MAT 302: ALGEBRAIC CRYPTOGRAPHY

Department of Mathematical and Computational Sciences University of Toronto, Mississauga

February 29, 2012

Practice Mid-term Exam

INSTRUCTIONS:

- The duration of the exam is 100 minutes.
- The exam is worth a total of 100 marks.
- This booklet has 14 pages (excluding the title page) and 6 questions.
- Please use the workspace at the end of this booklet for calculations.
- You are allowed to bring one $3" \times 5"$ cue ('index') card to the exam with writing on both sides. No other written notes are permitted.
- No Calculators, Cellphones, Laptops or other electronic devices.

Good luck!

QUESTIONS

Problem 1: True or False (10 Marks)

Please circle the correct answer.

(a) Let p be prime, g be a generator, $h_1, h_2 \in \mathbb{Z}_p^*$, and let $\mathsf{dlog}_g(h)$ denote the discrete logarithm of h to the base g. Then, $\mathsf{dlog}_g(h_1h_2) = \mathsf{dlog}_g(h_1) + \mathsf{dlog}_g(h_2)$.

(b) Let e and N be integers such that $gcd(e, \phi(N)) \neq 1$. Let $a \in \mathbb{Z}_N^*$. Then, there are no solutions x for the equation $x^e = a \pmod{N}$. FALSE

FALSE

TRUE

TRUE

(c) Let N be an integer. The number of digits in a base-10 TRUE FALSE representation of N is $\lceil \log_{10} N \rceil$.

Problem 2: Do you know your algorithms? (10 Marks)

1. (5 Marks) Compute the sequence of numbers that come up in an execution of the extended Euclidean algorithm on numbers a = 57 and b = 33. Use this to find integers x and y such that 57x + 33y = 3.

2. (5 Marks) Find all solutions x of the equation $x^{1999} = 10 \pmod{17}$.

Problem 3: Do you know your Crypto? (15 Marks)

1. (5 Marks) This question is about the Caesar Cipher with the alphabet $\{A, B, C, \ldots, Z\}$. We use the following message encoding: $A: 0, B: 1, \ldots, Z: 25$. Thus, encryption and decryption corresponds to operations *modulo* 26. You know that the message being transmitted is either DECONTAMINATION, CATEGORIZATIONS or CRYPTOZOOLOGIST. Can you figure out which message is contained in the following ciphertext?

MKDOQYBSJKDSYXC

2. (10 Marks) The RSA encryption system turns out to be insecure if you choose the RSA primes P and Q to be very close to each other. In particular, show that if the difference between P and Q is at most 100 (namely, $|P - Q| \le 100$), you can quickly find P and Q, given only N = PQ in about 100 operations.

Problem 4: More on Primality Tests (25 Marks)

Assume that you have a number N and $a \in \mathbb{Z}_N^*$ such that

- (a) $a^{N-1} = 1 \pmod{N}$, and
- (b) for every prime factor F of N-1, $a^{(N-1)/F} \neq 1 \pmod{N}$.
 - 1. (10 Marks) What is the order of a in the group \mathbb{Z}_N^* ? Prove your assertion.

2. (15 Marks) Prove that in this case, N is prime.

Problem 5: On $\phi(N)$ (10 Marks)

Let N be of the form $3^i 5^j 7^k$ for some integers i, j and k (an example of such an N is 105). What is the fraction of non-negative integers smaller than N that are relatively prime to N?

Problem 5: A Twist on Finding Roots (20 Marks)

You are given a natural number N, numbers $f, g \in \mathbb{Z}_N^*$ and relatively prime integers a and b such that

$$f^a = g^b \pmod{N}$$

That is, f is the a^{th} root of $g^b \mod N$. How will you use this information to find the a^{th} root of g, namely a number $h \in \mathbb{Z}_N^*$ such that

$$h^a = g \pmod{N}$$

Your algorithm has to be fast, and in particular, should not use the knowledge of the prime factorization of N.

Problem 6: A Puzzle (10 Marks)

There are 100 doors and 100 women. To begin with, all the doors are closed.

- The first woman comes in, and opens all the doors.
- The second woman comes in, and "flips" every second door. That is, for every second door, she closes it if it's open and opens it if it's closed.
- The third woman comes in, and "flips" every third door.
- • •
- The hundredth woman comes in, and "flips" the hundredth door.

Which doors are closed at the end of this process?

WORK SHEET

WORK SHEET

WORK SHEET