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Abstract. A class of random lattices is given, in [1] so that (a) a random
lattice can be generated in polynomial time together with a short vector
in it, and (b) assuming that certain worst-case lattice problems have
no polynomial time solutions, there is no polynomial time algorithm
which finds a short vector in a random lattice with a polynomially large
probability. In this paper we show that lattices of the same random class
can be generated not only together with a short vector in them, but also
together with a short basis. The existence of a known short basis may
make the construction more applicable for cryptographic protocols.

1. Introduction. Most of the well-known, hard computational problems,
(e.g. factoring), are worst-case problems, while for cryptographic applications
we need hard average-case problems. The reason is that any random instance
of a hard average case problem is also hard with a positive probability, while
there is no known way that would create a hard instance of a hard worst-case
problem. Using lattice problems it is possible to create average-case problems
which are just as difficult as certain well-known worst-case problem. For a more
detailed description of the worst-case, average-case connection and for crypto-
graphic applications see e.g. [1], [2], [4], [5], [6], [7] or the survey paper [3].
(Further references are given in [3].) One of the worst-case lattice problems used
in [1] is the following:

(P) Find a basis b1, ..., bn in the n-dimensional lattice L whose length, defined
as maxn

i=1 ‖bi‖, is the smallest possible up to a polynomial factor.

We will refer to this problem as the short basis problem. It is proved in [1] that
if (P) has no polynomial time solution then a random lattice L can be generated
in polynomial time (with a suitably chosen distribution), together with a vector
shorter than

√
n in it, so that, for any algorithm A the probability that A finds

in L a vector shorter than
√

n, if L is given as an input, is smaller than n−c

(for any fixed c > 0 if n is sufficiently large). That is, using the assumption that
the worst-case short basis problem is hard, we are able to create a hard instance
of the short vector problem with a known solution. In this paper we show that
instead of the short vector problem we may use the short basis problem in the
conclusion of the theorem as well, in the strong sense that we construct the
random lattice together with a short basis, but to find even a short vector in
it is difficult. This last property will be a consequence of the fact that we are
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using the same random class of lattices as in [1], we only modify the way as a
random lattice is generated, without changing it’s distribution (by more than an
exponentially small error). (These type of random lattices where a short basis is
known for the person who generates the lattice, but nobody else can find even
a short vector, seem to be more suitable for cryptographic applications, than
the ones generated together with a single short vector. We intend to return to
this question in a separate paper. The public-key crypto-system of Goldreich,
Goldwasser and Halevi described in [6] is based on the availability of a short basis.
However the size of a basis is defined in a different way, so our random lattice
together with the generated basis probably does not meet the requirements of
their system.) The dimension of the lattice for the average-case problem is larger
than for the corresponding worst-case problem. If the dimension of the lattice
in the worst-case problem is n, then the dimension of the lattice in the average
case problem is c′n log n for a suitably chosen constant c′ > 0. We will use the
same construction for a random lattice as was used in [1], (more precisely the
distance of the distributions of the random lattices used in the two papers is
exponentially small in n). To give an exact formulation of our result we recall
the definition of the random lattice form [1] with a somewhat modified notation.
(n will denote now the dimension of the random lattice.)

Assume that the positive integers q, r, n, r < n are fixed. (The results of
[1] hold if rc1 < q < 2rc1 and rc3 > n ≥ c2r log r for some suitably chosen
absolute constants c1, c2, c3.) Let Ij

i be the set of all j dimensional vectors whose
coordinates are from the set {0, 1, ..., i − 1}. First we pick a random sequence
u0, ..., un−1 independently and with uniform distribution from the set Ir

q . The
random lattice L will consist of all sequences of integers h0, ..., hn−1 so that

n−1∑

i=0

hiui ≡ 0 (mod q)

The distribution of L will be denoted by Γn.
This definition gives an explicit way of generating lattices in the random

class. In [1], with a slight modification of this definition, we were able to generate
almost the same distribution (with an exponentially small error) together with
a short vector in L. Namely, first we randomize only u0, ..., un−2 independently
and with uniform distribution from Ir

q and independently from that a random
0, 1 sequence δ0, ..., δn−2, with uniform distribution on the set of all 0, 1 sequences
of length n − 1. Let un−1 be the smallest nonnegative residue modulo q of

−
n−2∑

i=0

δiui

(where we take the residue of each component of the vector). This way we have
defined the sequence u0, ..., un−1 and from this we can define the lattice the same
way as in the original definition. The distribution of this lattice will be denoted
by Γ ′

n. The sequence v = 〈δ0, ..., δn−2, 1〉 will be in the lattice and its length is at
most

√
n. (It is shown in [1] that if (P) has no polynomial time solutions, then
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such a short vector cannot be found in polynomial time with a polynomially
large probability, provided that the sequence u0, ..., un−1 is given as an input.)
We define the distance of two probability dstributions P1 and P2 on the same
σ-algebra X as max{|P1(A) − P2(A)| + |P1(B) − P2(B)| | A, B ∈ X, A ∩ B = ∅}

Theorem 1. There is a c > 0 so that for each positive integer n there is a
distribution Φn on the set of n dimensional lattices so that the distance of the
distributions Γn and Φn is at most 2−cn, moreover a random lattice L according
to the distribution Φn, can be generated in polynomial time together with a basis
in it whose length, (that is, the maximum of the lengths of it’s elements) is at
most n3√n. ut

Remark. The results of [1] imply that if there is no polynomial time solution
for (P), then there is no algorithm which finds a vector shorter than

√
n in

a random L (according to the distribution Γn) with a probability greater then
n−c′

, for any c′ > 0 if n is sufficiently large. Since the distance of the distributions
Γn, Φn is exponentially small this holds for the distributions Φn as well. That is,
as we claimed earlier, we are able to generate a random lattice together with a
short basis, so that it is hard to find even a short vector in the random latttice,
if only the lattice is given as an input, provided that the worst-case problem (P)
is hard.

2. The proof of the theorem. In the proof of our theorem we will use the
following lemma from [1]. (There the lemma is used in the proof of the fact that
the distance of Γn and Γ ′

n is exponentially small in n.)

Lemma A. There exists a c > 0 so that if A is a finite Abelian group with n
elements and k is a positive integer and b = 〈b1, ..., bk〉 is a sequence of length k
whose elements are chosen independently and with uniform distribution from A,
then with a probability of at least 1 − 2−ck the following holds:

Assume that b is fixed and we randomize a 0, 1-sequence δ1, ...δk, where the
numbers δi are chosen independetly and with uniform distribution from {0, 1}.
For each a ∈ A let pa = P (a =

∑k
i=1 δibi)). Then

(a)
∑

a∈A(pa − |A|−1)2 ≤ 2−2ck and

(b)
∑

a∈A |pa − |A|−1| ≤ |A| 1
2 2−ck.

If A = Ir
q (with the modulo q addition) then this lemma shows that for

almost all fixed values of u0, ..., un−2 if δ0, ..., δn−2 is picked at random then the
distribution of

n−2∑

i=0

δiui = −un−1

is almost uniform on Ir
q .
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This construction gives a single short vector v in L. We want to modify it so
that we get a short basis of L. Short will mean now that the Euclidean norm of
each basis vector is at most n3√n.

To make our construction simpler we assume that q is odd. (We will prove
the independence of the constructed vectors by showing that their determinant
is odd.) Instead of generating a short basis of L we will generate first only n
linearly independent vectors and then from them we can get a basis of L while
we increase their length only by a factor of n. (See [1])

There is an easy way to generate the random lattice L together with more
than one short vector. Namely we randomize only u0, ..., un−1−s for some fixed s
and define the remaining un−s, ..., un−1 as their linear combinations with random
0, 1 coefficients. If n−s > c log |A| = c log(qr) = c′r log r then Lemma A remains
applicable and we get s linearly independent vectors. Although this cannot be
improved further, we keep the idea of randomizing certain vectors ui and get the
other ones as their random linear combinations in our final construction. (The
coefficients in this construction will not be 0, 1 and their distribution will not
be uniform.) More precisely we will get the random sequence u0, ...un−1 in the
following way:

We randomize first only r vectors u0, ..., ur−1 independently and with uniform
distribution from Ir

q . Let Y be an n by r matrix whose first r rows are u0, ..., ur−1
and the remaining entries are variables. Let T be the set of these variables. We
will define a random n by n matrix A′ (with integer entries) depending on the
vectors u0, ..., ur−1. The distribution of the matrix A′ is the crucial part of the
definition; we will give it later. Assume that A′ has been chosen. A will be the
matrix consisting of the first n−r rows of A′. Consider that equation AY = 0. We
will define A′ so that this equation has a unique rational solution for the variables
in T , moreover this solution assigns integer values for all of these variables.
Substituting these values into Y and then taking their least nonnegative residue
modulo q we get a matrix Y ′. The rows of Y ′ will be u0, ..., un−1. We will
show that A′Y ′ ≡ 0 (mod q). The rows of A′ will be short linearly independent
elements of L. The congruence A′Y ′ ≡ 0 (mod q) imples that that the rows of
A′ are indeed elements of L. Using the definition of A′ we will show that they
are short and linearly independent.

We define A′ in two parts. First we define only A, an n − r by n matrix. A
will be the first n−r rows of A′. Then separately we define the last r rows of A′.
A together with u0, ..., ur−1 will already determine the sequence u0, ...., un−1.

The first r columns of the matrix A forms an n − r by r matrix this will be
denoted by A1. The remaining columns form a square (n − r by n − r) matrix
A2. Let µ = [logr q] + 2

We will start the numbering of the rows and columns of each matrix with 0.
That is, an i by j matrix D has rows 0, 1, ..., i − 1 and columns 0, 1, ..., j − 1. If
D = {ds,t}s=0,...,i−1,t=0,...j−1 then we say that ds,t is the tth elements of the sth
row. When we say “the first k rows of the matrix D” we refer to rows 0, 1, ..., k−1.

Definition of A1. The ith element of the µith row is 1 for i = 0, ..., r − 1, all
of the other entries are 0.
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Definition of A2. We will define A2 as A2 = BC where B, C are n − r by
n − r matrices.

Later we will give a concise but technical definition of the matrices B and C.
Now we give a more easily understandable but longer definition, together with
the motivating ideas. Let X be an n− r by r matrix, consisting of the last n− r
rows of Y , that is containing only the variables, and let U be an n−r by r matrix
whose iµth row is ui for i = 0, ..., r and all other rows have all 0 entries. The
definition of A1 implies that the equation AY = 0 is equivalent to the equation
A2X = −U . We we want to define the matrix A2 = BC in a way that will make
it easy to get an explicit description of the solution of the equation BCX = −U .
B will be a lower triangular matrix with integer entries and 1s in the main
diagonal. C will be an upper triangular matrix with integer entries and 1s in the
main diagonal. This already implies that the equation BCX = −U has a unique
solution in X with integer entries. Since X = −C−1B−1U we first define B in
a way that we will have a clear description of B−1U . −B−1U is the solution of
the equation −BZ = U where Z is an n by r matrix whose entries are variables.
Let ξ1, ...., ξn be the rows of Z. If B is given, then using the fact that B is lower
triangular we can determine the value of ξi by recursion on i. Each ξi will be a
linear combination of the rows of −U where the coefficients are determined by
B. Since each row of U is an uj , j = 0, 1, ..., r − 1 or 0, we have that each ξi will
be a linear combination of the vectors u0, ..., un−1. Recall that the jµth row of
U is uj , for j = 0, 1, ..., r−1 and the other rows are 0. By definition the jµth row
of B will contain a sigle 1 in the main diagonal and all of its other enries will be
0, that is, bjµ,jµ = 1 and bjµ,k = 0 for all j = 0, 1, ..., r − 1 and k 6= jµ, where
B = {bs,t}. This implies that ξjµ = −uj for j = 0, 1, ..., r − 1. E.g. ξ0 = −u0. We
want ot define B so that ξ2 = −ru0, ..., ξj = −rju0 for j = 0, 1, ..., µ− 1. We can
attain this if we put bj,j−1 = −r for j = 2, ..., m − 1 and bj,t = 0 for all t 6= j,
t 6= j − 1, j = 1, ..., µ − 1. (That is the jth row will contain exactly two nonzero
entries, in the main diagonal and immediately left from it.) Determining ξi by
recursion on i we get the required values. The motivation for this definition is the
following: as an integer linear combination of the integers rju0, j = 0, ..., r − 1
we can express any integer of the from bu0 where b is a integer in the interval
[0, q) ⊆[0, rµ). Therefore if we choose the further coefficients of B in a suitable
way then we may force ξs for some s > µ take any value of the form bu0. Since
we want to do the same thing for u1, ...ur−1 as well we define the first rµ rows
of B in the following way

bi,i = 1 for all 0 = 1, ..., n − r − 1.
For all j = µi + k, i = 0, ..., r − 1, k = 1, ..., µ − 1 we have bj,j−1 = −r.
All of the other entries in the first µr rows of B are 0.
The definition so far implied that

(B1) ξiµ+j = −rjui for i = 0, ..., r − 1, j = 0, ..., µ − 1.

The next r rows, that is, rows rµ + k, k = 0, 1, ..., r − 1 have a special role.
The definition of these rows will guarantee that

(B2) 2ξrµ+k ≡ −uk (mod q) for k = 0, ..., r − 1.
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To get this, first we take an integer z with 0 < z < q so that 2z ≡ 1 (mod q).
Let

z =
µ−1∑

s=0

αsr
s

where 0 ≤ αs < r are integers for s = 0, ..., µ − 1.
For all j = µr+k, k = 0, ..., r−1 and i = 0, 1, ..., µ−1 we put bj,kµ+i = −αi,

and bj,j = 1. All of the other entries of these rows are 0. This definition and
(B1) implies (B2).

We want to define the remaining rows in a way that

(B3) for any fixed u0, ..., ur−1, if u0, ..., ur−1 are linearly independent mod-
ulo q, then the distribution of ξ(r+1)µ, ξ(r+1)µ+1, ..., ξn−r−1 (with respect to the
randomization of B), is uniform modulo q on the set of all r dimensional vector
sequences of length n − r − (r + 1)µ.

To attain this, first we define a random variable η whose values are sequences
of integers x0, x1, ..., xµ−1 so that 0 ≤ xi < r for all i = 0, ..., µ − 1, moreover we
choose η so that the number

∑µ−1
i=0 xir

i has uniform distribution on the interval
[0, q − 1]. (Such an η can be efficiently generated by randomizing first the value
of

∑µ−1
i=0 xir

i and then determining the unique values of the numbers xi.)
Now we can define row j for all j ≥ (µ + 1)r. For all j ≥ (µ + 1)r bj,j = 1

for and i = 0, ..., r − 1 the sequence of the entries bj,µi, bj,µi+1,...,bj,µi+µ−1 will
be a random value of the random variable η. (For all of the possible numbers j
the values of the random variable η are taken independently.) All of the other
entries in these rows are 0.

(B1) and the definition of µ implies that for each i ∈ [(r+1)µ, n−r], ξi is the
linear combination of the vectors u0, ..., ur−1, where the coefficients are taken at
random and with uniform distribution modulo q, moreover these coefficients are
independent for different values of i and for different elements of the sequence
u0, ...,r−1. This implies (B3).

This completes the definition of B. We repeat the definiton below in a more
concise form.

Definition of B. For the definition of B, first we define a random variable
η whose values are sequences of integers x0, x1, ..., xµ−1 so that 0 ≤ xi < r for
all i = 0, ..., µ − 1. We choose η so that the number

∑µ−1
i=0 xir

i has uniform
distribution on the interval [0, q − 1].

We will denote by bi,j the element of B in the ith row and jth column for
i = 0, ..., n − r − 1, j = 0, ..., n − r − 1.

bi,i = 1 for all 0 = 1, ..., n − r − 1.
For all j = µi + k, i = 0, ..., r − 1, k = 1, ..., µ − 1 we have bj,j−1 = −r.
For all j = µr+k, k = 0, ..., r−1 and i = 0, 1, ..., µ−1 we have bj,kµ+i = −αi

where
∑µ−1

s=0 αs(r)s = z, 0 ≤ z < q and 2z ≡ 1 (mod q) and 0 ≤ αs < r are
integers for s = 0, ..., µ − 1.

For all j ≥ (µ + 1)r and i = 0, ..., r − 1 the sequence of the entries bj,µi,
bj,µi+1,...,bj,µi+µ−1 will be a random value of the random variable η. (For all of
the possible j and i the values of the random variable η are taken independently.)
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All of the other entries of B are 0s.
The definition of C is simpler so we start with the formal definition.
Definition of C. ci,j will denote the jth element of the ith row in the matrix

C for i = 0, ..., n − r − 1, j = 0, ..., n − r − 1.
ci,i = 1 for all i = 0, 1, ..., n − r − 1.
The entries ci,j , i ≤ [n−r

2 ], j > [n−r
2 ] are taken independently and with

uniform distribution from the set {0, 1}.
All of the other entries of C are 0s.
Clearly we have that

(C1) C is an upper triangular matrix with 1’s in the main diagonal.

This implies that we can compute the (n − r − 1 − j)th row of C−1(B−1U)
by recursion on j. Assume that the rows of the unique solution of C−1(−B−1U)
are the r-dimensional integer vectors ρ0, ..., ρn−r−1.

Let κ = [n−r
2 ]. Since the rows of B−1U are ξ0, ..., ξn−r−1 the definition of C

implies that

(C2) ρi = ξi for all i = κ + 1, ..., n − r − 1.

and

(C3) ρi = − ∑n−r−1
j=κ+1 ci,jρj = −∑n−r−1

j=κ+1 ci,jξj for all i = 0, 1, ..., κ.

(The second equality is a consequence of (C2)). With a probability exponen-
tially close to one for the randomization of u0, ..., ur−1, the sequence u0, ..., ur−1
is linearly independent modulo q. Assume now that such a sequence u0, ..., ur−1
is fixed. (B3) implies that the distribution of the sequence ξκ, ..., ξn−r−1 is uni-
form modulo q on the set of all sequences of length n − r − 1 − κ consisting of
r-dimensional vectors. Therefore we may apply Lemma A for the sum in (C3)
so that Ir

q with the addition modulo q is the Abelian group. We get that

(C4’) for almost all fixed u0, ..., ur−1, and for allmost all fixed ξ0, ..., ξn−r−1 (ac-
cording to the distribution of B), the distribution of ρ0, ..., ρκ is almost uniform
modulo q on the set of all r dimensional vector sequences of length κ + 1.

More precisely we have the following:

(C4) There is a c4 > 0 so that for all sufficiently large n if we randomize
u0, ..., ur−1 and B, then with a probability of at least 1−2−c4n we get a sequence
u0, ..., ur−1, ξκ, ..., ξn−r, so that for the randomization of C the distance of the
distribution of the sequence ρ0, ..., ρκ from the uniform distribution is at most
2−c4n.

This thogether with (C2) and (B3) implies that:

(C5) There is a c5 > 0 so that for all sufficiently large n and for the ran-
domization of both B and C the distance of the distribtuion of the sequence
ρ0, ..., ρn−r−1 from the uniform distribtuion is at most 2−c5n.

The definition of C also implies that every entry of C is small which will
be useful when we estimate the length of the constructed linearly independent
vectors. More precisely
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(C6) each entry of C in the main diagonal is 1 and all of the other entries
belong to the set {0, 2}.

Now we return to the equation AY = 0. The definitions of A1,
U , ρ0, ..., ρn−r−1 imply that if S is an n by r matrix whose rows are
u0, ..., ur−1, ρ0, ..., ρn−r−1 then AS = 0. Therefore we may define the random
lattice L by ur+i = ρi for i = 0, ..., n − r − 1. That is, L is the set of integer
vectors h0, ..., hn−1 with

∑n−1
i=0 hiui ≡ 0 (mod q). This definition together with

(C6) implies that the distance of Γn and Φn is ineed at most 2−cn for a suitably
chosen constant c > 0 as claimed in the theorem. To complete the proof of the
theorem we have to show only that using B and C we may construct n linearly
independent elements of L each with length at most n2√n.

AS = 0 implies that the rows of A are elements of L. They are clearly
linearly independent since the submatrix A2 = BC has determinant 1. We have
to construct r more linearly independent elements of L. We will add r new rows
to the matrix A, the new matrix will be A′. The jth new row for some fixed
j = 0, ..., r − 1 is defined in the following way:

The (n − r − 1 + j)th row of A′ is a sequence of length n that we get by the
concatenation of the jth unit vector and the (rµ + j)th row of C multiplied by
two.

If we multiply this row by the matrix S then we get uj + 2(ρrµ+j +∑n−r−1
i=κ+1 crµ+j,iρi). By (C3) this is equal to uj + 2ξrµ+j . According to (B2)

2ξrµ+j ≡ −uj (mod q) and so the product is 0 modulo q. This shows that
A′S ≡ 0 (mod q) and so all of the rows of A′ are elements of L. We have to
prove that the rows are linearly independent (over the rationals). We show that
the determinant of the matrix A′ is an odd integer so it is not 0 which implies
the required independence. Every element of A′ is an integer (by definition of
A′). We compute the determinant of A′ modulo 2. A′ consists of 4 submatrices
A1, A2, A3, A4 where A1, A2 have been already defined; A3 consist of those
entries of A′ which are in the last r rows and first r columns, A4 consists of
those entries of A′ which are in the last r rows and last n − r columns. Every
entries of A4 is even that is A4 is zero modulo 2. Therefore the determinant of
A′ modulo 2 is equal to the products of the determinants of A3 and A2 modulo
2. A3 is an r by r identity matrix so its determinant is 1. A2 = BC. B is a lower
triangular matrix C is an upper triangular matrix both have 1s in their main
diagonal thefore the determinant of A2 is 1. These imply that the determinant
of A′ is congruent to 1 modulo 2.

Finally we estimate the absolute values of the entries of A′. Each entry of A′

outside A is 0, 1 or 2. A = BC. The absolute value of each entry of C is ethier 0
or 1. Every entry of B is an integer in the interval [0, r]. Therefore each entry of
A is an integer in the interval of [−r(n − r), r(n − r)] and so this is true for the
entries of A′ as well. This implies that the Euclidean norm of our basis vectors
is at most (n(r(n − r))2)

1
2 = n

1
2 r(n − r) ≤ n2√n. (If we take into account that

in each row of B the number of nonzero entries is relatively small, then we can
improve this upper bound.)
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