
CS 294. Pseudorandom Functions from Lattices

Pseudorandom functions (PRF) can in principle be constructed from LWE (and even SIS)
completely generically following the Goldreich-Goldwasser-Micali paradigm that constructs PRFs
from pseudorandom generators and even one-way functions. However, direct constructions often
come equipped with other nice properties such as parallelism, key homomorphism, constrained
evaluation, and more.

1 Pseudorandom Generator from LWE

The LWE function
GA(s, e) = sTA + eT

is a pseudorandom generator with two caveats:

• It is a family of PRGs indexed by A. A random function chosen from the family is then a
PRG. This is not a big issue usually (except when considering questions related to who picks
the A).

• As-is, the domain seems to be Znq × Zmq and the range is Zmq so the function does not even
seem to expand! However, in reality, the function takes as input a smaller number of random
bits used to sample e, roughly m log(αq) to sample from a Gaussian of standard deviation αq.
When this is done, for sufficiently large m, the function does expand, and is pseudorandom.

2 GGM Construction

Goldreich, Goldwasser and Micali show how to construct a pseudorandom function family starting
from any pseudorandom generator. This can well be applied to the LWE PRG described above,
however it results in a rather unwieldy construction. We show below constructions that are much
prettier, and as a side-effect, give us several advantages such as key homomorphism and parallel
evaluation (as we will see today) and constrained evaluation (as we will see in later lectures).

3 BLMR13 Construction

3.1 The Gadget Matrix

We need the gadget matrix which will make its appearance several times in the next few lectures.
In a nutshell, our gadget matrix G is an n ×m matrix (where m ≥ n log q) with the property

that G · {0, 1}m ⊇ Znq . That is, for every vector v ∈ Znq , there is a 0-1 vector w such that Gw = v

(mod q). For example, the matrix G ∈ Z2×6
7 is the following matrix:

G =

[
1 2 4 0 0 0
0 0 0 1 2 4

]

1

Indeed for every vector v =

[
v1
v2

]
, let v1 = v12v11v10 denote its bit representation (and similarly

for v2). Then,

G

v10
v11
v12
v20
v21
v22

 =

[
v1
v2

]

More generally, let g denote the gadget vector [1 2 4 . . . 2dlog2 qe−1] ∈ Z1×dlog2 qe
q . Then, G = g⊗ In

is the tensor product of g with the n×n identity matrix In. (If m > ndlog qe, pad this with a block
of the zero matrix.)

We will denote the inverse mapping by G−. That is, G−(v) = w if (a) w has 0 or 1 entries;
and (b) Gw = v (mod q). Note that there could be many such w that satify these properties, so
G−1 is best thought of as a multi-valued function.

3.2 Flipped LWE: Small A, Random s

We start with the proof that LWE with roles reversed, namely where the entries of A are random
small, and s is random, is as secure as LWE. Note that (a) we showed that “Normal Form LWE”
where A is random and s is random small, is as secure as LWE (in Lecture 1 and lecture 4) and
(b) if both A and s have small entries, the problem is easy, as it is essentially just linear regression,
a convex optimization problem.

Assume that A ← {0, 1}N×m and s ← ZNq are uniformly random. The Flipped LWE problem

asks to distinguish between (A, sTA+ eT) from a truly random pair from the same domains. Note
that s is likely not uniquely determined, rather only determined up to small additive error, so if
one wanted to define the search version, it should be done with some care.

Lemma 1. Flipped LWE(N = n log q,m, q, χ) is as hard as LWE(n,m, q, χ).

Proof. We show a reduction from (decisional) LWE to flipped-LWE. Given an LWE sample (A, b =
sTA + e), we rewrite it as

(A, b = (GT s)TG−(A) + e)

pick a random s′ ∈ ZNq and compute b′ = b + s′TG−(A). Pass (G−(A), b′) to the flipped LWE
adversary.

First, notice that G−(A) is a uniformly random 0-1 matrix – this is true either when q is close
to a power of two, or by extending the definition of the G matrix by adding more powers of two.

Secondly, notice that

b′ = b+ s′TG−(A) = (GT s + s′)TG−(A) + e

which is exactly a flipped LWE sample when b is an LWE sample and uniformly random otherwise.
This transforms a flipped-LWE distinguisher into an LWE distinguisher.

2

3.3 Construction

Both constructions we show will follow the following general template. The PRF family will be
indexed by a secret seed s ∈ Znq , and a sequence of public matrices ~A = (A0,A1, . . .). On input

x ∈ {0, 1}`, the function will be defined as

PRF
s,~A

(x) = sTAx + eTx (mod q)

where Ax is defined as some function (depending on the construction) of ~A and x ∈ {0, 1}`.
The first problem that one encounters with this framework is where does the error eTx , which

is supposed to be different and “pseudo-fresh” for every x, come from? The first trick we will play
is to sidestep this question entirely, and go via the learning with rounding paradigm of Banerjee,
Peikert and Rosen [BPR12]. That is, we will define

PRF
s,~A

(x) = bsTAx + eTx ep (mod p)

where b·ep : Zq → Zp refers to a function that, on input x ∈ Zq outputs the multiple of p that is
closest to it. That is,

bxep =

⌊
p

q
x

⌉
where b·e refers to the function that rounds to the nearest integer.

In the BLMR construction, the public parameters are ~A := (A0,A1) where both matrices are
drawn at random from Zn×nq and Ax is defined as a subset product. We are now ready to define

the BLMR construction. The construction sets

Ax = G−(Ax1) ·G−(Ax2) . . .G−(Ax`) =
∏̀
i=1

G−(Ai)

and therefore,
PRFs,A0,A1(x) = bsTAxep (mod p)

The only remaining loose end is how to choose p. Intuitively, the larger the p, the less secure
the construction is. Indeed, if p = q, there is no rounding and the PRF is a linear function! The
smaller the p, the less efficient the construction is, in terms of how many pseudorandom bits it
produces per invocation.

Parallelism. The pseudorandom function can be computed in log ` levels of matrix multiplica-
tion, or in the complexity class NC2.

(Approximate) Key Homomorphism. The PRF has the attractive feature that PRFs(x) +
PRFs′(x) (where both PRFs use the same two public matrices A0 and A1) is approximately equal
to PRFs+s′(x). This feature has a number of applications such as constructing a distributed PRF
and a (additively) related-key secure PRF.

3

3.4 Proof of Security

We will, for simplicity, prove that the truth table of the PRF is indistinguishable from i.i.d. random
strings using a reduction that runs in time exponential in the input length, namely `. More refined
approaches, following the GGM proof, are possible, but omitted from our exposition.

The proof proceeds in a number of hybrids. Define “intermediate” pseudorandom functions
PRF(i) for i = 0, . . . , ` as follows.

PRF
(i)
s0,...,s2i−1

(x′||x′′) = bsTx′Ax′′ep

where x′ is the i-bit prefix of x = x′||x′′.
Note that PRF(0) is exactly the PRF we defined with s0 = s. On the other hand, PRF(`) is

a random function. The proof goes via a hybrid argument that switches from PRF(0) to PRF(`)

in ` steps. We will now show that each such switch is computationally indistinguishable to the
adversary. For simplicity, we show this for PRF(0) versus PRF(1).

• First, consider

PRF
(0)
s (x1 . . . x`) = bsTAxep = bsTG−(Ax1) ·

∏̀
i=2

G−(Axi)ep

• We first show that this distribution is statistically close to

b(sTG−(Ax1) + ex1) ·
∏̀
i=2

G−(Axi)ep

Indeed, the intuition is that the difference between the distributions is only noticeable when
the addition of ex1 ·

∏`
i=2G

−(Axi) flips over one of the coordinates of the vector sT
∏`
i=1G

−(Axi)

over a multiple of p. First, notice that since
∏`
i=1G

−(Axi) is full-rank w.h.p. and s

is uniformly random, so is sT
∏`
i=1G

−(Axi). The probability of flipping over is at most

N · ||ex1 ·
∏`
i=2G

−(Axi)||∞/(q/p) which is negligible if ||ex1 ||∞ � q/p · 1/N `+1 · 2−ω(log λ).
Assume that p = Ω(q), this is like assuming LWE with noise-to-modulus ratio that is roughly
N `. In turn, this translates to assuming that gapSVP is hard to approximate to within N `,
a factor exponential in the input length of the PRF.

• Next, observe that this is computationally indistinguishable from

sTx1

∏̀
i=2

G−(Axi)

by LWE. Finally, this distribution is precisely PRF(1).

4 BP14 Construction

The only difference between the BLMR13 and BP14 constructions is in the definition of Ax. Let
x = x1x2 . . . x`. BP14 defines Ax recursively as follows. Aε = Im×m (where ε is the empty string)
and

Abx = G−(Ab ·Ax)

4

Thus,
Ax = G−(Ax1 ·G−(Ax2 . . .G

−(Ax`)))

This allows us to base security on LWE with slightly superpolynomial noise-to-modulus ratio.
Roughly speaking, we will switch from

bsTGAxep = bsTAx1 ·Ax2...`ep

to
b(sTAx1 + ex1) ·Ax2...`ep

by a statistical argument similar to the above. However, now, the norm of Ax2...` is polynomial in
N , independent of ` which makes the argument considerably more efficient. We still will need the
2−ω(log λ) term for the statistical argument.

Note that this construction loses parallelism.

Open Problem 5.1. Construct an LWE-based pseudorandom function that can be computed in
NC1 and is based on LWE with polynomial modulus.

The computation in NC1 is satisfied by the BLMR construction (and by a construction of
[BPR12] using “synthesizers”), and the polynomial modulus is satisfied by the a direct construction
based on GGM (also in [BPR12]). We refer to [Kim20] for a detailed taxonomy of the existing PRF
constructions as of Feb 2020.

Open Problem 5.2. Come up with a “direct” construction of a SIS-based PRG and PRF.

Of course, SIS gives us a one-way function (as described below) and can be used to construct a
PRG by the result of Hastad-Impagliazzo-Levin-Luby and then a PRF by Goldreich-Goldwasser-
Micali. But the resulting construction is very complex, and in particular, does not have the parallel
evaluation property. A concrete question is to construct a PRF from SIS with parallel evaluation.

4.1 Collision-Resistant Hashing

We finish by describing a simple collision-resistant hash function based on SIS.
A collision resistant hashing scheme H consists of an ensemble of hash functions {Hn}n∈N where

each Hn consists of a collection of functions that map n bits to m < n bits. So, each hash function
compresses its input, and by pigeonhole principle, it has collisions. That is, inputs x 6= y such that
h(x) = h(y). Collision-resistance requires that every p.p.t. adversary who gets a hash function
h← Hn chosen at random fails to find a collision except with negligible probability.

Collision-Resistant Hashing from SIS. Here is a hash familyHn that is secure under SIS(n,m, q,B)
where n log q > m log(B + 1). Each hash function hA is parameterized by a matrix A ∈ Zn×mq ,
takes as input e ∈ [0, . . . , B]m and outputs

hA(e) = Ae mod q

A collision gives us e, e′ ∈ [0, . . . , B]m where Ae = Ae′ mod q which in turn says that A(e− e′) =
0 mod q. Since each entry of e− e′ is in [−B, . . . , B], this gives us a solution to SIS(n,m, q,B).

5

References

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices.
In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology - EURO-
CRYPT 2012 - 31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237
of Lecture Notes in Computer Science, pages 719–737. Springer, 2012.

[Kim20] Sam Kim. Key-homomorphic pseudorandom functions from lwe with a small modulus.
Cryptology ePrint Archive, Report 2020/233, 2020. https://eprint.iacr.org/2020/

233.

6

https://eprint.iacr.org/2020/233
https://eprint.iacr.org/2020/233

	Pseudorandom Generator from LWE
	GGM Construction
	BLMR13 Construction
	The Gadget Matrix
	Flipped LWE: Small A, Random s
	Construction
	Proof of Security

	BP14 Construction
	Collision-Resistant Hashing

