retrieval and oblivious are used to achieve this end. The server is
assumed to be an honest but curious party and the client is assumed to be free from attackers. An attacker
has access to the communication channel and wants to learn communication patterns.

2 Private Information Retrieval

2.1 Primitives

PIRQuery(i) A message sent from the client to the server that contains the index of the desired database
entry.

PIRReply An encrypted reply to the query returned by the server.

PIRDecode A method used by the client to decode the server’s response.

2.2 Correctness

All queries should succeed with probability (p = 1).

2.3 Security [1]

Lemma 1. For all (i,i'): PIRQuery(i) ~ PIRQuery(i)

Lemma 2. For all (i1,...4;5,...,%): PIRQuery(i) ~ PIRQuery(i')
Constraints

e In an unencrypted setting, the number of bits for the query number is Q(lg(NV)), which will not allow
for security under information theoretic assumptions.

e To prevent information leakage, all database entries must be touched. For that reason, we primarily
focus on reducing the communication complexity.

Single Server Many Servers
Unconditional (semantic security) | O(N) (server must | O(N)&=&N)
read entire DB)
With cryptographic assumptsions | Server must touch | See multi-server
every entry. As- | section

suming difficulty of
quadratic residues:
O(VN). FHE:
O(lg(V))

3 FHE Databases

Example: fpp(z1,...,2¢) = Zie(il
Protocol for FHE DB queries

oy DBy — 1) ... (w0 — i)

.....

1. Client sends (FHEEnc(seed), PseudoRandom(seed)&i)
2. Server recomputes the PseudoRandom(seed) homomorphically
3. Server performs homomorphic exclusive or to obtain i

4. Server runs the above query to obtain the query response

3.1 Multi-Server FHE DBs

1 2 3 4
See single-server section | O(v/N) | O(NT 1-;<N)) O(VN)

Best communication complexity lower bound: O(lg(N))

3.2 4-Server Scheme

We first encode our database as our matrix. Queries take the form of choosing the entry at the intersection
of the ith row and jth column.

e; is the row vector which selects entries of the row we wish to select

e; is the vector that when transposed will properly select the column

5y
(c,6) (r@a}ﬂ/(r Sgeﬁj(m}e s¢;)

'l?,lk/

3

e;-DB - e]T = DB(i,)

4 Oblivious RAM

In the oblivious RAM model, a client communicates with a server, much like in the previous model. N bits
total are stored in the memory.

CPU is defined as the client

Memory is defined as the server

4.1 Primitives
read(i) reads the memory at index 4

write(j, m) writes value m to index j

9-2

4.2 Assumptions
1. The client’s memory is protected
2. The values written to memory are encrypted.
3. The server is honest-but-curious - it snoops memory reads but is not actively mangling the data
returned to the client.
4.3 Security

Any length-two subsequences of database accesses should be statistically indistinguishable.

5 Simple ORAM Construction

CPU creates a permutation 7 : [N] — [N] that remaps each memory location to another memory location.
Although this construction randomizes individual accesses, it will still reveal repeated access sequences.
The setup time for this scheme is (V) to write down a permutation array.

6 Goldreich-Ostrovsky ORAM Construction|2]

Key ideas: add a cache, which maps the pre-permutation index to the actual memory value. Add garbage
accesses when the lookup address is cached.

6.1 Data Structures
The server’s memory is segmented into:
1. N entries for the permutation
2. N entries for the actual memory values
3. V/N entries for the cache
4. v/N entries for garbage indices
To create the memory index permutation on the server:
1. Zero out the cache
2. Create permutation T
3. Write © to the permutation segment

4. Sort 7 on the server with data oblivious sorting algorithm (O(N 1g(N)))

6.2 Protocol

Method for obscuring the locations of reads and writes
1. Client downloads the cache
2. If the cache contains the ith entry then the client has found the index
3. If the client has found the index, it accesses 7(last_garbage_index+1)

4. Append (7,v) to the cache if our value was not in the cache or ({garbage; Vgarbage) if it was

9-3

6.3 Overhead
Memory N entries to hold permutation, 2 - v/N for cache and dummy cache

Computational overhead O(v/N) per access and O(Nlg(N)) accesses until a re-permutation. Thus
accesses have ©(v/N) complexity, amortized.

6.4 Problems
1. Cache overflows require a relatively high amount of work of O(N Ig(N))
2. Reads are O(v/N)

3. Assuming the existence of pseudo-random functions and one way functions. That assumption is needed
because in this model, it is assumed that the CPU does not have enough memory to store a permutation.

7 Chung-Pass [3] ORAM Scheme

Advantages over prior schemes
1. No cryptographic assumptions

2. Worst case analysis for lookup times rather than amortized.

7
gﬂk:% steres (A}
K entrics

A

7.1 Definitions
N - number of bits stored in the memory
k - the number of blocks in a bucket

« - the number of blocks

7.2 Data structures

1. Memory blocks of length « are stored at the 7(7)th location

2. Each memory block is described by a tuple: (block number, position descriptor, data for memory
block). Size: lg & +1g(N) +

3. CPU has 7 buckets that can store k¥ memory-block tuples

4. A Huffman-tree like strucutre is employed to resolve indices to data

9-4

7.3 read(r)
1. Read entire path from root to Pos(| =]). Output memlr] if 7 exists, otherwise output L.

2. Create a new remapping pos for r by adding | =] to the root of the tree.

3. Pick a random pos*, move each common ancestor pos; of pos and pos' to the bucket at the least
common ancestor of pos* and pos;

7.4 Overhead
Memory overhead & - k-a~k-N -log,(N)

Computational overhead for each read and write: 1g(&) - k - g, (V) = polylog(N) = w(log?(N))

7.5 Oblivious-ness Argument
Obliviousness: Each decision in each read and write is conditioned on history that is comprised of random

paths.

7.6 Overflow Resistance

Overflow resistance: The probability of any pos/ being a child of location v < 2-3) < gw(log(N))

References

[1] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,” J. ACM, vol. 45,
no. 6, pp. 965-981, 1998. [Online]. Available: http://people.csail.mit.edu/madhu/papers/1995/pir-
journ.pdf

[2] O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious rams,” J. ACM,
vol. 43, no. 3, pp. 431-473, May 1996. [Online]. Available: http://eprint.iacr.org/2010/366.pdf

[3] K.-M. Chung and R. Pass, “A simple oram,” Cryptology ePrint Archive, Report 2013/243, 2013,
http://eprint.iacr.org/.

9-5

