
CS 294. Encrypted Computation from Lattices

In this lecture, we will explore various facets of encrypted computation which, generally speak-
ing, refers to the set of cryptographic tasks where you encrypt computational objects – for example,
a program or a circuit and/or its input – in a way that anyone holding these encrypted objects
can perform meaningful manipulations on them. Examples include (fully) homomorphic encryp-
tion, (various flavors of) attribute-based encryption, (fully) homomorphic signatures, constrained
pseudorandom functions, functional encryption and indistinguishability obfuscation.

We will see constructions of all but the last two in this lecture. Indeed, we will present a single
lattice tool, the key lattice equation, that will give us all these constructions.

1

1 Fully Homomorphic Encryption

In a fully homomorphic (private or public-key) encryption, anyone can take a set of encrypted
messages Enc(x1), . . . ,Enc(xk) and produce an encryption of any polynomial-time computable func-
tion of them, that is, Enc(f(x1, . . . , xk)) where f is any function with a poly(λ)-size circuit. By a
result of Rothblum, any private-key (even additively) homomorphic encryption scheme can be con-
verted to a public-key homomorphic scheme, so we will focus our attention on private-key schemes
henceforth.

The formal definition of the functionality of fully homomorphic encryption follows.

• KeyGen(1λ): produces a secret key sk, possibly together with a public evaluation key ek.

• Enc(sk, µ), where µ ∈ {0, 1}: produces a ciphertext c.

• Dec(sk, c): outputs µ.
// So far, everything is exactly as in a regular secret-key encryption scheme.

• Eval(ek, f, c1, . . . , ck) takes as input a poly(λ)-size circuit that computes a function f : {0, 1}k →
{0, 1}, as well as k ciphertexts c1, . . . , ck, and outputs a ciphertext cf .

Correctness says that

Dec(sk,Eval(ek, f,Enc(sk, µ1), . . . ,Enc(sk, µk))) = f(µ1, . . . , µk)

for all f, µ1, . . . , µk with probability 1 over the sk, ek and the randomness of all the algorithms.
Security is just semantic (IND-CPA) security, that is the encryptions of any two sequences of

messages (µi)i∈poly(λ) and (µ′i)i∈poly(λ) are computationally indistinguishable. (the fact that the
encryption scheme is homomorphic is a functionality requirement, and does not change the notion
of security.) (

Enc(sk, µ1), . . . ,Enc(sk, µp(λ))

)
≈c
(
Enc(sk, µ′1), . . . ,Enc(sk, µ′′p(λ))

)
A final and important property is compactness, that is, |cf | = poly(λ), independent of the circuit
size of f . (Weaker compactness conditions are possible, and indeed, we will see one in the sequel.)

2

2 The GSW Scheme

The first candidate FHE scheme was due to Gentry in 2009. The first LWE-based FHE Scheme
was due to Brakerski and Vaikuntanathan in 2011. We will present a different FHE scheme due to
Gentry, Sahai and Waters (2013) which is both simple and quite flexible.

• KeyGen: the secret key is a vector s =

[
s′

−1

]
where s′ ∈ Znq .

• Enc: output A + µG where A is a random matrix such that

sTA ≈ 0 (mod q)

Here is one way to do it: choose a random matrix A′ and let

A :=

[
A′

(s′)TA′ + e′

]

• Dec: exercise.

• Eval: we will show how to ADD (over the integers) and MULT (mod 2) the encrypted bits
which will suffice to compute all Boolean functions.

3

3 How to Add and Multiply (without errors)

Let’s start with a variant of the scheme where the ciphertext is

C = A + µI

where I is the identity matrix and sTA = 0 (as opposed to sTA ≈ 0.)
Now,

sTC = µsT

• ADD(C1,C2) outputs C1 + C2. This is an encryption of µ1 + µ2 since

sT (C1 + C2) = (µ1 + µ2)sT

Eigenvalues add.

• MULT(C1,C2) outputs C1C2. This is an encryption of µ1µ2 since

sT (C1C2) = µ1s
TC2 = µ1µ2s

T

Eigenvalues multiply.

We need one ingredient now to turn this into a real FHE scheme.

4

4 How to Add and Multiply (without errors)

We have to be careful to multiply approximate equations by small numbers. Once we make adjust-
ments to this effect, we get the GSW scheme. The ciphertext is

C = A + µG

where sTA ≈ 0. Think of G as an error correcting artifact for the message µ.
Now,

sTC ≈ µsTG

which is the approximate eigenvalue equation.

• ADD(C1,C2) outputs C1 + C2. This is an encryption of µ1 + µ2 since

sT (C1 + C2) ≈ (µ1 + µ2)sTG

Approximate eigenvalues add (if you don’t do it too many times.)

• MULT(C1,C2) outputs C1G
−(C2). This is an encryption of µ1µ2 since

sT (C1G
−(C2)) = (sTC1)G−(C2) ≈ (µ1s

TG)G−(C2) = µ1(sTC2) ≈ µ1µ2s
TG

where the first ≈ is because G−(C2) is small and the second ≈ because µ1 is small.

Approximate eigenvalues multiply if you only multiply by small numbers/matrices.

Put together, it is not hard to check that you can evaluate depth-d circuits of NAND gates with
error growth mO(d). (You can do better for log-depth circuits by converting them to branching
programs; see Brakerski-Vaikuntanathan 2014.)

5

5 Bootstrapping to an FHE

With this, we get a leveled FHE scheme. That is, we can set parameters (in particular q = mΩ(d))
such that the scheme is capable of evaluating depth-d circuits. What if we want to set parameters
such that the scheme can evaluate circuits of any polynomial depth? That would be an FHE scheme
for real.

The only way we know to construct an FHE scheme at this point is using Gentry’s bootstrapping
technique which we describe below. Doing so involves making an additional assumption on the
circular security of the GSW encryption scheme, which we don’t know how to reduce to LWE.

6

5.1 The Idea

Assume that you are the homomorphic evaluator and in the course of homomorphic evaluation, you
get two ciphertexts C and C ′ which are (a) decryptable to µ and µ′ respectively, in the sense that
their decryption noise has `∞ norm less than q/4; but (b) not computable, in the sense that they
will become undecryptable after another homomorphic evaluation, say of a NAND. What should
you do with these ciphertexts?

Here is an idea: If you had the secret key, you could decrypt C and C ′, re-encrypt them with
fresh small noise and proceed with the computation. In fact, you could do this after every gate.
But this is clearly silly. If you had the secret key, why bother with encrypted computation in the
first place?

7

Here is a better idea: assume that you have a ciphertext C̃ of the FHE secret key encrypted
under the secret key itself (a so-called “circular encryption”). Then, you could homomorphically
evaluate the following circuit on input C̃:

BootNANDC,C′(sk) = Decsk(C) NAND Decsk(C
′)

What you get out is an encryption of µ NAND µ′. How did this happen (and what did hap-
pen?) First of all, note that C̃ is a fresh encryption of sk. Secondly, assume that the BootNAND
circuit (which is predominantly the decryption circuit) has small depth, small enough that the
homomorphic evaluation can handle it. The output of the circuit on input sk is indeed µ NAND
µ′; therefore, putting together this discussion, the output of the homomorphic evaluation of the
circuit is an encryption of µ NAND µ′ under sk.

Once we can implement BootNAND, this is how we evaluate every NAND gate. You get as
input two ciphertexts C and C ′. You do not homomorphically evaluate on them, as then you
will get garbage. Instead, use them to construct the circuit BootNANDC,C′ . and homomorphically

evaluate it on an encryption C̃ of the secret key sk that you are given as an additional evaluation
key.

Voila! This gives us a fully homomorphic encryption scheme.

8

5.2 Circular Security

Is it OK to publish a circular encryption? Does the IND-CPA security of the scheme hold when the
adversary additionally gets such an encryption? First of all, the IND-CPA security of the underlying
encryption scheme (GSW in this case) alone does not tell us anything about what happens in this
scenario. Indeed, you can construct an IND-CPA secure encryption scheme whose security breaks
completely given such a circular encryption. (I will leave it as an exercise.)

Secondly, and quite frustratingly, we do know how to show that the Regev encryption scheme
is circular-secure assuming LWE, but showing that the GSW scheme is circular-secure is one of my
favorite open problems in lattice-based cryptography.

9

6 The Key Equation

Let us abstract out the mathematics behind GSW into a key lattice equation which will guide us
through constructing the rest of the primitives in this lecture.

Recall the approximate eigenvector relation:

sTAi ≈ µisTG

and rewrite it as
sT (Ai − µiG) ≈ 0 (1)

Let Af be the homomorphically evaluated ciphertext for a function f . We know that

sTAf ≈ f(~µ)sTG

or
sT (Af − f(~µ)G) ≈ 0 (2)

We will generalize this to arbitrary matrices A1, . . . ,A` – not necessarily ones that
share the same eigenvector.

10

First, we know that Af is a function of A1, . . . ,A` and f (but not µ1, . . . , µ`). Henceforth,
when we say Af , we will mean a matrix obtained by the GSW homomorphic evaluation procedure.
(That is, homomorphic addition of two matrices is matrix addition; homomorphic multiplication is
matrix multiplication after bit-decomposing the second matrix).

11

Second, and very crucially, we can show that for any sequence of matrices A1, . . . ,A`,

[A1 − µ1G|| . . . ||A` − µ`G] Hf,~µ = Af − f(~µ)G

where Hf,~µ is a matrix with small coefficients. We call this the key lattice equation.
To see this for addition, notice that

[A1 − µ1G||A2 − µ2G]

[
I
I

]
︸ ︷︷ ︸

H+,µ1,µ2

= A1 + A2 − (µ1 + µ2)G = A+ − (µ1 + µ2)G

and for multipication,

[A1 − µ1G||A2 − µ2G]

[
G−(A2)
µ1I

]
︸ ︷︷ ︸

H×,µ1,µ2

= A1G
−(A2)− µ1µ2G = A× − µ1µ2G

By composition, we get that

[A1 − µ1G||A2 − µ2G|| . . . ||A` − µ`G] Hf,~µ = Af − f(~µ)G

where Hf,µ is a matrix with small entries (roughly proportional to mO(d) where d is the circuit
depth of f).

An Advanced Note: Given arbitrary matrices Ai and Af , there exists such a small matrix H;
but if Af is arbitrary, it is hard to find.

12

Let’s re-derive FHE from the key equation:

• The ciphertexts are the matrices Ai and we picked them such that

sTA ≈ µsTG

• Homomorphic evaluation is computing Af starting from A1, . . . ,A`.

• Correctness of homomorphic eval follows from the key equation: We know that

sT [A1 − µ1G|| . . . ||A` − µ`G] ≈ 0

by the equation above that characterizes ciphertexts. Therefore, by the key equation,

sT [Af − f(~µ)G] = sT [A1 − µ1G|| . . . ||A` − µ`G] Hf,~µ ≈ 0

as well meaning that Af is an encryption of f(~µ). Note that no one needs to know or compute
the matrix H; it only appears in the analysis.

13

7 Fully Homomorphic Signatures

We will use the key equation quickly in succession to derive three applications. The first is fully
homomorphic signatures (FHS). Here is a first take in defining what one might want from an FHS
scheme: a way to take a bunch of messages µ1, . . . , µ` together with their signatures σ1, . . . , σ` that
verify under a public key PK and compute a signature σf of the message f(µ1, . . . , µ`) that verifies
under PK (for any function f).

However, this is meaningless. You could produce signatures for constant functions fα(x) = α
and thereby forge the signature on any message whatsoever.

Rather, what we need from an FHS is that it produces a signature σf that binds the output of
a computation f(~µ) with the computation itself f . Here is the definition:

1. PK, f → PKf .

2. (µ1, σ1), . . . , (µ`, σ`)→ (f(~µ), σf).
// Both the operations above are as expensive as computing f .

3. Verify(PKf , f(~µ), σf) = 1.

4. For any f and any y 6= f(~µ), no PPT adversary can produce a (fake) signature σ′ such that
Verify(PKf , y, σ

′) = 1 (except with negligible probability.)

Why is this useful? An application is (online-offline) verifiable delegation of computation.

14

Here is a basic construction using the key equation.

• PK is B,A1, . . . ,A`. (This scheme can sign ` bits). SK is trapdoor of B.

• Signature σi for a message µi is a short Ri such that BRi = Ai − µiG.
// (Can you see how the signing algorithm works?)

• PKf is Af .

• To homomorphically compute on the signatures, start from the key equation:

[A1 − µ1G|| . . . ||A` − µ`G] Hf,~µ = Af − f(~µ)G

Notice that the way we constructed signatures,

B [R1|| . . . ||R`] Hf,~µ︸ ︷︷ ︸
σf

= Af︸︷︷︸
PKf

−f(~µ)G

σf is thus the homomorphic signature of f(~µ) under PKf .

• Why can’t an adversary cheat? Suppose an adversary produces a signature σ′ that verifies
for the message y 6= f(~µ) w.r.t. PKf . So,

Bσ′ = Af − yG

Subtracting the last two equations, we get

B(σ′ − σf) = (f(~µ)− y)G

So, σ′ − σf is an inhomogenous trapdoor for B, constructing which breaks SIS.

15

8 Attribute-based Encryption

Attribute-based encryption (ABE) generalizes IBE in the following way.

• Setup produces MPK,MSK.

• Enc uses MPK to encrypt a message m relative to attributes (µ1, . . . , µ`) ∈ {0, 1}`.

(In an IBE scheme, ~µ = ID.)

• KeyGen uses MSK to generate a secret key SKf for a given Boolean function f : {0, 1}` →
{0, 1}.

(IBE is the same as ABE where f is restricted to be the point (delta) function fID′(ID) = 1
iff ID = ID′.)

• Dec gets ~µ (attributes are in the clear) and uses SKf to decrypt a ciphertext C if f(~µ) = 1
(true). If f(~µ) = 0, Dec simply outputs ⊥.

16

Here is an ABE scheme (called the BGG+ scheme) using the key equation. It’s best to view
this as a generalization of the Agrawal-Boneh-Boyen IBE scheme.

• KeyGen outputs matrices A,A1, . . . ,A` and a vector v and these form the MPK. The MSK
is the trapdoor for A.

• Enc computes
sT [A||A1 − µ1G|| . . . ||A` − µ`G]

(plus error, of course, and we will consider that understood.) Finally, the message is encrypted
as sTv + e+mbq/2c.

• Let’s see how Dec might work. You (and in fact anyone) can compute

sT [A||A1 − µ1G|| . . . ||A` − µ`G]

[
I 0
0 Hf,~µ

]
= sT [A||Af − f(~µ)G]

using the key equation.

If you had a short r that maps [A||Af −G] to v, that is

[A||Af −G] r = v

you can decrypt and find m. (Can you fill in the blanks?)

17

Two notes:

• The security definition mirrors IBE exactly, and the security proof of this scheme mirrors that
of the ABB IBE scheme that we did in the last lecture. I will leave it to you as an exercise.
The reference is the work of [BGG+14].

• One might wonder if the attributes ~µ need to be revealed. The answer is “NO”, in fact one
can construct an attribute-hiding ABE scheme (also called a predicate encryption scheme).
There are two flavors of security of such a scheme, the weaker one can be realized using
LWE [GVW15] and the stronger one implies indistinguishability obfuscation, a very powerful
cryptographic primitive which we don’t know how to construct from LWE yet. More in the
next lecture.

18

9 Constrained PRF

A constrained PRF is a special type of PRF where the owner of the PRF key K can construct a
special key Kf which enables anyone to compute

∀x s.t. f(x) = 0 : PRF(K,x)

(here, arbitrarily and for convention, we will set 0 to mean true.) The PRF values at all other
values should remain hidden given Kf , the constrained key.

We will only consider single-key CPRFs here, that is the adversary gets to see the constrained
key for a single function f of her choice. Constructing many-key CPRFs from LWE is another one
of my favorite open problems!

More generally, the adversary can get a single constrained key together with oracle access to
the PRF (as usual). Her job is to compute PRF(K,x∗) for some x∗ where (a) f(x∗) = 1 (false) and
(b) she did not make an oracle query on x∗.

19

Here is a construction of a constrained PRF using the key equation. See [BV15] for details and
extensions.

• The scheme has public parameters B0,B1 and A1, . . . ,Ak where k is an upper bound on the
description length of any function f that will be constrained. The PRF key is s.

• To define the PRF, consider the universal function U :

∀f where|f | ≤ k, x ∈ {0, 1}` : U(f, x) = f(x)

The key equation applied to the universal circuit U now tells us that

[A1 − f1G|| . . . ||Ak − fkG||Bx1 − x1G|| . . . ||Bx` − x`G] HU ,f,x

= AU ,x − U(f, x)G

= AU ,x − f(x)G

Here, AU ,x (which we will simply denote as Ax) is a result of the GSW homomorphic
evaluation on the matrices A1, . . . ,Ak,Bx1 , . . . ,Bx` .

• The PRF is defined to be
⌊
sTAx

⌉
on every input x.

Note that the PRF has to be defined independent of which function the key will later be
constrained with. Indeed, this definition of the PRF does not depend on f at all.

20

Here is a construction of a constrained PRF using the key equation. See [BV15] for details and
extensions.

• The scheme has public parameters B0,B1 and A1, . . . ,Ak where k is an upper bound on the
description length of any function f that will be constrained. The PRF key is s.

• To define the PRF, consider the universal function U :

∀f where|f | ≤ k, x ∈ {0, 1}` : U(f, x) = f(x)

The key equation applied to the universal circuit U now tells us that

[A1 − f1G|| . . . ||Ak − fkG||Bx1 − x1G|| . . . ||Bx` − x`G] HU ,f,x

= AU ,x − U(f, x)G

= AU ,x − f(x)G

Here, AU ,x (which we will simply denote as Ax) is a result of the GSW homomorphic
evaluation on the matrices A1, . . . ,Ak,Bx1 , . . . ,Bx` .

• The PRF is defined to be
⌊
sTAx

⌉
on every input x.

• The constrained key for a function f is

sT [A1 − f1G|| . . . ||Ak − fkG||B0||B1 −G]

On input x, the constrained eval proceeds as follows. First you can get

[A1 − f1G|| . . . ||Ak − fkG||Bx1 − x1G|| . . . ||Bx` − x`G]

for any x of your choice. Second, using the key equation, multiplying this on the right by
HU ,f,x:

sT [Ax − f(x)G]

from which one computes
⌊
sTAx

⌉
:= PRF(K,x) if f(x) = 0 (true).

21

Here is a construction of a constrained PRF using the key equation. See [BV15] for details and
extensions.

• The scheme has public parameters B0,B1 and A1, . . . ,Ak where k is an upper bound on the
description length of any function f that will be constrained. The PRF key is s.

• To define the PRF, consider the universal function U :

∀f where|f | ≤ k, x ∈ {0, 1}` : U(f, x) = f(x)

The key equation applied to the universal circuit U now tells us that

[A1 − f1G|| . . . ||Ak − fkG||Bx1 − x1G|| . . . ||Bx` − x`G] HU ,f,x

= AU ,x − U(f, x)G

= AU ,x − f(x)G

Here, AU ,x (which we will simply denote as Ax) is a result of the GSW homomorphic
evaluation on the matrices A1, . . . ,Ak,Bx1 , . . . ,Bx` .

• The PRF is defined to be
⌊
sTAx

⌉
on every input x.

• The constrained key for a function f is

sT [A1 − f1G|| . . . ||Ak − fkG||B0||B1 −G]

On input x, you can compute
sT [Ax − f(x)G]

• For security: suppose an adversary managed to compute

sTAx + e

for some x where f(x) = 1. We can ourselves compute

sT (Ax −G) + e′

using constrained evaluation. Put together, these reveal sTG plus error, and therefore s,
breaking LWE.

22

References

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic en-
cryption, arithmetic circuit ABE and compact garbled circuits. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in
Computer Science, pages 533–556. Springer, 2014.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF. In
Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptography - 12th Theory
of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceed-
ings, Part II, volume 9015 of Lecture Notes in Computer Science, pages 1–30. Springer,
2015.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from LWE. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 503–523. Springer, 2015.

23

	Fully Homomorphic Encryption
	The GSW Scheme
	How to Add and Multiply (without errors)
	How to Add and Multiply (without errors)
	Bootstrapping to an FHE
	The Idea
	Circular Security

	The Key Equation
	Fully Homomorphic Signatures
	Attribute-based Encryption
	Constrained PRF

