
Lattices, Learning with Errors and
Post-Quantum Cryptography

Lecture Notes

1

Contents

Contents 2

1 The Learning with Errors Problem: Introduction and Basic Cryptography 6

1.1 Solving Systems of Linear Equations . 6

1.2 Basic Theorems . 9

1.3 Basic Cryptographic Applications . 9

2 The Learning with Errors Problem: Algorithms 16

2.1 An algebraic Algorithm: Arora-Ge . 16

2.2 A Combinatorial Algorithm: Blum-Kalai-Wasserman 18

2.3 A Geometric (Suite of) Algorithm(s): Lattice Reduction 19

3 Worst-case to Average-case Reduction for SIS 20

3.1 Lattices and Minkowski’s Theorem . 20

3.2 Lattice Smoothing . 21

3.3 Worst-case to Average-case Reduction for SIS . 27

4 Worst-case to Average-case Reduction for LWE 30

4.1 Decision to Search Reduction for LWE . 30

4.2 Bounded Distance Decoding and LWE . 36

4.3 Discrete Gaussians . 37

4.4 From (Worst-case) BDD to (Average-case) LWE . 40

4.5 From (Worst-case) SIVP to (Worst-case) BDD . 41

5 Pseudorandom Functions from Lattices 44

5.1 Pseudorandom Generator from LWE . 44

5.2 GGM Construction . 44

5.3 BLMR13 Construction . 45

5.4 BP14 Construction . 48

6 Trapdoors, Gaussian Sampling and Digital Signatures 50

6.1 Lattice Trapdoors . 50

6.2 Trapdoor Sampling . 51

6.3 Trapdoor Functions . 53

6.4 Digital Signatures . 55

6.5 Discrete Gaussian Sampling . 56

2

7 Identity-Based Encryption and Friends 58
7.1 Identity-based Encryption . 58
7.2 Recap: GPV Signatures . 61
7.3 The Dual Regev Encryption Scheme . 61
7.4 The GPV IBE Scheme . 62
7.5 The CHKP IBE Scheme . 63
7.6 The ABB IBE Scheme . 65
7.7 Application: Chosen Ciphertext Secure Public-key Encryption 66
7.8 Registration-based Encryption . 67

8 Encrypted Computation from Lattices 68
8.1 Fully Homomorphic Encryption . 68
8.2 The GSW Scheme . 69
8.3 How to Add and Multiply (without errors) . 69
8.4 How to Add and Multiply (without errors) . 70
8.5 Bootstrapping to an FHE . 70
8.6 The Key Equation . 71
8.7 Fully Homomorphic Signatures . 74
8.8 Attribute-based Encryption . 75
8.9 Constrained PRF . 76

9 Constrained PRFs and Program Obfuscation 80
9.1 Constrained PRF . 80
9.2 Private Constrained PRFs . 80
9.3 Private Constrained PRF: Construction . 81
9.4 Program Obfuscation and Other Beasts . 85
9.5 Lockable Obfuscation: An Application . 87
9.6 Lockable Obfuscation: Construction . 87

10 Ideal Lattices, Ring-SIS and Ring-LWE 90
10.1 Hash Functions . 90
10.2 The cyclic shift matrix, and the ring Z[x]/(xn − 1) 91
10.3 The ring Z[x]/(xn + 1), ideal lattices, and a secure collision-resistant hash function . 93
10.4 Ring-LWE basics and some properties of Z[x]/(xn + 1) 98
10.5 Search to decision . 101
10.6 The worst-case to average-case reduction . 104
10.7 NTRU . 108

11 Quantum Computing and Lattices 110
11.1 A Quantum Computing Primer . 110
11.2 Dihedral Hidden Subgroup Problem and LWE . 112

Bibliography 120

3

Preface

These notes are based on lectures in the course CS294: Lattices, Learning with Errors and Post-
Quantum Cryptography at UC Berkeley in Spring 2020.

4

CHAPTER 1
The Learning with Errors Problem:

Introduction and Basic Cryptography

The learning with errors (LWE) problem was introduced in its current form in a seminal work of
Oded Regev for which he won the Gödel prize in 2018. In its typical form, the LWE problem asks
to solve a system of noisy linear equations. That is, it asks to find s ∈ Znq given{

(ai, 〈ai, s〉+ ei) : s← Znq ,ai ← Znq , ei ← χ
}m
i=1

(1.1)

where:

• Zq = Z/qZ denotes the finite ring of integers modulo q, Znq denotes the vector space of
dimension n over Zq;

• χ is a probability distribution over Z which typically outputs “small” numbers, an example
being the uniform distribution over an interval [−B, . . . , B] where B � q/2; and

• a ← D denotes that a is chosen according to the finite probability distribution D, a ← S
denotes that a is chosen uniformly at random from the (finite) set S.

In this first lecture, we will present various perspectives on the LWE (and the closely related “short
integer solutions” or SIS) problem, basic theorems regarding the different variants of these problems
and their basic cryptographic applications.

We will shortly derive LWE in a different way, “from first principles”, starting from a different
view, that of finding special solutions to systems of linear equations.

1.1 Solving Systems of Linear Equations

Consider the problem of solving a system of linear equations

Ae = b mod q (1.2)

given A ∈ Zn×mq and b ∈ Znq . This can be accomplished in polynomial time with Gaussian
elimination. However, slight variations of this problem become hard for Gaussian elimination and

6

indeed, we believe, for all polynomial-time algorithms. This course is concerned with two such
problems, very related to each other, called the SIS problem and the LWE problem.

The “Total” Regime and SIS

Assume that we now ask for solutions to equation 1.2 where e lies in some subset S ⊆ Zmq . Typically
we will think of subsets S that are defined geometrically, for example:

• S = {0, 1}, which is the classical subset sum problem modulo q. More generally, S =
[−B . . . B]m is the set of all solutions where each coordinate can only take a bounded value
(absolute value bounded by some number B � q/2). This will be the primary setting of
interest.

• S = Ball2R, the Euclidean ball of (small) radius R.

In all cases, we are asking for short solutions to systems of linear equations and hence this is called
the SIS (short integer solutions) problem.

The SIS problem SIS(n,m, q,B) as we will study is parameterized by the number of variables
m, the number of equations n, the ambient finite field Zq, and the bound on the absolute value of
the solutions B. Namely, we require that each coordinate ei ∈ [−B,−B + 1, . . . , B − 1, B].

To define an average-case problem, we need to specify the probability distributions for A and
b. We will, for the most part of this course, take A to be uniformly random in Zn×mq . There are
two distinct ways to define b. The first is in the “total” regime where we simply choose b from the
uniform distribution over Znq .

What does “total” mean? Total problems in NP are ones for which each problem instance has
a solution that can be verified given a witness, but the solution may be hard to find. An example
is the factoring problem where you are given a positive integer N and you are asked for its prime
factorization. A non-example is the 3-coloring problem where you are given a graph G and you
are asked for a 3-coloring; although this problem is in NP, it is not total as not every graph is
3-colorable.

Totality of SIS on the Average. Here, using a simple probabilistic argument, one can show
that (B-bounded) solutions are very likely to exist if (2B + 1)m � qn, or m = Ω(n log q

logB). We call
this regime of parameters the total regime or the SIS regime. Thus, roughly speaking, in the SIS
regime, m is large enough that we are guaranteed solutions (even exponentially many of them)
when A and b are chosen to be uniformly random. The problem then is to actually find a solution.

A Variant: homogenous SIS. The homogenous version of SIS asks for a non-zero solution to
equation 1.1 with the right hand side being 0, that is, Ae = 0 (mod q). This variant is worst-case
total as long as (B + 1)m > qn. That is, for every instance A is guaranteed to have a solution. We
leave the proof to the reader (Hint: Pigeonhole). SIS and hSIS are equivalent on the average-case.
We again leave the simple proof to the reader.

The Planted Regime and LWE

When m � n log q
logB , one can show again that there are likely to be no B-bounded solutions for a

uniformly random b and thus, we have to find a different, sensible, way to state this problem. To

7

do this, we first pick a B-bounded vector e and compute b as Ae mod q. In a sense, we plant the
solution e inside b. The goal now is to recover e (which is very likely to be unique) given A and
b. We call this the planted regime or the LWE regime.

But why is this LWE when it looks so different from Equation 1.1?

This is because the SIS problem in the planted regime is simply LWE in disguise. For, given

an LWE instance (A,yT = sTA + eT), let A⊥ ∈ Z(m−n)×m
q be a full-rank set of vectors in the

right-kernel of A. That is,

A⊥ ·At = 0 mod q

Then,

b := A⊥ · y = A⊥ · (Ats + e) = A⊥ · e mod q

so (A⊥,b) is an SIS instance SIS(m− n,m, q,B) whose solution is the LWE error vector. Further-
more, this is in the planted regime since one can show with an easy probabilistic argument that
the LWE error vector e is unique given (A,y).

The reader should also notice that we can run the reduction in reverse, creating an LWE
instance from a SIS instance. If the SIS instance is in the planted regime, this (reverse) reduction
will produce an LWE instance.

In summary, the only difference between the SIS and the LWE problems is whether they live
in the total world or the planted world, respectively. But the world you live in may make a
big difference. Algorithmically, so far, we don’t see a difference. In cryptography, SIS gives us
applications in “minicrypt” (such as one-way functions) whereas we need LWE for applications in
“cryptomania” and beyond (such as public-key encryption and fully homomorphic encryption).

Decision vs. Search for LWE. In the decisional version of LWE, the problem is to distinguish
between (A,yT := sTA + eT mod q) and a uniformly random distribution. One can show, through
a reduction that runs in poly(q) time, that the two problems are equivalent. The interesting
direction is to show that if there is a poly-time algorithm that solves the decision-LWE problem
for a uniformly random matrix A, then there is a poly-time algorithm that solves the search LWE
problem for a (possibly different and possibly larger) uniformly random matrix A′. We will see a
search to decision reduction later in class.

Reductions Between SIS and LWE

SIS is at least as hard as LWE. We wish to show that if you have a solution for SIS w.r.t.
A, then it is immediate to solve decision-LWE w.r.t. A. Indeed, given a SIS solution e such that
Ae = 0 (mod q), and a vector bT , compute bTe (mod q). If b is an LWE instance, then

bTe = (sTA + xT)e = xTe (mod q)

which is a “small” number (as long as xT is small enough). On the other hand, if b is random,
then this quantity is uniformly random mod q (in particular, with a non-negligible probability, not
small). This gives us a distinguisher.

LWE is (quantumly) at least as hard as SIS. This turns out to be true, as we will see later
in the course.

8

SIS, LWE and Lattice Problems

SIS and LWE are closely related to lattices and lattice problems. We will have much to say about
this connection, in later lectures.

1.2 Basic Theorems

We start with some basic structural theorems on LWE and SIS.

Normal Form SIS and Short-Secret LWE

The normal form for SIS is where the matrix A is systematic, that is of the form A = [A′||I] where

A′ ∈ Zn×(m−n)
q .

Lemma 1. Normal-form SIS is as hard as SIS.

Proof. To reduce from normal-form SIS to SIS, simply multiply the input to normal-form SIS
(nfSIS), denoted [A′||I], on the left by a random matrix B← Zn×nq . We will leave it to the reader
to verify that the resulting matrix denoted A := B[A′||I] is uniformly random. Furthermore, a
solution to SIS on input (A,Bb′) gives us a solution to nfSIS on input (A′,b′).

In the other direction, to reduce from SIS to normal-form SIS, write A as [A′||B] and gener-
ate [B−1A′||I] as the normal-form SIS instance. Again, a solution to the normal form instance
(B−1A′,B−1b) gives us a solution to SIS on input (A,b).

The corresponding version of LWE is called short-secret LWE where both the entries of s and
that of e are chosen from the error distribution χ. The proof of the following lemma follows along
the lines of that for normal form SIS and is left as an exercise. (Indeed, a careful reader will observe
that short-secret LWE is nothing but normal-form SIS in disguise.)

Lemma 2. There is a polynomial-time reduction from ssLWE(n,m, q, χ) to LWE(n,m, q, χ) and
one from LWE(n,m, q, χ) to ssLWE(n,m+ n, q, χ).

We will continue to see more structural theorems about LWE through the course, but this
suffices for now.

1.3 Basic Cryptographic Applications

Collision-Resistant Hashing

A collision resistant hashing scheme H consists of an ensemble of hash functions {Hn}n∈N where
each Hn consists of a collection of functions that map n bits to m < n bits. So, each hash function
compresses its input, and by pigeonhole principle, it has collisions. That is, inputs x 6= y such that
h(x) = h(y). Collision-resistance requires that every p.p.t. adversary who gets a hash function
h← Hn chosen at random fails to find a collision except with negligible probability.

9

Collision-Resistant Hashing from SIS. Here is a hash familyHn that is secure under SIS(n,m, q,B)
where n log q > m log(B + 1). Each hash function hA is parameterized by a matrix A ∈ Zn×mq ,
takes as input e ∈ [0, . . . , B]m and outputs

hA(e) = Ae mod q

A collision gives us e, e′ ∈ [0, . . . , B]m where Ae = Ae′ mod q which in turn says that A(e− e′) =
0 mod q. Since each entry of e− e′ is in [−B, . . . , B], this gives us a solution to SIS(n,m, q,B).

Private-Key Encryption

A private-key encryption scheme has three algorithms: a probabilistic key generation Gen which,
on input a security parameter λ, generates a private key sk; a probabilistic encryption algorithm
Enc which, on input sk and a message m chosen from a message space M, generates a ciphertext
c; and a deterministic decryption algorithm Dec which, on input sk and the ciphertext c, outputs
a message m′.

Correctness requires that for every sk generated by Gen and every m ∈M,

Dec(sk,Enc(sk,m)) = m

The notion of security for private-key encryption is semantic security or equivalently, CPA-security,
as defined in the Pass-Shelat lecture notes (see References at the end of the notes.) In a nutshell,
this says that no probabilistic polynomial time (p.p.t.) adversary which gets oracle access to either
the Left oracle or the Right oracle can distinguish between the two. Here, the Left (resp. the Right)
oracle take as input a pair of messages (mL,mR) ∈ M2 and outputs an encryption of mL (resp.
mR).

Private-Key Encryption from LWE.

• Gen(1λ): Compute n = n(λ), q = q(λ) and χ = χ(λ) in a way we will describe later in this
lecture. Let the private key sk be a uniformly random vector

sk := s← Znq .

• Enc(sk,m): We will work with the message space M := {0, 1}. Larger message spaces can
be handled by encrypting each bit of the message independently. The ciphertext is

c := (a, b) := (a, sTa + e+mbq/2e mod q)

where a← Znq and e← χ is chosen from the LWE error distribution.

• Dec(sk, c = (a, b)): Output 0 if ∣∣b− sTa mod q
∣∣ < q/4

and 1 otherwise.

Lemma 3. The scheme above is correct if the support of the error distribution Supp(χ) ⊆ (−q/4, q/4)
and CPA-secure under the LWE assumption LWE(n,m = poly(n), q, χ).

10

Correctness and security are immediate and left as an exercise to the reader.

We left the issue of how to pick n, q and χ open, and indeed, they need to be chosen appropriately
for the scheme to be secure. Correctness and security give us constraints on these parameters
(see Lemma 3 above), but do not tell us how to completely specify them. To fully specify the
parameters, we need to ensure security against attackers “running in 2λ time” (this is the meaning
of the security parameter λ that we will use throughout this course) and to do that, we need to
evaluate the efficacy of various attacks on LWE which we will do (at least, asymptotically) in the
next lecture.

Open Problem 1.1. Construct a nice private-key encryption scheme from the hardness of SIS.

Note that SIS implies a one-way function directly. Together with generic transformations
in cryptography from one-way functions to pseudorandom generators (H̊astad-Impagliazzo-Levin-
Luby) and from pseudorandom generators to pseudorandom functions (Goldreich-Goldwasser-Micali)
and from pseudorandom functions to private-key encryption (easy/folklore), this is possible. The
problem is to avoid the ugliness that results from using these general transformations.

Public-Key Encryption

A public-key encryption scheme is the same as private-key encryption except for two changes: first,
the key generation algorithm Gen outputs a public key pk as well as a private key sk; and second,
the encryption algorithm requires only the public key pk to encrypt. Security requires that a p.p.t.
adversary which is given pk (and thus can encrypt as many messages as it wants on its own) cannot
distinguish between an encryption of any two messages m0,m1 ∈M of its choice.

Public-Key Encryption from LWE (the LPR Scheme) There are many ways of doing this;
we will present the cleanest one due to Lyubashevsky-Peikert-Regev.

• Gen(1λ): Compute n = n(λ), q = q(λ) and χ = χ(λ) in a way we will describe later in this lec-
ture. Let the private key sk be a random vector sk := s← χn is chosen from the error distribution
and the public key is

pk := (A,yT := sTA + eT) ∈ Zn×nq × Znq
where A is a uniformly random n-by-n matrix and e← χn is chosen from the error distribu-
tion.

• Enc(sk,m): We will work with the message space M := {0, 1} as above. The ciphertext is

c := (a, b) := (Ar + x,yT r + x′ +mbq/2e mod q)

where r,x← χn and x′ ← χ are chosen from the LWE error distribution.

• Dec(sk, c = (a, b)): Output 0 if ∣∣b− sTa mod q
∣∣ < q/4

and 1 otherwise.

11

Lemma 4. The scheme above is correct if Supp(χ) ⊆ (−
√
q/4(2n+ 1),

√
q/4(2n+ 1)) and CPA-

secure under the LWE assumption LWE(n,m = 2(n+ 1), q, χ).

Proof. For correctness, note that the decryption algorithm computes

b− sTa mod q = sTx + eT r + x′

whose absolute value, as long as Supp(χ) ⊆ (−
√
q/4(2n+ 1),

√
q/4(2n+ 1)) is at most

q/4(2n+ 1) · (2n+ 1) = q/4 .

For security, we proceed by the following sequence of hybrid experiments.

Hybrid 0.m. The adversary gets pk and Enc(pk,m) where m ∈ {0, 1}.

Hybrid 1.m. Feed the adveresary with a “fake” public key p̃k computed as

p̃k = (A,y)← Zn×nq × Znq

and Enc(p̃k,m). This is indistinguishable from Hybrid 0 by the hardness of ssLWE(n, n, q, χ) and
therefore, by Lemma 2, LWE(n, 2n, q, χ).

Hybrid 2.m. Feed the adversary with p̃k and Ẽnc(p̃k,m) computed as

Ẽnc(p̃k,m) = (a, b′ +mbq/2e mod q)

where a← Znq is uniformly random. This is indistinguishable from Hybrid 1 by ssLWE(n, n+1, q, χ)
or by Lemma 2, LWE(n, 2n+ 1, q, χ), since the entire ciphertext can easily be rewritten as(

A
yT

)
r +

(
x
x′

)
+

(
0

mbq/2e

)
mod q

which, since y is now uniformly random, is n + 1 ssLWE samples and therefore can be indistin-
guishably replaced by (

a
b′

)
+

(
0

mbq/2e

)
mod q

where a← Znq and b′ ← Zq.

Hybrid 3.m. Feed the adversary with uniformly random numbers from the appropriate domains.
Follows from the previous expression for the fake ciphertext (random + anything = random).

For every m ∈M, Hybrid 0.m is computationally indistinguishable from Hybrid 3.m. Furthermore,
Hybrid 3 is completely independent of m. Therefore, Hybrids 0.0 and 0.1 are computationally
indistinguishable from each other, establishing semantic security or CPA-security.

There are many ways to improve the rate of this encryption scheme, that is, lower the ratio of
(#bits in ciphertext)/(#bits in plaintext) and indeed, even achieve a rate close to 1. We can also
use these techniques as building blocks to construct several other cryptographic systems such as
oblivious transfer protocols. This public-key encryption scheme has its origins in earlier works of
Ajtai and Dwork (1997) and Regev (2004).

12

Public-Key Encryption from LWE (the Regev Scheme) We present a second public-key
encryption scheme due to Regev. We will only provide a sketch of the correctness and security
analysis and leave it as an exercise to the reader. We remark that the security proof relies on a
beautiful lemma called the “leftover hash lemma” (Impagliazzo, Levin and Luby 1990).

• Gen(1λ): Compute n = n(λ), q = q(λ) and χ = χ(λ) in a way we will describe later in this
lecture. Let the private key sk be a random vector sk := s ← Znq is chosen uniformly at
random from Zq and the public key is

pk := (A,yT := sTA + eT) ∈ Zn×nq × Zmq

where A is a uniformly random n-by-m matrix and e ← χn is chosen from the error distri-
bution. Here m = Ω(n log q).

Note the difference from LPR where the secret key had small entries. Note also that the
matrix A is somewhat larger than in LPR.

• Enc(sk,m): We will work with the message space M := {0, 1} as above. The ciphertext is

c := (a, b) := (Ar,yT r +mbq/2e mod q)

where r← {0, 1}m. x′ ← χ is chosen from the LWE error distribution.

Note the difference from LPR where the vector r was chosen from the error distribution and
the first component of the ciphertext had an additive error as well. Roughly speaking, in Regev,
we will argue that the first component is statistically close to random, whereas in LPR, we
argued that it is computationally close to random under the decisional LWE assumption.

• Dec(sk, c = (a, b)): Output 0 if ∣∣b− sTa mod q
∣∣ < q/4

and 1 otherwise.

Decryption recovers mbq/2e plus an error eT r + x′ whose norm should be smaller than q/4
for the correctness of decryption. This is true as long as the support of the error distribution is
Supp(χ) ⊆ (−q/4(m+ 1), q/4(m+ 1)).

In the security proof, we first replace the public key with a uniformly random vector relying on
the LWE assumption. Once this is done, use the leftover hash lemma to argue that the ciphertext
is statistically close to random.

Public-Key Encryption from LWE (the dual Regev Scheme) We present yet another
public-key encryption scheme due to Gentry, Peikert and Vaikuntanathan called the “dual Regev”
scheme. The nice feature of this scheme, which will turn out to be important when we get to
identity-based encryption is that the distribution of the public key is really random. In other words,
any string could be a possible public key in the scheme.

13

• Gen(1λ): Compute n = n(λ), q = q(λ) and χ = χ(λ) in a way we will describe later in this
lecture. Let the private key sk be a random vector sk := r← {0, 1}m is chosen uniformly at
random with 0 or 1 entries and the public key is

pk := (A,a := Ar ∈ Zn×nq × Zmq)

where A is a uniformly random n-by-m matrix. Here m = Ω(n log q).

Note the difference from Regev where the private key here seems to have a component similar
to the first component of a Regev ciphertext. No wonder this is called “dual Regev”.

• Enc(sk,m): We will work with the message space M := {0, 1} as above. The ciphertext is

c := (yT , b) := (sTA + eT , sTa + x′ +mbq/2e mod q)

where s← Znq and eT ← χm. x′ ← χ is chosen from the LWE error distribution.

• Dec(sk, c = (yT , b)): Output 0 if ∣∣b− yT r mod q
∣∣ < q/4

and 1 otherwise.

Open Problem 1.2. Construct a public-key encryption scheme from the hardness of LWE where
the support of the error distribution χ is large, namely [−cq, cq] for some constant c.

LWE with such large errors does imply a one-way function, and therefore, a private-key encryp-
tion scheme. The question therefore asks if there is a gap between the LWE parameters that gives
us public-key vs private-key encryption.

References

The primary reference for the cryptographic definitions in this lecture is lecture notes by Pass and
Shelat, available at this url.

14

https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf

CHAPTER 2
The Learning with Errors Problem:

Algorithms

2.1 An algebraic Algorithm: Arora-Ge

This is an attack due to Arora and Ge. The basic idea is to view an LWE sample (a, b := aT s + e)
where e ∈ S ⊆ Zq as a polynomial equation

fa,b(s) =
∏
x∈S

(b− aT s− x) mod q

where b, a are known and s is treated as the unknown variable (denoted by the underline). Clearly,
if (a, b) is an LWE sample, then fa,b(s) = 0 mod q, else it isn’t. Solving the system of polynomial
equations {

fai,bi(s) = 0 mod q
}m
i=1

of degree |S| will give us the LWE secret.
This is all good except that solving systems of polynomial equations (even degree-2 equations)

is NP-hard. Arora and Ge’s observation is that if there are sufficiently many equations, one can
linearize them and that the solution to the resulting linear system will give us the solution to the
polynomial system w.h.p.

To see how to do this, note that the degree of the polynomials is |S| (that is, the domain

in which the error terms live) and the number of monomials is thus
(n+|S|
|S|
)
. Linearization is

the basic transformation where one substitutes each monomial by a new variable. Furthermore, if
m�

(n+|S|
|S|
)
, we have more equations than variables. To begin with, any solution to the polynomial

system will be a solution to the linearized system; therefore, s is a solution. When m is large enough,
we can also show that s is the unique solution.

Simplified Proof Intuition. For simplicity, think of S as {0, 1} and think of n = 1.
Take each sample (a, b = a · s + e) where e ∈ {0, 1} and a, s ∈ Zq. This gives us a polynomial

equation
(b+ a · u) · (b+ a · u− 1) = 0 mod q

16

https://users.cs.duke.edu/~rongge/LPSN.pdf

Writing it out explicitly, we get

b(b− 1) + (2b− 1)a · u+ a2 · u2 = 0 mod q

Linearizing this involves replacing u and u2 by independent variables u1 and u2 giving us

p(a) = b(b− 1) + (2b− 1)a · u1 + a2 · u2 = 0 mod q (2.1)

It is tempting to argue that there are no (u1, u2) that satisfy this equation w.h.p. over a ← Zq.
Indeed, suppose, there were a solution (u1, u2). Then, viewing this as a degree-2 equation over the
variable a, we see that the probability that p(a) = 0 is at most 2/q by an invocation of Cauchy-
Schwartz. However, that would be a mistake since a is not chosen independently of the coefficents
of p. Indeed, u1 = s and u2 = s2 is a solution to this equation.

Instead, we proceed as follows. Substitute b = as+ e in equation 8.1. We get

p′(a) = e(e− 1) + (2e− 1)(s+ u1) · a+ (u2 + 2su1 + s2) · a2

= (2e− 1)(s+ u1) · a+ (u2 + 2su1 + s2) · a2 = 0 mod q

since e(e − 1) is 0 by definition. (This, by the way, is easily seen to be a linearization of the
polynomial (e+ a · (s+ u)) · (e− 1 + a · (s+ u)).)

Now, we can think of this as a polynomial in a with coefficients chosen independent of a, for
any fixed u1, u2. We argue that there are no solutions with u1 6= −s. Fix a (u1, u2) where u1 6= −s.
Then, p′(a) is a non-zero polynomial in a which is 0 w.p. at most 2/q over the choice of a. A
Chernoff and union bound now finish off the job for us.

For the full proof, see the paper of Arora and Ge.

When χ is the discrete Gaussian distribution. Let’s now see what this does to LWE(n,m, q, χ)
where χ is a Gaussian with standard deviation s. The probability that the error parameter is less
than k · s is e−O(k2).

• We get a reasonable chance that all equations have error bounded by k · s if m · e−O(k2) � 1.

• On the other hand, we need m >
(
n
k·s
)

for linearization to work.

Put together, we get an attack when m ∼ nÕ(s2). This is non-trivial when s = Õ(
√
n) which, by

some (not so?) strange coincidence, defines the boundary of when the worst-case to average-case
reductions (i.e., security proofs) for LWE stop working (as we will see in later lectures).

Open Problem 2.1. In the case of binary LWE (that is, LWE with 0-1 errors), Arora-Ge needs
m = Ω(n2) LWE samples. Come up with a more sample-efficient attack or prove that doing so is
hard. A concrete way to demonstrate the latter would be to show that solving binary error LWE
with o(m2) samples is as hard as solving the lattice (approximate) shortest vector problem.

17

https://users.cs.duke.edu/~rongge/LPSN.pdf

2.2 A Combinatorial Algorithm: Blum-Kalai-Wasserman

This is an attack originally due to Blum, Kalai and Wasserman. A similar version was later
discovered by Wagner.

The basic idea is to find small-weight linear combinations xi,j of the columns of A that sums
up to a fixed vector, say the unit vectors ui, that is Axi,j = ui mod q. Once we find such vectors,
we compute

bTxi,j = (sTA + eT)xi,j = si + eTxi,j mod q

which, with many copies and averaging, gives us si as long as |eTxi,j | � q. Iterating for all i ∈ [n]
gives us s.

In another variant, we find small-norm xi,j such that Axi,j = 2jei mod q. Upon multiplying
with b as before, we get

bTxi,j = (sTA + eT)xi,j = si2
j + eTxi,j mod q

As long as |eTxi,j | � q, this allows us to “decode” si with many fewer copies, essentially O(log q) of
them, using the following decoding algorithm: use si2

blog(q/2)e+ eTxi,j to learn the least significant
bit of si; this is possible as long as the additive error is sufficiently small; subtract the l.s.b., divide
by 2, and repeat.

Back to BKW: The idea of the algorithm is to split the n rows of A into α groups of size β := n/α
each.

• For each column ai of A we put it into one of qβ buckets depending on what ai[1 . . . β] is.

• Notice that the difference of any two vectors, one in bucket labeled w ∈ Zβq and the other in

bucket labeled w − v ∈ Zβq , starts with v in the first β positions.

• This gives us many vectors whose first β locations match the target vector. The goal of
the rest of the algorithm is to continue along this way while generating vectors whose β · i
locations match the target, for i ∈ [1 . . . α].

The result is a linear combination with Hamming weight 2α of the columns of A which sum to
any given target vector. The process needs qβ vectors to begin with, by a balls-and-bins argument.
Assuming the error magnitude is B, we need 2α ·B � q for correctness. That is,

α� log(q/B)

This means the sample and time complexity is roughly

qβ � qn/ log(q/B)

When, say, B = n and q = n2, this gives us a 2O(n)-time algorithm (as opposed to the Bn = nO(n)

that comes out of enumeration).

We remark that a more refined analysis is possible, using the fact that the linear combination
of the columns of A can have entries larger than 1; and that the linear combination does not
necessarily need to add up to 0, but only approximately so; and that the sample complexity can

18

https://arxiv.org/abs/cs/0010022
https://link.springer.com/chapter/10.1007/3-540-45708-9_19

Algorithm (Some) Broken Parameter settings

Arora-Ge m = Ω(nB) samples+time where |Supp(χ)| ≤ B < q

Blum-Kalai-Wasserman m > qn/ log(q/B) samples+time

Lattice Reduction m = poly(n, log q) and q/B = Ω(2n)
and poly(n, log q) time

Figure 2.1: Summary of asymptotic parameter settings where attacks against LWE work.

be lowered by generating new LWE samples out of old ones, at the expense of noise growth. Some
of these ideas are analyzed in Albrecht et al., Kirchner-Fouque and Lyubashevsky.

Although remarkably simple, the BKW idea has found other applications, such as in Kuper-
berg’s sub-exponential time quantum algorithm for the dihedral hidden subgroup problem (Kuper-
berg) which we will see in later lectures and which, in turn, has connections to LWE.

2.3 A Geometric (Suite of) Algorithm(s): Lattice Reduction

This is an attack that follows using the LLL algorithm and (building on LLL) the BKZ algorithm
that find approximately short vectors in integer lattices.

We will here use facts about integer lattices; we refer the reader to Regev’s lecture notes for
background on lattices and lattice algorithms.

The attacks use the fact that LWE is, at its core, a problem of finding short vectors in integer
lattices. Consider the m-dimensional lattices

L := {sTA : s ∈ Znq } ⊕ Znq

and
Ly := {sTA : s ∈ Znq } ⊕ Znq ⊕ {0,y}

where ⊕ denotes the Minkowski sum of sets and (A,y = sTA+eT) is the presumed LWE instance.
Lets look at the case where χ is a B-bounded distribution. We argue that:

• Ly has a short vector, in fact a vector of `2 norm Õ(B) (where Õ hides poly(m) factors) since
e ∈ Ly.

• L does not have any short vectors. The shortest vector of L has `2-norm at least q(m−n)/m =
q ·q−n/m by a probabilistic argument. This also tells us that the second (linearly independent)
shortest vector in Ly has length q · q−n/m.

The LLL algorithm finds a vector of length at most Õ(2m/ logm · B) in polynomial time. As
long as this is smaller than q · q−n/m, LLL will find e. That is, if q/B � qn/m · 2m/ logm, LLL/BKZ
is bad news for us. Optimizing for m, we get m ∼

√
n log q and thus, the attack succeeds if

q/B � 2
√
n log q. Setting B to be poly(m), we get that the attack works if q � 2n.

For more background on lattices, see lecture notes for Lectures 1–4 in Fall 2015 class on lattices.
We will review some of this background in later lectures.

19

https://eprint.iacr.org/2014/019.pdf
https://arxiv.org/abs/1506.02717
https://pdfs.semanticscholar.org/94d3/70245b0d9435e7f374fbec22ee77372f08d8.pdf
https://arxiv.org/abs/quant-ph/0302112
https://arxiv.org/abs/quant-ph/0302112
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/lll.pdf
https://www.sciencedirect.com/science/article/pii/0304397587900648
https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/
http://people.csail.mit.edu/vinodv/6876-Fall2015/

CHAPTER 3
Worst-case to Average-case Reduction

for SIS

In this lecture, we will see a few basic theorems on lattices and a property called smoothing. We
will then use smoothing as a tool to come up with worst-case to average-case reductions for SIS
and LWE. In a nutshell, the worst-case to average-case reductions show how to transform any
algorithm that solves SIS/LWE on the average into an algorithm that solves “approximate short
vector problems” on lattices in the worst case.

3.1 Lattices and Minkowski’s Theorem

We define the lattice L(B) and its fundamental parallelepiped as follows:

L(B) = BZn and P(B) = B[0, 1)n

As additive groups, P(B) = Rn/L(B). (Think of the one-dimensional analogy: the torus [0, 1) =
R/Z.)

We define the determinant of the lattice as the volume of the fundamental paralellepiped. While
the parallelepiped is itself defined by a basis and is basis-dependent, its volume is a lattice-invariant.
Analytically, the determinant det(L) of full-rank lattices can be computed as the determinant of
the basis matrix B.

We define λ1(L) to be the length of the shortest non-zero vector of the lattice. Alternatively,
and apparently somewhat more convolutedly,

λ1(L) = inf
r∈R

dim(Span(L ∩ B(0, r))) ≥ 1

where B(0, r) denotes the ball of radius r centered at 0. In words, the smallest r such that the
space generated by lattice vectors of length at most r has dimension at least 1. This naturally leads
us to the definition of the i-th minimum λi(L):

λi(L) = inf
r∈R

dim(Span(L ∩ B(0, r))) ≥ i

20

Our intuition tells us that as the determinant of the lattice gets smaller, the lattice gets denser,
and therefore has shorter vectors. Minkowski’s theorems formalize this intuition.

Lemma 5 (Minkowski). For any rank-n lattice L, we have

• λ1(L) ≤
√
n · det(L)1/n; and even stronger,

• det(L) ≤
∏n
i=1 λi(L) ≤ nn/2 · det(L).

Computational Problems. The γ-approximate shortest vector problem (SVP) is to find a non-
zero vector v ∈ L(B) given a basis B such that ||v|| ≤ γ · λ1(L). The γ-approximate shortest
independent vectors problem (SIVP) is to find n linearly indepedent vectors v1, . . . ,vn such that
||vi|| ≤ γ · λn(L).

3.2 Lattice Smoothing

Lattice Duality

For a rank-n lattice L, its dual denoted L∗ is defined as

L∗ = {x ∈ Rn : ∀y ∈ L, 〈x,y〉 ∈ Z}

Indeed, each dual lattice vector x corresponds to a linear function φx : L → Z and the dual lattice
corresponds to a basis of the space of such linear functions.

Let us start with examples and some properties.

• In one dimension, the only possible lattices are kZ. Its dual is (1/k) · Z.

• The dual of Zn is Zn itself.

• If L = L(B) for a basis matrix B ∈ Rn×n, then L∗ is generated by the columns of B−T ,
its transposed inverse. Indeed, the pairwise inner products of the basis vectors and the dual
basis vectors is captured in the matrix B · (B−T)T = I.

The determinant of the dual lattice is immediately seen to be the inverse of the determinant of
the lattice. In an intuitive sense, as the lattice gets sparser (the determinant gets larger), the dual
lattice gets denser (its determinant gets smaller). This leads us to the following lemma.

Lemma 6. For any rank-n lattice L, λ1(L∗) · λ1(L) ≤ n.

Proof. We know from Minkowski that

λ1(L) ≤
√
n(det(L))1/n and λ1(L∗) ≤

√
n(det(L∗))1/n

Multiplying the two, we get

λ1(L) · λ1(L∗) ≤ n

as desired.

21

In fact, using far more advanced tools, we can show something stronger, namely that λ1(L∗) ·
λn(L) ≤ n. The following lemma goes in the other direction, has an elementary proof, and we will
find it useful later on.

Lemma 7. For any rank-n lattice L, λn(L∗) · λ1(L) ≥ 1.

Proof. Let x ∈ L be the shortest non-zero vector. Let v1, . . . ,vn ∈ L∗ be linearly independent. At
least one of the vi has a non-zero inner product with x, say 〈vi,x〉 > 0. Since the inner products
of lattice vectors and dual vectors are integers, 〈vi,x〉 ≥ 1. Therefore,

λ1(L) = ||x|| ≥ 1/||vi|| ≥ 1/λn(L∗) .

Gaussians

The Gaussian function over R with (zero mean and) parameter s is defined as

ρs(x) = e−πx
2/s2

We note that ∫ ∞
−∞

ρs(x)dx =

∫ ∞
−∞

e−πx
2/s2dx =

s√
π

∫ ∞
−∞

e−z
2
dz = s

where the second equality is by a change of variables and the third by using value of the Gaussian
integral (=

√
π). This fact can be used to turn the Gaussian function into a probability distribution

over the reals by scaling ρs by 1/s.

Something very similar can be done in n dimensions. That is, the n-dimensional Gaussian
function over Rn is defined as

ρs(x) = e−π||x||
2/s2

This can again be turned into a probability distribution after scaling by 1/sn.

Basic Fourier Analysis

We call a function f : Rn → C “nice” if it is absolutely integrable, that is,
∫
Rn |f(x)|dx <∞.

Definition 8 (Fourier Transform). For a nice function f : Rn → C, we define its Fourier transform
f̂ : Rn → C as

f̂(y) =

∫
Rn
f(x)e−2πi〈x,y〉dx

If f, f̂ are nice and f is continuous, we can recover a function from its Fourier transform using
the inverse formula:

f(x) =

∫
Rn
f(y)e2πi〈x,y〉dx

Lemma 9 (Fourier Transform of the Gaussian function). Let ρ̂s denote the Fourier transform of
the Gaussian function ρs. Then,

ρ̂s(x) = sn · ρ1/s(x)

22

Proof. We provide a proof in one dimension.

ρ̂s(y) =

∫
Rn
ρs(x)e−2πi〈x,y〉dx

=

∫
Rn
e−π||x||

2/s2e−2πi〈x,y〉dx

= e−πs
2||y||2

∫
Rn
e−π||(x/s+isy)||2dx

The latter integral, on a complex change of variables becomes sn ·
∫
Rn e

−π||z||2dz which is simply
sn. So,

ρ̂s(y) = sne−πs
2||y||2 = sn · ρ1/s(y)

For periodic functions, we have the closely related notion of Fourier series.

Definition 10 (Fourier Series). We will define Fourier series for periodic functions. For a “nice
enough” function f : Rn → C that is L-periodic, that is, f(x+y) = f(x) for all x ∈ Rn and y ∈ L,
we have its Fourier series f̂ : L∗ → C defined as

f̂(y) =
1

det(L)
·
∫
P(L)

f(x)e−2πi〈x,y〉dx

We will state the Fourier inversion formula below without proof.

Lemma 11 (Fourier Inversion). f(x) =
∑

y∈L∗ f̂(y)e2πi〈x,y〉.

An important fact that connects a function f and its Fourier transform is the Poisson Summation
formula. The proof of this formula goes via the Fourier series.

Lemma 12 (Poisson Summation). Given f : Rn → C, and any full-rank lattice L, we have

∑
x∈L

f(x) =
1

det(L)
·
∑
y∈L∗

f̂(y) = det(L∗) ·
∑
y∈L∗

f̂(y)

Proof. Although f is not periodic, the proof of Poisson summation goes through the Fourier series
of a “periodized” f . In particular, consider the function

φ(x) =
∑
z∈L

f(x + z)

23

Clearly φ is periodic over L, therefore φ̂ is defined over L∗. For any y ∈ L∗, we have

φ̂(y) = det(L∗)
∫
x∈P(L)

φ(x)e−2πi〈x,y〉dx

= det(L∗)
∫
x∈P(L)

(∑
z∈L

f(x + z)

)
e−2πi〈x,y〉dx

= det(L∗)
∑
z∈L

∫
x∈P(L)

f(x + z)e−2πi〈x,y〉dx

= det(L∗)
∑
z∈L

∫
x∈P(L)

f(x + z)e−2πi〈x+z,y〉dx

= det(L∗)
∫
x∈Rn

f(x)e−2πi〈x,y〉dx

= det(L∗)f̂(y)

where the first equality used the definition of the Fourier series for φ, the second used the definition
of φ, the third used the “niceness” of f to switch the integral and summation, the fourth used the
fact that 〈y, z〉 ∈ Z, and the final one used the definition of the Fourier transform of f .

Now use Fourier inversion for φ to show that∑
x∈L

f(x) = φ(0) =
∑
y∈L∗

φ̂(y) = det(L∗)
∑
y∈L∗

f̂(y)

Smoothing Lemma and Proof

Let φs denote the distribution obtained by picking a vector from the (continuous) Gaussian distri-
bution defined by ρs and reducing it modulo the parallelepiped P(B). Thus,

φs(x) = 1/sn ·
∑

y∈L(B)

ρs(x + y) := 1/sn · ρs(x + L(B))

Now, since φs is clearly a periodic function over the lattice L(B), we can compute it alternatively
using the Poisson summation formula. For any x ∈ P(B), we have

φs(x) =
∑
y∈L∗

φ̂s(y)e2πi〈x,y〉

= det(L∗) · (1/sn)
∑
y∈L∗

ρ̂s(y)e2πi〈x,y〉

= sn · det(L∗) · (1/sn)
∑
y∈L∗

ρ1/s(y)e2πi〈x,y〉

= det(L∗) ·
(

1 +
∑

y∈L∗\{0}

ρ1/s(y) · e2πi〈y,x〉
)

24

where the first equality is by the definition of Fourier inversion, the second by the definition of φs
and by the linearity of the Fourier transform, the third by the Fourier transform of the Gaussian
function (Lemma 9), and the final one just by grouping terms together.

We will use this formulation to compute the statistical distance of φs from the uniform distri-
bution over the paralellepiped whose density function is UP(B)(x) = 1/ det(L) = det(L∗).

∆(φs, UP(B)) =

∫
P(B)

|φs(x)− UP(B)(x)| dx

= det(L∗)
∫
P(B)

∣∣∣∣ ∑
y∈L∗\{0}

ρ1/s(y) · e2πi〈y,x〉
∣∣∣∣dx

= det(L∗) · det(L) · max
x∈P(B)

∣∣∣∣ ∑
y∈L∗\{0}

ρ1/s(y) · e2πi〈y,x〉
∣∣∣∣

≤
∑

y∈L∗\{0}

ρ1/s(y) := ρ1/s(L∗ \ {0}) (3.1)

In other words, we established ρ1/s(L∗ \{0}) as the quantity that governs the variation (or statisti-
cal) distance between the continuous Gaussian reduced modulo P(B) and the uniform distribution
over P(B). We will now bound this quantity.

Bounding the Gaussian Weight of Non-Zero (Dual) Lattice Vectors. Let us first try to
build some intuition for why we should expect to bound the Gaussian weight ρ1/s(L∗) by something
close to 1. First of all, the heaviest vector is the zero vector that gets a weight of 1. Secondly,
if λ1(L∗) ' (1/s

√
2π) · ω(

√
log n), then the next heaviest vector has weight e−ω(logn) which is

negligible in n. However, there could be exponentially many vectors of that length which could
make the collective contribution much larger. We have to balance these two effects: the fact that a
large λ1 results in the Gaussian weight of each individual non-zero lattice vector to be tiny, versus
the fact that there may be exponentially many lattice vectors of a given length.

First, let us come up with a simple upper bound on the number of lattice vectors of a given
length using a packing argument.

Lemma 13. Let L be a rank-n lattice. The number of lattice vectors of length at most r is at most(
1 + 2r

λ1(L)

)n
.

Proof. Draw balls of radius λ1/2 around each lattice point. These balls do not intersect. As long as
the length of each such lattice point is at most r, these balls are all contained in the ball of radius
r + λ1/2 around the origin. By a volume argument, we have

voln(r +
λ1

2
) ≥ Nr · voln(

λ1

2
)

where Nr is the number of lattice vectors of length at most r. Put together, we get

Nr ≤
voln(r + λ1

2)

voln(λ12)
=

(
r + λ1

2
λ1
2

)n
=

(
1 +

2r

λ1(L)

)n

25

We now use this to bound the sum
∑

y∈L ρs(y). The proof is due to Noah Stephens-Davidowitz.

Lemma 14. Let L be a rank-n lattice.
∑

y∈L ρs(y) = 1 + 2−O(n) as long as λ1 > Cs ·
√
n/2πe for

some absolute constant C ≈ 3.

Proof. Using a “Lebesgue integral trick” (mentioned in class), we have

∑
y∈L

ρs(y) =

∫ 1

0

∣∣∣∣{y ∈ L : ρs(y) ≥ t}
∣∣∣∣dt

=

∫ 1

0

∣∣∣∣{y ∈ L : e−π||y||
2/s2 ≥ t}

∣∣∣∣dt
Now, we do a change of variables t = e−πr

2/s2 , we get:

=
2π

s2

∫ ∞
0

∣∣∣∣{y ∈ L : ||y|| ≤ r}
∣∣∣∣re−πr2/s2dr

≤ 2π

s2
· (
∫ λ1

0
+

∫ ∞
λ1

)

∣∣∣∣{y ∈ L : ||y|| ≤ r}
∣∣∣∣re−πr2/s2dr

≤ (1− e−πλ21/s2) +
2π

s2

∫ ∞
λ1

∣∣∣∣{y ∈ L : ||y|| ≤ r}
∣∣∣∣re−πr2/s2dr

≤ 1 +
2π

s2

∫ ∞
λ1

(
3r

λ1

)n
re−πr

2/s2dr

≤ 1 +
2πCn

s2λn1

∫ ∞
λ1

rn+1e−πr
2/s2dr

where C = 3. After another change of variables (w = πr2/s2), we can bound this by

1 +

(
sC

λ1
√
π

)n
Γ(n/2)

where Γ(·) is the gamma function. Applying the bound on gamma functions, we get

1 +

(
sC

λ1

√
n

2πe

)n
As long as λ1 > Cs ·

√
n/2πe, we get a sum that is exponentially close to 1.

Finally, applying this to our scenario, where the lattice is L∗ and the function is ρ1/s, we get
that the sum

∑
y∈L∗ ρ1/s(y) is exponentially close to 1 as long as

s ≥ λn(L) · C ·
√

n

2πe

Indeed, if s is so large, we have λ1(L∗) ≥ 1/λn(L) ≥ C
s ·
√

n
2πe where the first inequality is by

Lemma 7.

26

3.3 Worst-case to Average-case Reduction for SIS

The reduction is due to Ajtai originally, but our presentation follows the work of Micciancio and
Regev, and borrows from Regev’s lecture notes.

We first illustrate the intuition behind the worst-case to average-case reduction by showing how
to reduce the approximate-SIVP problem to a variant of SIS over the torus T = R/Z, SIST. SIST is
exactly as in SIS, except that you are given a matrix A ∈ Tn×m and you are asked to find a small
integer linear combination that sums to zero. That is, find x ∈ Zm such that Ax = 0 and ||x|| is
“small”.

How would such a reduction look like? On the one hand, the reduction has to generate a
uniformly random SIST instance from a given lattice L; therefore, the SIS instance “forgets” the
lattice L that was used to generate it. On the other hand, a solution to the SIS instance has
to somehow be mapped back to a non-trivially short vector in L. This (apparent) conundrum is
common to all worst-case to average-case reductions, and the answer is that the reduction knows
some information connecting the lattice to the SIS instance which, together with the SIS solution,
helps it generate short vectors in L.

The reduction first generates a random vector v ∈ P(B) in the parallelpiped associated to
the given basis. It does so by sampling a vector x ← ρs from the (zero-centered) Gaussian with
standard deviation parameter s ≥ ηε(L), the smoothing parameter for some negligible function
ε = ε(n), and setting

v = x (mod P(B))

By the smoothing lemma, v is (close to) random over the paraellelepiped. The first column of the
SIS matrix A is then set to

a = B−1v ∈ Tn

which is (close to) random over [0, 1)n. Repeat this process independently m times to generate the
statistically close to uniform SIST matrix A ∈ Tn×m where

A = B−1V

Call the Gaussian matrix corresponding to V as X. The reduction will keep X to itself.
Assume now that there is a SIST algorithm that gives us a non-zero integer vector x ∈ Zm such

that Ax ∈ Zn. (this is what it means for Ax to be 0 (mod 1).) Then we know that B−1Vx ∈ Zn
and therefore, Vx ∈ L(B) is a lattice vector. Now, since X ≡ V (mod P(B)), we know that
Xx ∈ L(B) is also a lattice vector.

We now argue that it is short. We know that ||Xx|| ≈ s||x||
√
n ≈ λn

√
mn. Here, the first

equality is because each column of X is a continuous Gaussian with parameter s and therefore Xx
has parameter s||x|| and therefore length s||x||

√
n w.h.p. The second equality is using the smoothing

lemma, substituting λn for s upto logarithmic factors and
√
m as the norm of x, assuming it is a

0-1 vector.
This seems to work, except that we are uncomfortable working with real numbers. Furthermore,

it is unclear that a “random” matrix A ∈ Tn×m will have an SIS solution at all. We therefore
discretize.

Discretization. Consider splitting each entry into a multiple of 1/q (for some sufficiently large
value of q that we will set shortly) and an error term. That is,

A = Q + E (mod 1)

27

https://dl.acm.org/doi/10.1145/237814.237838
https://cims.nyu.edu/~regev/papers/average.pdf
https://cims.nyu.edu/~regev/papers/average.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/

where qQ ∈ Zn×m and ||E||∞ ≤ 1/2q.

Our first try is to feed the SIS algorithm with the matrix qQ which is uniformly random mod
q. The adversary returns an x such that qQx = 0 (mod q). This gives us

0 = Qx = (A−E)x = B−1(V −BE)x = B−1(X−BE)x (mod 1)

and therefore, (X−BE)x is a lattice vector. We would, in analogy to before, show that these are
short lattice vectors.

||Xx−BEx|| ≤ ||Xx||+ ||BEx|| ≤ s||x||
√
n+
||x||1
q
·max

i
||bi||2

So, this does not give us short vectors, rather it reduces the length of the longest vector in the
basis by a factor of q/||x||1 ≥ q/m (roughly, assuming SIS produces 0-1 vectors). So, as long as
q � m ≈ n log q, we get an improvement. Repeat this iteratively many times to get to roughly
s
√
mn ≈ λn

√
mn ≈ λn · Õ(n).

We are stuck at solving n-approximate SIVP given a solver for SIS. Can we improve this?

Open Problem 3.1. Show a reduction from
√
n-SIVP (or better) to average-case SIS.

In the regime of exponential reductions, we show such reductions in a recent joint work with
Brakerski and Stephens-Davidowitz.

Another question is to improve the values of q for which one can show SIS average-case hard.

Open Problem 3.2. Show a reduction from approximate SIVP to SIS with modulus q = O(1).

Why do we get a non-zero vector, again? There is one important issue that we overlooked.
We showed that the reduction produces a short lattice vector, but why is the vector non-zero?
Relatedly, when the reduction produces many shorter vectors that form a new basis to iterate on,
why do we have the guarantee that we get n linearly independent vectors from the reduction?

We will now show non-zero-ness formally, but here is the intuition: we need to think of the
SIS algorithm as the adversary who is trying to send us a vector x which is somehow cleverly
designed so that (X−BE)x is the zero vector. What does the SIS algorithm see? It possibly sees
V = X (mod P(B)) but (a) it never sees X itself; and (b) given V, there are multiple possible
values of X, which is a consequence of smoothing-type arguments. In other words, the adversary
is trying to force (X − BE)x to be 0, but it does not know what X is. We then argue that
information-theoretically, it cannot succeed.

We omit the formal argument, but refer the reader to Regev’s lecture notes for the full proof.

Other Open Problems

Vinod finds it rather bothersome that Ajtai’s reduction (and essentially every other known reduc-
tion) that demonstrates average-case hardness of SIS starts from the SIVP problem, rather than
the more natural SVP. This motivates the following open problem.

28

https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/

Open Problem 3.3. Show a reduction from worst-case SVP to (average-case) SIS.

In fact, he would ideally like a reduction from worst-case SIS to average-case SIS, bypassing lattices
altogether. Indeed, observe that solving SIS is the same as finding a short vector in a lattice (namely,
the lattice Λ⊥(A) := {x ∈ Zm : Ax = 0 (mod q)}). However, even viewing through these lens,
what we have demonstrated is an algorithm that finds vectors of length related to λn, and not
λ1. That is, if the worst-case SIS lattice has a short vector but no n linearly independent short
vectors, then the reduction will miss finding the short vector (!!) We view this as a deficiency in
our understanding of SIS and worst-case to average-case reductions. Therefore, a related problem
is:

Open Problem 3.4. Show a reduction from worst-case SIS to average-case SIS without going
through lattices.

29

CHAPTER 4
Worst-case to Average-case Reduction

for LWE

In this lecture, we will show a worst-case to average-case reduction for LWE.

4.1 Decision to Search Reduction for LWE

The first step is to come up with a way to reduce the search version of LWE to the decision version
(which is the basis of cryptographic schemes, e.g., the public-key encryption schemes we already
saw in Lecture 1). Later, we will show a reduction from worst-case lattice problems to search LWE,
completing the chain of reductions.

Worst-case vs. Average-case Secret

We start with the simple observation that solving LWE with a worst-case secret s is just as easy as
solving it with a uniformly random secret s. That is, it is easy to re-randomize the secret s. The
key observation is that A is public and that everything here is additive.

Indeed, given an LWE input (A,bTwc := sTwcA + eT) with an arbitrary secret swc, the re-
randomization algorithm (the reduction) computes

bT := bTwc + sTr A

for a uniformly random vector sr ← Znq . Now, note that

bT := (swc + sr)
TA + eT

which is an LWE input with the uniformly random secret s := swc + sr. Clearly, if there is an
algorithm that finds s given (A,b), the reduction can recover swc := s− sr.

A Simple Reduction

We now show a reduction from search LWE to decisional LWE. Before we begin, a few words
about average-case reductions. These are quite tricky to get right. A typical reduction solves a

30

distinguishing problem, such as coming up with an algorithm (typically probabilistic polynomial-
time) that distinguishes between two probability distributions D0 and D1. Such an algorithm is
said to be a (T, ε)-distinguisher if it runs in time T and has a (distinguishing) advantage of ε:

|Pr[x← D0;Dist(x) = 1]− Pr[x← D1;Dist(x) = 1]| ≤ ε

Equivalently,

1/2− ε/2 ≤ Pr[b← {0, 1};x← Db;Dist(x) = b] ≤ 1/2 + ε/2

Theorem 15. If there is a (T, ε)-distinguisher for decisional LWEn,m,q,χ, then there is a time

T ′ = Õ(T · nq/ε2)-time algorithm that solves search LWEn,m′,q,χ with probability 1 − o(1), where

m′ = Õ(nmq/ε2), where Õ(·) hides polylogarithmic factors in n.

Proof. Our approach to solve search LWEn,m′,q,χ will be to “guess” the secret, one coordinate
at a time. Let s1, . . . , sn ∈ Zq denote the coordinates of s, that is, s = (s1, . . . , sn). Consider
the algorithm which, on input (A, sTA + eT), for each i ∈ [m], guesses the ith coordinate of s
as described in Algorithm 1 below. First of all, the algorithm partitions the columns of A into
n · q · Õ(m

ε2
) parts – n for the number of coordinates of s; q for the number of possible guesses for

each coordinate; and the rest is what a single iteration of the guessing algorithm uses.

Algorithm 1 “Guess” the ith coordinate of s

For j = 0, . . . , q − 1:

• Let gi := j.

• For ` = 1, . . . , L = Õ(1/ε2):

– Choose a fresh block of the search LWE challenge, call it (A`,b`).

– Sample a random vector c` ← Zm
q , and let C` ∈ Zn×m

q be the matrix whose i-th row is c`, and
whose other entries are all zero.

– Let A′` := A` + C`, and b′` = b` + gi · c`.
– Run the distinguisher D on input (A′`,b

′
`) and let the output of D be called d`.

• If maj(d1, . . . , dL) = 1 (meaning that the distinguisher guesses “LWE”) then output gi. Else, continue
to the next iteration of the loop.

If a guess gi is correct, i.e. si = gi, then the inputs (A′`,b
′
`) given to D are fresh LWE samples,

since

b′` = b` + si · c` = sTA` + eT` + si · cT` (expanding b`)

= (sTA` + si · cT`) + eT` (rearranging)

= sT (A` + C`) + eT` (by construction of C`)

= sTA′` + eT` . (by definition of A′`)

31

On the other hand, if the guess gi is wrong, i.e. si 6= gi, then the inputs (A′`,b
′
`) given to D are

uniformly random, since

b′` = b` + gi · c` = sTA` + eT` + gi · cT`
= (sTA` + gi · cT`) + eT`

= sTA′` + eT` + (gi − si) · c`,

and the term (gi − si) · c` is random and independent of the rest of the terms since (1) gi − si is
nonzero and we are assuming that q is prime; and (2) c` is random and independent of A′`, s and
e`.

It follows that D will output 1 with probability at least 1/2 + ε, in the case that si = gi. Since
we run D many times, namely L = c log n/ε2 times (for a sufficiently large constant c), it follows
from a Chernoff bound that with probability 1 − 1/n2: if the majority of the outputs d1, . . . , d`
from D are equal to 1, then we are in the case where si = gi, and if not, we are in the case where
si 6= gi.

Hence, by a union bound, with overwhelming probability, namely at least 1− 1/n, Algorithm 1
guesses all coordinates of s correctly. Therefore, applying Algorithm 1 to each coordinate of s will,
with overwhelming probability, correctly output all coordinates s1, . . . , sn of s.

Improvements.

• Sample-preserving reduction of Micciancio and Mol: Achieve m′ ≈ m. The key is to use ideas
from the Goldreich-Levin and Impagliazzo-Naor search to decision reductions which work
with pairwise independence as opposed to full independence as we did.

• Runtime scaling with poly log q: A major problem with the reduction is that the runtime
scales linearly with q, which could make the reduction meaningless for large q ≈ 2n, even
when the LWE problem is likely hard, e.g., when the error has magnitude q/poly(n). We
will sketch a modification of the above reduction which works even when q is large but of a
specific form, e.g., q = 2k is a power of two, or q = q1q2 . . . qk is a product of many small
primes in which case the runtime will scale with maxi qi.

• Direct reduction from worst-case by Peikert, Regev and Stephens-Davidowitz: This is more
relevant in the context of Ring-LWE which we will discuss later in the course.

A Reduction with poly(log q) Runtime

Assume that q = 2k. We show how to make the runtime scale with k rather than 2k. The key idea
(due to Micciancio and Peikert) is to guess each number si ∈ Zq (coordinate of the secret vector s)
bit by bit, rather than make one guess for every possible value of si.

In particular, we will modify the guessing algorithm as follows. Unlike the previous algorithm,
this one will employ the following iterative procedure for each coordinate, to guess each bit of it in
turn, starting from the least significant bit.

• Define distributions D0,D1, . . . ,Dk where Di produces

(a, 〈a, s〉+ e+ r · 2j (mod q))

32

where, as above, q = 2k and r is uniformly random mod q. Note that D0 is uniformly random
and Dk is LWE. Since the decisional LWE adversary can distinguish between D0 and Dk with
a 1/poly(n) advantage, there is a j ∈ [k] such that it distinguishes between Dj−1 and Dj with
advantage at least 1/k · 1/poly(n). Focus on such a j.

• We will now use the distinguisher to learn the LSB of s1 (and analogously, that of all other
si) as follows. Given an LWE sample (a, b), create a sample

(a′, b′) = (a + r · 2j−1 · u1, b)

where u1 is the unit vector with 1 in the first coordinate and 0 elsewhere.

If the LSB of s1 is 0, then this looks like

(a′, b′ = 〈a′, s〉+ e+ r · 2j (mod q))

where a′ and r are uniformly random and independent. On the other hand, if the LSB of s1

is 1, this looks like
(a′, b′ = 〈a′, s〉+ e+ r · 2j−1 (mod q))

where again, a′ and r are uniformly random and independent.

A distinguisher that tells these two apart also helps us determine the LSB of s1 (and analo-
gously, of all the si).

• We now proceed in two steps. First, we observe that this can be used to recover the successive
bits of s, up to a certain point. We first transform the given LWE sample (a, b) so that it
corresponds to a secret whose LSBs are 0. For example, to go from predicting the LSB to the
second least significant bit, we transform (a, b)→ (a, b− 〈a, LSB(s1) · u1〉).
From then on, to recover the k-th least significant bit, we do:

(a′, b′) = (a + r · 2j−k · u1, b)

This ends up being either Dj−1 or Dj depending on whether the k-th LSB of s1 is either 1 or
0 (respectively).

• However, we can only recover up to j LSBs this way. What do we do with the rest? The key
idea is to make sure that j is not too small. To do this, consider the modified distributions
D′j which output

(a, b+ r · 2j + e′ (mod q))

where (a, b) is an LWE sample with noise rate αq and e′ is a fresh Gaussian with noise rate
about αq.

The effect of doing this is that the distributions D′0,D′1, . . . ,D′2j′≈αq are statistically indistin-

guishable. Thus, the j in question for which the distinguisher succeeds in distinguishing D′j−1

and D′j is necessarily larger than j′. This lets us recover j′ LSBs of all the si. The remaining
space has size about q/2j′ ≈ 1/α = poly(n).

To recover this part of the secret, observe the following: if we only had the MSB of the secret
to recover and the error was small enough, we would be done. Indeed, b then is a multiple of

33

Figure 4.1: The Sequence of Reductions from Worst-case BDD/gapSVP to decision LWE for
small modulus.

q/2 plus a small amount of noise. From this, we can recover exactly the multiple of q/2 which
by Gaussian elimination will tell us the MSB of s1. The key is to extend this argument to
recover sufficiently many MSBs, in fact k − j′ of them (everything that we couldn’t recover
by the procedure above).

34

A Better Reduction: A Sketch

We will show how to reduce LWE mod q to LWE mod p� q, with a commensurate noise rate, in
two steps. The (very rough) intuition is that the hardness of LWE (for a fixed n) depends on the
ratio between the noise magnitude and the modulus, and not on the modulus itself. This suggests
that it should be possible to scale q while keeping the noise-to-modulus ratio the same. We will
show a (sketch of a) formal version of this intuition.

We will proceed in steps.

Idea 1. From LWE to binary secret LWE. We will use an idea of Goldwasser, Kalai, Peikert
and Vaikuntanathan [GKPV10]. The rough idea is as follows: look at an LWE input (A, sTA+eT)
where s ∈ {0, 1}n. Suppose A were decomposable into BC where B ∈ Zn×kq and C ∈ Zk×mq are
uniformly random. The reader should think of k ≈ n/ log q = H∞(s), the min-entropy of the vector
s. Then,

sTA + eT = sTBC + eT = (sTB)C + eT

In other words, one can think of this as an LWE input w.r.t. the public matrix C with the secret
being sTB. The key point is that multiplication by B extracts randomness from s and makes
sTB (statistically close to) uniformly random by the leftover hash lemma (LHL). (Clealy, we are
omitting details such as the slack between the min-entropy and the output length that LHL needs,
but they are not very important to this outline.)

In other words, this says that the LWE input with a binary secret s w.r.t. A looks statistically
close to an LWE input with a uniformly random secret s′ := BT s which, in turn, is pseudorandom.
QED.

If this argument did work, it will prove the hardness of LWE where the secret comes from any
distribution with sufficient min-entropy (eg H∞(s)/ log q ≥ λ for some security parameter λ.)

There is a major glitch in this argument, however: a matrix of the type BC has rank at most
k, whereas a random matrix A has rank n ≈ k log q. In other words, they are very distinguishable.

Goldwasser et al. [GKPV10] nevertheless show how to fix this idea in the following way: assume
that A = BC + N where N is an LWE error matrix. Such a matrix is computationally close to
uniform under LWE (with the uniformly random secret matrix B.) Now let’s do the calculation
again.

sTA + eT = sT (BC + N) + eT = (sTB)C + (sTN + eT)

sTB is statistically close to uniform by the argument above. However, the error term is different
and it raises two problems: (1) it potentially leaks information about s, ruining the LHL; and (2)
it makes the error distribution wonky. A cheap way to get around this problem is to ensure
that ||sTN|| is small, say poly(n), for example by ensuring that s is binary and N has poly(n)-
bounded entries, and using the so-called noise flooding trick, setting eT to be a Gaussian with a
superpolynomially larger standard deviation. This ensures that sTN + eT looks statistically like a
fresh Gaussian, independent of sTN. This kills both problems in one shot.

Unfortunately, this means that q has to be larger than the error, ie at least 2ω(logn) and one
has to assume LWE where the noise-to-modulus ratio is 2−ω(logn). This issue has been resolved in
a subsequent work of Brakerski et al. [BLP+13]. Nevertheless, the following question is still open:

35

Open Problem 4.1. For which distributions of the secret s does the LWE assumption hold
(assuming LWE with uniform secrets holds)?

The most recent development along these lines is the very recent work of Dottling and Braker-
ski [BD20]. A more concrete question that, to the best of the instructor’s knowledge, remains open
is the following:

Open Problem 4.2. Does LWE remain hard if the secret vector is a random 0-1 vector with at
most log n ones?

Idea 2. Modulus Reduction. Now, we utilize a technique called “modulus reduction” invented
by Brakerski and Vaikuntanathan [BV11] in the context of fully homomorphic encryption.

The rough idea is as follows: Assume that you are given LWE samples (A,b) with a 0-1 secret
relative to a matrix A mod q. We would like to produce LWE samples modulo p in such a way
that solving LWE mod p gives us a solution mod q. Consider computing(⌊

p

q
A

⌉
,

⌊
p

q
b

⌉)
The matrix A′ := bp/q · Ae is uniformly random mod p (modulo boundary issues which can be
taken care of with some work.) Now,

(p/q)b = (p/q) · (sTA + eT + qzT) = sTA′ + sT {p/qA}+ (p/q)eT + pzT

where z is some integer vector and {·} denotes the fractional part of a number (or each number
in a matrix). This is almost LWE mod p. Let us analyze the error term. (p/q)eT is a Gaussian
with parameter αp if e is Gaussian with paramter αq. Assuming p is quasipolynomially large, one
can use the noise-flooding lemma to “absorb” the error sT {p/qA} which has polynomially bounded
norm. This completes the proof sketch.

We remark that much better versions of this gameplan has been executed successfully by Brakerski,
Langlois, Peikert, Regev and Stehlë [BLP+13]. We refer the reader to their paper for more details.

4.2 Bounded Distance Decoding and LWE

The bounded distance decoding (BDD) problem is a promise variant of the closest vector problem
(CVP) on lattices, where the target point is guaranteed to be so close to the lattice that there is a
unique closest vector. In other words, in the c-BDD problem for a c ∈ [0, 1/2), one is given a basis
B ∈ Zm×m of a lattice L(B) and a target vector t ∈ Zm such that D(t,L(B)) ≤ c · λ1(L(B)), and
the goal is to find the lattice vector that is closest to t.

BDD and LWE are very closely related as the reader may have noticed already. In particular,
LWE can be seen as an average-case version of BDD in the following way. Define the LWE lattice

Λ(A) := {z ∈ Zm : ∃ s ∈ Znq s.t. z = sTA (mod q)}

36

(Note that qZm ⊆ Λ(A) ⊆ Zm.) It is not hard to show that the minimum distance of Λ(A)
for a uniformly random matrix A ∈ Zn×mq is c′q1−n/m with high probability. (We will leave this
calculation as an exercise.)

LWE is then the regime where the secret s (which defines the closest vector) is uniquely deter-
mined given sTA + eT .

4.3 Discrete Gaussians

As we saw in the last lecture, the Gaussian function

ρs(x) := e−π||x||
2/s2

from Rn to R can be turned into a probability distribution over Rn by normalizing with
∫
Rn ρs(x)dx =

sn. Henceforth, we will call this the (n-dimensional) Gaussian distribution Ns. Thus,

Ns(x) =
1

sn
· e−π||x||2/s2

Given a lattice L, we will define the discrete Gaussian distribution DL,s as the probability distri-
bution that assigns the value 0 to all x /∈ L and the values

DL,s(x) =
ρs(x)

ρs(L)

for every x ∈ L. Here, ρs(L) :=
∑

v∈L ρs(v).
The latter definition can be generalized to any discrete set; for example, we will let DL+c,s

denote the discrete Gaussian over the lattice coset L + c = {v + c : v ∈ L} which assigns the
Gaussian mass (normalized appropriately) to each vector in L+ c and 0 to all other vectors.

We will also define off-centered versions of these quantities ρs,c, Ns,c and DL,s,c; for example,

ρs,c(x) := e−π||x−c||
2/s2 , and so on.

When s exceeds the smoothing parameter of the lattice ηε(L), the discrete Gaussian over L
starts having a number of nice regularity properties that make it behave essentially as if it were a
continuous Gaussian distribution. Some examples follow.

Lemma 16. For any c ∈ Rn, and s ≥ ηε(L),

ρs(L+ c) ∈ [1− 2ε, 1 + 2ε] · ρs(L)

Proof. Let c′ denote the shortest vector in the lattice coset L+ c. Then,

ρs(L+ c) = ρs,−c(L)

= det(L∗) · ρ̂s,−c(L∗)

= det(L∗) ·
∑
z∈L∗

ρ̂s,−c(z)

= det(L∗) ·
∑
z∈L∗

e2πi〈c,z〉ρ1/s(z)

= det(L∗) ·
(

1 +
∑

z∈L∗\{0}

e2πi〈c,z〉ρ1/s(z)

)
∈ [1− ε, 1 + ε] · det(L∗)

The claim follows.

37

A direct corollary is the following statement about discrete Gaussians modulo sublattices. It
says that if you choose a vector from a discrete Gaussian over a dense (rank n) lattice L and reduce
it modulo a sparser (also rank n) lattice L′ ⊆ L, you get a uniformly random element of the finite
group L/L′. This will be instantiated later in the lecture where L will be an arbitrary lattice and
L′ = qL will be a scaling of it. Here, L/L′ ∼= Znq .

Lemma 17 (Discrete+Continuous Convolution). Let L be a lattice. Consider the distribution
obtained by sampling a vector v from the discrete Gaussian DL,s and a vector w from the continuous
Gaussian Nr and adding them together, where s, r ≥ ηε(L) ·

√
2 (where ε is a negligible function of

n). Then, the resulting distribution is statistically close to the continuous Gaussian N√r2+s2.

Proof. Consider the distribution Y obtained by adding up the two vectors. Let t =
√
r2 + s2.

Y (x) =
∑
v∈L

Pr
DL,s

[v] · Pr
Nr

[x− v]

=
1

ρs(L) · rn
∑
v∈L

ρs(v) · ρr(x− v)

=
1

ρs(L) · rn
∑
v∈L

e−π||v||
2/s2 · e−π||x−v||2/r2

=
1

ρs(L) · rn
∑
v∈L

e−π
(
||v||2·(t2/r2s2)−2〈x,v〉/r2+||x||2/r2

)

=
e−π||x||

2· 1
r2
·(1− s

2

t2
)

ρs(L) · rn
∑
v∈L

e−π
(
||v||2·(t2/r2s2)−2〈x,v〉/r2+||x||2·(s2/t2r2)

)
=
e−π||x||

2/t2

ρs(L) · rn
∑
v∈L

e−π||v−s
2/t2·x||2/(rs/t)2

=
ρt(x)

tn
· t

n

rn
·
ρrs/t,s2/t2·x(L)

ρs(L)

∈
[
1− ε, 1 + ε

]
· ρt(x)

tn
· t

n

rn
·
ρrs/t(L)

ρs(L)

where we used Lemma 16 on the numerator since rs/t ≥ ηε(L).

By Proposition 18, we have
ρrs/t(L)

ρs(L) ∈ [1− 2ε, 1 + 2ε] · (r/t)n. Put together with the above, we
have

Y (x) ∈
[
1− 3ε, 1 + 3ε

]
·Nt(x)

from which it follows that the statistical distance between the two distributions in question is at
most 3ε.

Proposition 18. Assume that s1, s2 ≥ ηε(L). Then,

ρs1(L)

ρs2(L)
∈ [1− 2ε, 1 + 2ε] ·

(
s1

s2

)n
38

Proof. We have

ρs(L) = det(L∗) · snρ1/s(L∗) ∈ [1− ε, 1 + ε] · sn · det(L∗)

where the first equality uses Poisson summation and the fact that ρ̂s = snρ1/s, and the second the
definition of the smoothing parameter and the fact that s ≥ ηε(L). Thus,

ρs1(L)

ρs2(L)
∈ [1− 2ε, 1 + 2ε] ·

(
s1

s2

)n

Poor Person’s Discrete Gaussian Sampling

For the first step of our reduction in the next section, we need an algorithm to sample from the
discrete Gaussian distribution DL,s given s and some basis B of L. Clearly, this is hard to do if
s < 1/

√
n·maxi ||bi|| as it will then give us a way to make the vectors of B shorter, a computationally

hard problem. However, one can hope that for significantly larger s, this is possible. Indeed,
Gentry, Peikert and Vaikuntanathan [GPV08], following an algorithm of Klein [Kle00], show such
a (polynomial-time) algorithm with s ≥ ω(

√
log n) ·maxi ||bi|| (in fact, something slightly stronger

but it will not matter to us). Their algorithm samples from a distribution that is negligibly close
(in statistical distance) to the discrete Gaussian.

Here, we will make do with something significantly weaker.

We will show a very simple algorithm SimpleDGS that samples from the discrete Gaussian DL,s
where s ≥ 2n · maxi ||bi||. The algorithm simply samples a vector v ← Ns from the continuous
Gaussian distribution with parameter s and “rounds” it modulo the parallelepiped P(B). That is,
output

v′ = Bbvc ∈ L(B)

To show that this is statistically close to DL,s, we calculate the two probabilities:

• Pr[w ∼ DL,s] = c · ρs(w) for some constant normalization factor c.

• Pr[w ∼ SimpleDGS] = c′ ·
∫
x∈P(B) ρs(w + x)dx.

The intuition is that ρs(w + x) is very close to ρs(w) for all the typical vectors, that is, vectors of
length at most s

√
n. Indeed,

ρs(w + x) = ρs(w) · e−π(2〈w,x〉+||x||2)/s2

It suffices to show that |2〈w,x〉 + ||x||2)/s2| is very small. Note that this quantity is at most
(2||w||||x||+ ||x||2)/s2 by Cauchy-Schwartz. Since ||w|| ≈ s

√
n is the length of the typical vectors

(Exercise: Check this!) and s� 2n maxi ||bi|| ≥ 2n||x||, we are done.

A remark to a reader who might be wondering if this algorithm in fact performs better, i.e.,
with a smaller s, and if the large s is merely an artifact of our analysis. To show that it is not, the
reader is recommended to let L = Z and show that for small s, the rounded continuous Gaussian
(our distribution) and the discrete Gaussian over Z are in fact statistically far.

39

Regev’s BDD to LWE Reduction

Input: Lattice basis B ∈ Zn×n, t = Bs + e ∈ Zn.
(For simplicity, we will assume that ||e|| is known.)

Output: LWE instance A ∈ Zn×mq , y ∈ Zmq .

Repeat m times:

I Let q ≥ 22n, where s ≥ q
√

2 · ηε(L∗) and r ≥
√

2 · ||x|| · ηε(L∗).
I Sample a vector vi ← DL∗,s.
I Compute

ai := (B∗)−1vi = BTvi (mod q) and bi := tTvi + e′i (mod q)

where e′i ← Nr.

Run the LWE algorithm on input (A,b) where the columns of A are the ai, and output
what it outputs.

4.4 From (Worst-case) BDD to (Average-case) LWE

We show the reduction from the worst-case bounded distance decoding problem, which we saw was
morally the same as the LWE problem, to the average-case LWE problem.

We will produce LWE samples where the LWE noise are drawn from a continuous Gaussian. It
is easy to discretize it and make the noise comes from the rounded continuous Gaussian distribution.

Claim 19. The vectors ai are statistically close to uniformly random in Znq and independent.

Proof. By inspection, we see that the probability of getting ai is the probability that the discrete
Gaussian DL∗,s lands up in the set qL∗ + B∗ai. This is precisely

ρs(qL∗ + c)∑
c ρs(qL∗ + c)

(4.1)

Since s ≥ qηε(L∗) = ηε(qL∗), we know by Lemma 16 that∑
c

ρs(qL∗ + c) ∈ [1− 2ε, 1 + 2ε] · ρs(qL∗) · qn

and
ρs(qL∗ + c) ∈ [1− 2ε, 1 + 2ε] · ρs(qL∗)

therefore, the ratio in equation 8.1 is in the range 1
qn · [1− 4ε, 1 + 4ε]. Consequently, the statistical

distance is at most 4ε.

Claim 20. bi = sTai + ei and ei is statistically close to a (1-dimensional) continuous Gaussian Nt

where t = ||x|| ·
√

2ηε(L∗).

40

Proof. For the reduction and the proof, we will assume that ||e|| is known. This assumption can
be removed with more care; we refer to [Reg09] for more details.

Start by noting that

bi = tTvi + e′i (mod q)

= (sTBT + eT)B∗ai + e′i (mod q)

= sTBTB−Tai + eTvi + e′i (mod q)

= sTai + ei (mod q)

where the second equality follows from the definition of t := Bs+e and that of ai, and ei := eTvi+e
′
i.

It remains to analyze the distribution of ei.

First, e′i is distributed like eTwi where wi is a continuous Gaussian with parameter
√

2ηε(L∗).
Thus,

e′i = eT (v + w) = eTw′

where w′ is distributed like Ns′ by Lemma 17 with

s′ ≈ q · ||x|| · ηε(L∗) ≤ cqλ1(L)ηε(L∗) ∈ cq · [1,
√
n]

by Banaszczyk’s theorem. In the worst case, if c� 1/
√
n, this gives us an LWE distribution with

meaningfully bounded error.

In summary, the reduction solves 1/
√
n-BDD assuming an LWE solver with a constant factor

noise-to-modulus ratio.

4.5 From (Worst-case) SIVP to (Worst-case) BDD

A Classical Reduction

We now present a classical reduction from gapSVP to BDD due to Peikert [Pei09]. We contrast
this with Regev’s quantum reduction from SIVP to BDD [Reg09].

The advantage of Peikert’s reduction, of course, is that it is classical. However, it is a reduction
from a decision problem (gapSVP) to a search problem (BDD), as opposed to Regev’s quantum
reduction that reduces from search SIVP. For classes of lattices such as ideal lattices, the gapSVP
problem for small factors turns out to be easy making the (analogous) reduction vacuous, so it is
important to find a reduction starting from a search problem. Thus, the following question is wide
open.

Open Problem 4.1. Show a (worst-case) reduction from SIVP (or SVP or CVP) to BDD.

We sketch the idea behind Peikert’s reduction which in turn draws inspiration from a beautiful
coAM protocol for gapSVP due to Goldreich and Goldwasser. Let L be the input lattice with the
promise that λ1(L) ≤ 1 or λ1(L) > γ. Assume that we have access to a c-BDD solver, namely an
algorithm that returns the closest lattice vector given the promise that the target point is within
distance c · λ1(L) from the lattice. The reduction works as follows.

41

• Pick a random lattice point z ∈ L and add a random point e from a ball of radius c · γ.

• Run the BDD solver with input t := z + e.

• If the BDD solver produces a vector z′ = z, output NO (“large λ1”) else output NO (“small
λ1”).

On the one hand, if λ1(L) > γ, then the distance of t from the lattice is at most c · λ1(L) and
thus it satisfies the BDD promise. Consequently, the BDD solver will return z. On the other hand,
if λ1(L) ≤ 1, the (uniform distribution on the) balls centered at z and z + u where ||u|| = λ1(L)
are statistically close, if cγ ≥

√
n. Therefore, a c-BDD algorithm helps us solve

√
n/c-gapSVP.

Putting this together with the worst-case to average-case reduction, we get a O(n)-gapSVP
algorithm given an LWE solver with constant noise-to-modulus ratio.

42

CHAPTER 5
Pseudorandom Functions from

Lattices

Pseudorandom functions (PRF) can in principle be constructed from LWE (and even SIS) com-
pletely generically following the Goldreich-Goldwasser-Micali paradigm that constructs PRFs from
pseudorandom generators and even one-way functions. However, direct constructions often come
equipped with other nice properties such as parallelism, key homomorphism, constrained evalua-
tion, and more.

5.1 Pseudorandom Generator from LWE

The LWE function
GA(s, e) = sTA + eT

is a pseudorandom generator with two caveats:

• It is a family of PRGs indexed by A. A random function chosen from the family is then a
PRG. This is not a big issue usually (except when considering questions related to who picks
the A).

• As-is, the domain seems to be Znq × Zmq and the range is Zmq so the function does not even
seem to expand! However, in reality, the function takes as input a smaller number of random
bits used to sample e, roughly m log(αq) to sample from a Gaussian of standard deviation αq.
When this is done, for sufficiently large m, the function does expand, and is pseudorandom.

5.2 GGM Construction

Goldreich, Goldwasser and Micali show how to construct a pseudorandom function family starting
from any pseudorandom generator. This can well be applied to the LWE PRG described above,
however it results in a rather unwieldy construction. We show below constructions that are much
prettier, and as a side-effect, give us several advantages such as key homomorphism and parallel
evaluation (as we will see today) and constrained evaluation (as we will see in later lectures).

44

5.3 BLMR13 Construction

The Gadget Matrix

We need the gadget matrix which will make its appearance several times in the next few lectures.
In a nutshell, our gadget matrix G is an n ×m matrix (where m ≥ n log q) with the property

that G · {0, 1}m ⊇ Znq . That is, for every vector v ∈ Znq , there is a 0-1 vector w such that Gw = v

(mod q). For example, the matrix G ∈ Z2×6
7 is the following matrix:

G =

[
1 2 4 0 0 0
0 0 0 1 2 4

]

Indeed for every vector v =

[
v1

v2

]
, let v1 = v12v11v10 denote its bit representation (and similarly

for v2). Then,

G



v10

v11

v12

v20

v21

v22

 =

[
v1

v2

]

More generally, let g denote the gadget vector [1 2 4 . . . 2dlog2 qe−1] ∈ Z1×dlog2 qe
q . Then, G = g⊗ In

is the tensor product of g with the n×n identity matrix In. (If m > ndlog qe, pad this with a block
of the zero matrix.)

We will denote the inverse mapping by G−. That is, G−(v) = w if (a) w has 0 or 1 entries;
and (b) Gw = v (mod q). Note that there could be many such w that satify these properties, so
G−1 is best thought of as a multi-valued function.

Flipped LWE: Small A, Random s

We start with the proof that LWE with roles reversed, namely where the entries of A are random
small, and s is random, is as secure as LWE. Note that (a) we showed that “Normal Form LWE”
where A is random and s is random small, is as secure as LWE (in Lecture 1 and lecture 4) and
(b) if both A and s have small entries, the problem is easy, as it is essentially just linear regression,
a convex optimization problem.

Assume that A ← {0, 1}N×m and s ← ZNq are uniformly random. The Flipped LWE problem

asks to distinguish between (A, sTA + eT) from a truly random pair from the same domains. Note
that s is likely not uniquely determined, rather only determined up to small additive error, so if
one wanted to define the search version, it should be done with some care.

Lemma 21. Flipped LWE(N = n log q,m, q, χ) is as hard as LWE(n,m, q, χ).

Proof. We show a reduction from (decisional) LWE to flipped-LWE. Given an LWE sample (A, b =
sTA + e), we rewrite it as

(A, b = (GT s)TG−(A) + e)

pick a random s′ ∈ ZNq and compute b′ = b + s′TG−(A). Pass (G−(A), b′) to the flipped LWE
adversary.

45

First, notice that G−(A) is a uniformly random 0-1 matrix – this is true either when q is close
to a power of two, or by extending the definition of the G matrix by adding more powers of two.

Secondly, notice that

b′ = b+ s′TG−(A) = (GT s + s′)TG−(A) + e

which is exactly a flipped LWE sample when b is an LWE sample and uniformly random otherwise.
This transforms a flipped-LWE distinguisher into an LWE distinguisher.

Construction

Both constructions we show will follow the following general template. The PRF family will be
indexed by a secret seed s ∈ Znq , and a sequence of public matrices A = (A0,A1, . . .). On input

x ∈ {0, 1}`, the function will be defined as

PRFs,A(x) = sTAx + eTx (mod q)

where Ax is defined as some function (depending on the construction) of A and x ∈ {0, 1}`.
The first problem that one encounters with this framework is where does the error eTx , which

is supposed to be different and “pseudo-fresh” for every x, come from? The first trick we will play
is to sidestep this question entirely, and go via the learning with rounding paradigm of Banerjee,
Peikert and Rosen [BPR12]. That is, we will define

PRFs,A(x) = bsTAx + eTx ep (mod p)

where b·ep : Zq → Zp refers to a function that, on input x ∈ Zq outputs the multiple of p that is
closest to it. That is,

bxep =

⌊
p

q
x

⌉
where b·e refers to the function that rounds to the nearest integer.

In the BLMR construction, the public parameters are A := (A0,A1) where both matrices are
drawn at random from Zn×nq and Ax is defined as a subset product. We are now ready to define

the BLMR construction. The construction sets

Ax = G−(Ax1) ·G−(Ax2) . . .G−(Ax`) =
∏̀
i=1

G−(Ai)

and therefore,
PRFs,A0,A1(x) = bsTAxep (mod p)

The only remaining loose end is how to choose p. Intuitively, the larger the p, the less secure
the construction is. Indeed, if p = q, there is no rounding and the PRF is a linear function! The
smaller the p, the less efficient the construction is, in terms of how many pseudorandom bits it
produces per invocation.

Parallelism. The pseudorandom function can be computed in log ` levels of matrix multiplica-
tion, or in the complexity class NC2.

46

(Approximate) Key Homomorphism. The PRF has the attractive feature that PRFs(x) +
PRFs′(x) (where both PRFs use the same two public matrices A0 and A1) is approximately equal
to PRFs+s′(x). This feature has a number of applications such as constructing a distributed PRF
and a (additively) related-key secure PRF.

Proof of Security

We will, for simplicity, prove that the truth table of the PRF is indistinguishable from i.i.d. random
strings using a reduction that runs in time exponential in the input length, namely `. More refined
approaches, following the GGM proof, are possible, but omitted from our exposition.

The proof proceeds in a number of hybrids. Define “intermediate” pseudorandom functions
PRF(i) for i = 0, . . . , ` as follows.

PRF
(i)
s0,...,s2i−1

(x′||x′′) = bsTx′Ax′′ep

where x′ is the i-bit prefix of x = x′||x′′.
Note that PRF(0) is exactly the PRF we defined with s0 = s. On the other hand, PRF(`) is

a random function. The proof goes via a hybrid argument that switches from PRF(0) to PRF(`)

in ` steps. We will now show that each such switch is computationally indistinguishable to the
adversary. For simplicity, we show this for PRF(0) versus PRF(1).

• First, consider

PRF
(0)
s (x1 . . . x`) = bsTAxep = bsTG−(Ax1) ·

∏̀
i=2

G−(Axi)ep

• We first show that this distribution is statistically close to

b(sTG−(Ax1) + ex1) ·
∏̀
i=2

G−(Axi)ep

Indeed, the intuition is that the difference between the distributions is only noticeable when
the addition of ex1 ·

∏`
i=2 G−(Axi) flips over one of the coordinates of the vector sT

∏`
i=1 G−(Axi)

over a multiple of p. First, notice that since
∏`
i=1 G−(Axi) is full-rank w.h.p. and s

is uniformly random, so is sT
∏`
i=1 G−(Axi). The probability of flipping over is at most

N · ||ex1 ·
∏`
i=2 G−(Axi)||∞/(q/p) which is negligible if ||ex1 ||∞ � q/p · 1/N `+1 · 2−ω(log λ).

Assume that p = Ω(q), this is like assuming LWE with noise-to-modulus ratio that is roughly
N `. In turn, this translates to assuming that gapSVP is hard to approximate to within N `,
a factor exponential in the input length of the PRF.

• Next, observe that this is computationally indistinguishable from

sTx1

∏̀
i=2

G−(Axi)

by LWE. Finally, this distribution is precisely PRF(1).

47

5.4 BP14 Construction

The only difference between the BLMR13 and BP14 constructions is in the definition of Ax. Let
x = x1x2 . . . x`. BP14 defines Ax recursively as follows. Aε = Im×m (where ε is the empty string)
and

Abx = G−(Ab ·Ax)

Thus,
Ax = G−(Ax1 ·G−(Ax2 . . .G

−(Ax`)))

This allows us to base security on LWE with slightly superpolynomial noise-to-modulus ratio.
Roughly speaking, we will switch from

bsTGAxep = bsTAx1 ·Ax2...`ep

to
b(sTAx1 + ex1) ·Ax2...`ep

by a statistical argument similar to the above. However, now, the norm of Ax2...` is polynomial in
N , independent of ` which makes the argument considerably more efficient. We still will need the
2−ω(log λ) term for the statistical argument.

Note that this construction loses parallelism.

Open Problem 5.1. Construct an LWE-based pseudorandom function that can be computed in
NC1 and is based on LWE with polynomial modulus.

The computation in NC1 is satisfied by the BLMR construction (and by a construction of
[BPR12] using “synthesizers”), and the polynomial modulus is satisfied by the a direct construction
based on GGM (also in [BPR12]). We refer to [Kim20] for a detailed taxonomy of the existing PRF
constructions as of Feb 2020.

Open Problem 5.2. Come up with a “direct” construction of a SIS-based PRG and PRF.

Of course, SIS gives us a one-way function (as described below) and can be used to construct a
PRG by the result of Hastad-Impagliazzo-Levin-Luby and then a PRF by Goldreich-Goldwasser-
Micali. But the resulting construction is very complex, and in particular, does not have the parallel
evaluation property. A concrete question is to construct a PRF from SIS with parallel evaluation.

Collision-Resistant Hashing

We finish by describing a simple collision-resistant hash function based on SIS.
A collision resistant hashing scheme H consists of an ensemble of hash functions {Hn}n∈N where

each Hn consists of a collection of functions that map n bits to m < n bits. So, each hash function
compresses its input, and by pigeonhole principle, it has collisions. That is, inputs x 6= y such that
h(x) = h(y). Collision-resistance requires that every p.p.t. adversary who gets a hash function
h← Hn chosen at random fails to find a collision except with negligible probability.

48

Collision-Resistant Hashing from SIS. Here is a hash familyHn that is secure under SIS(n,m, q,B)
where n log q > m log(B + 1). Each hash function hA is parameterized by a matrix A ∈ Zn×mq ,
takes as input e ∈ [0, . . . , B]m and outputs

hA(e) = Ae mod q

A collision gives us e, e′ ∈ [0, . . . , B]m where Ae = Ae′ mod q which in turn says that A(e− e′) =
0 mod q. Since each entry of e− e′ is in [−B, . . . , B], this gives us a solution to SIS(n,m, q,B).

49

CHAPTER 6
Trapdoors, Gaussian Sampling and

Digital Signatures

We will work with the `∞ norm throughout these lecture notes; tighter bounds are sometimes
possible with the Euclidean norm but we would like to avoid the complication of computing the
exact factors in favor of simplicity and conceptual clarity.

6.1 Lattice Trapdoors

Recall that

Λ⊥(A) = {z ∈ Zm : Az = 0 (mod q)}

is a rank-m lattice. A lattice trapdoor for a matrix A ∈ Zn×mq is a short basis for the lattice Λ⊥(A).

More generally, a set of short linearly independent vectors in Λ⊥(A) suffices. More explicitly:

Definition 22. A matrix T ∈ Zm×m is a β-good lattice trapdoor for a matrix A ∈ Zn×mq if

1. Each column vector of T is in the (right) mod-q kernel of A, namely, AT = 0 (mod q);

2. Each column vector of T is short, namely for all i ∈ [m], ||ti||∞ ≤ β; and

3. T has rank m over R.

Note that the rank of T over Zq can be no more than m − n; so, at first sight, the first and the
third conditions may appear to be contradictory. However, the fact that we require the real rank
over T to be large is the crucial thing here. This is related to why Λ⊥(A) as a lattice has rank m,
even though as a linear subspace of Zmq has rank only m − n. Another way to look at T is that
each of its columns is a homogenous SIS solution with respect to A.

What good is such a trapdoor? We will demonstrate (in Section 6.3) its usefulness by showing
that it can be used to solve both LWE and (inhomogenous) SIS with respect to A.

50

6.2 Trapdoor Sampling

Leftover Hash Lemma

We will use the following form of the leftover hash lemma.

Lemma 23. Let P be a probability distribution over Zm. The following two distributions have
statistical distance at most ε as long as H∞(P) ≥ n log q + 2 log(1/ε):

(A,Ae (mod q)) ≈ (A,u)

where A ← Zn×mq is uniformly random, e ← X is drawn from the probability distribution P and
u← Znq is uniformly random. Here, H∞(P) refers to the min-entropy of P .

For a proof, we refer the reader to these lecture notes.

Sampling a Random A with a Single Trapdoor Vector

Ajtai in 1996 gave us a procedure to sample a (statistically close to) uniformly random matrix
A ∈ Zn×mq together with a single short vector t ∈ Zm such that At = 0 (mod q). We begin our
journey into trapdoors by describing this simple procedure.

1. Pick a uniformly random matrix A′ ∈ Zn×(m−1)
q .

2. Pick a uniformly random vector t ∈ {0, 1}m−1.

3. Define

A = [A′|| −A′t] and t =

[
t
1

]
as the matrix and trapdoor vector, respectively.

It is clear that t is a short vector in the right-mod-q kernel of A. It remains to show that A is
close to uniformly random, which reduces to showing that A′t is close to uniform given A′. This
follows directly from the leftover hash lemma assuming that m ≥ n log q + λ.

More generally, if we let ||t||∞ ≤ B, then we need m ≥ n log q/ logB + λ.

Ajtai-MP Trapdoor Sampling

Now, one can try to extend the above procedure to sample A together with more and more short
vectors until you reach m (hopefully) linearly independent vectors and then we have a trapdoor!
However, this näıve idea fails to work. Indeed, letting m∗ := n log q+ λ, we can generate a close to

uniform matrix A ∈ Zn×(m∗+`)
q together with ` trapdoor vectors (We leave it as an exercise to the

reader to figure out how.) However, this will never “catch up” as the number of trapdoor vectors
(`) always remains short of the rank (m∗ + `).

We start with the observation that an “inhomogenous trapdoor” (a notion that we will define
in a minute) will let us achieve our goals of solving LWE and SIS just as well. An inhomogenous
trapdoor T ∈ Zm×n log q is a matrix with short columns such that AT = G (mod q) where G is
the gadget matrix that we constructed and used in the last lecture.

51

https://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf

To jog our memory, we defined

g :=
[

1 2 4 . . . 2dlog qe−1
]

and G := I⊗ g

where I is the n× n identity matrix. In other words, G is the block diagonal n× (ndlog qe) matrix
with g in each of its diagonal blocks.

Why does this suffice to solve LWE and SIS? Let’s just do LWE here and leave SIS as an
exercise. Given bT = sTA + eT (mod q), we do

bTT = (sTA + eT)T = sTG + eTT (mod q)

In other words, we just transformed an LWE sample relative to A into an LWE sample relative to
G, with a slight increase in error. Now, if we have a trapdoor (in the sense of Definition ??) for G
(and we will show in a few minutes that we do indeed have such a trapdoor), we can solve LWE!

Trapdoor for G: The case of q = 2k. We invite the reader to think about this a bit before
reading on. Let us first construct a trapdoor Tg ∈ Zdlog qe×dlog qe. We will then see that TG = I⊗Tg.
Indeed,

G ·TG = (I⊗ g) · (I⊗Tg) = I⊗ (gTg) = 0 (mod q)

Here is the trapdoor for g:

Tg =



2
−1 2

−1 . . .
. . .

2
−1 2


Let us check.

• Tg has short columns. Indeed ||Tg||∞ = 2.

• gTg = 0 (mod q).

• The determinant of Tg is q = 2k. Therefore, it has full rank over R. It decidedly does not
have full rank over Zq since its determinant is 0 mod q. (And this had better be the case!)

Trapdoor for G: The general case. As before, let us construct a trapdoor Tg ∈ Zdlog qe×dlog qe.
We will then see that TG = I⊗Tg. Here is the trapdoor for g:

Tg =



2
∣∣

−1 2
∣∣

−1 . . .
∣∣

. . . bits(q)
2

∣∣
−1

∣∣


The only difference is in the last column which is now the bit representation of the modulus q.
Checking that this is indeed a trapdoor for g is left as an exercise. (Hint: for the full rank property,
prove that the determinant of this matrix is q.)

52

Sampling A together with an Inhomogenous Trapdoor. Sample a uniformly random B ∈
Zn×m∗q where m∗ = n log q + λ (as before). Set

A = [B||BR + G] (over Zq)

where R ∈ Zm∗×mq is a uniformly random 0-1 matrix. Notice that

A ·
[
−R
I

]
= G (mod q)

and since ||R||∞ ≤ 1, we have an inhomogenous trapdoor! Furthermore, A is close to random by
leftover hash lemma (as before).

One could directly use the inhomogenous trapdoor to solve LWE and SIS but we will go one
step further and show how to get a trapdoor for A.

Sampling A with a Trapdoor, Finally. First of all, we have

[B||BR + G] ·
[
−R
I

]
= G

Thus,

[B||BR + G] ·
[

I −R
0 I

]
= [B||G]

Finally, multiplying this on the right by

[
I 0

−G−(B) TG

]
, we get

[B||BR + G] ·
[

I −R
0 I

]
·
[

I 0
−G−(B) TG

]
︸ ︷︷ ︸

=TA

= [B||G] ·
[

I 0
−G−(B) TG

]
= 0 (mod q)

Thus, the lattice trapdoor

TA =

[
I + RG−(B) −RTG

−G−(B) TG

]
We already saw that ATA = 0 (mod q). The `∞ norm of TA is O(m). Finally, since TA is a

product of two full-rank matrices, it is full-rank as well. (It has determinant qn.)

6.3 Trapdoor Functions

Definition 24. A family of functions1 Fn = {fi : {0, 1}n → {0, 1}m} for some m = m(n) is
called a trapdoor function family if it comes with the following three associated polynomial-time
algorithms.

• A probabilistic function generation algorithm that, on input 1n, outputs an index i of a func-
tion fi in the family as well as a trapdoor ti.

1To be precise, we should be talking about ensemble of such families one for every input length n. However, we
will refrain from unnecessary notational gymnastics and will take that as understood.

53

• A deterministic evaluation algorithm that, on input i and x ∈ {0, 1}n, outputs y. We need
that y = fi(x).

• A deterministic inversion algorithm that, on input i, ti and y ∈ {0, 1}m, outputs x ∈ {0, 1}n or
a special symbol ⊥. We require that if y ∈ Image(fi), then x is an inverse, namely fi(x) = y.

Injective Trapdoor Function

The function
fA(s, e) = sTA + eT (mod q)

where A ∈ Znq , s ∈ Znq and e ← χm is a one-way family of functions, under LWE. Given the
trapdoor T, one inverts this as follows.

(sTA + eT)T = eTT (mod q)

Now, since the latter quantity has absolute value at most q/4, it is eTT (over the integers). The
mod-q has no effect, and this is the key observation. Now, multiplying the latter by T−1 (the
inverse of T over the reals) recovers e. Here, it is very important that T had full rank over the
reals; otherwise, T−1 would not exist.

Surjective Trapdoor Function

The function
gA(e) = Te (mod q)

where A ∈ Zn×mq where m > n log q and e ∈ [−β, β]m is a one-way family of functions as well,
under SIS, where β = poly(m).

One way to do this is the following. On input v ∈ Znq , find some w ∈ Zmq such that Aw = v
(mod q). Consider outputting

T · {T−1w}
where {x} denotes the fractional part of x ∈ R. Why does this work?

• First of all,

AT · {T−1w} = AT · (T−1w − bT−1wc) = v − 0 = v (mod q)

so we have an inverse.

• Secondly,
||T · {T−1w}||∞ ≤ m · ||T||∞ ≤ m2

This is an instance of Babai’s “rounding algorithm” for the closest vector problem. In class, we
saw yet another way to do this, which is Babai’s nearest plane algorithm.

One could also use the inhomogenous trapdoor to accomplish this. For example, we saw that
it is easy to compute a vector e′ ∈ {0, 1}m∗ such that Ge′ = v (mod q). Now, we claim that[

R
I

]
· e′ is a required inverse. Indeed,

A ·
[

R
I

]
· e′ = G · e′ = v (mod q)

54

6.4 Digital Signatures

Here is a simple digital signature scheme. (For a definition of digital signatures and what we mean
by a secure digital signature, see Rafael Pass and abhi shelat’s book.)

• The key generation algorithm samples a function together with a trapdoor. This would be A
and T. The public key is A and the secret key is T.

• To sign a message m, first map it into the range of the function, e.g., by hashing it. That is,
compute v = H(m). The signature is an inverse of v under the function gA. That is, a short
vector e such that Ae = v (mod q). This is guaranteed by the surjectivity of the function
gA.

• Verification, given a message m, public key A and signature e, consists of checking that
Ae = H(m) (mod q) and that ||e||∞ ≤ m2.

Unforgeability (given no signature queries) reduces to SIS in the random oracle model, i.e., assuming
that H is a random oracle.

However, given signatures on adversarially chosen messages (in fact, even random messages),
this scheme is broken. The key issue is that there are many inverses of H(m), and the particular
inverse computed using a trapdoor T leaks information about T. Collecting this leakage over
sufficiently many (polynomially many) signature queries enables an adversary to find T, allowing
her to forge signatures at will going forward.

This is most easily seen when the inversion procedure for gA uses the inhomogenous trapdoor.
Note that given v, an adversary can compute G−(v) = e′ herself. She now gets a signature

σ =

[
R
I

]
· e′

which gives her one equation on the secret R. Given about m equations, she can solve linear
equations and learn R.

The situation remains essentially as dire even if you use the trapdoor (as opposed to the inho-
mogenous trapdoor). Using rounding vs the nearest plane algorithm does not help either; see the
paper of Nguyen and Regev for robust attacks against this signature scheme. The fundamental
difficulty seems to stem from the fact that the inversion procedure is deterministic!

To mitigate the difficulty, we need a special kind of inverter for gA. The inverter is a “pre-image
sampler”; that is, it is given the trapdoor T and produces a “random” pre-image. More precisely,
we need the following distributions to be statistically close (computational indistinguishabilty is
fine, but we will achieve statistical closeness):(

A← Zn×mq ,e← DZm,s,v := Ae (mod q)

)
≈s (A← Zn×mq , e← PreSamp(A,T,v),v← Znq

)
That is, the following processes produce statistically close outputs: (a) first sample e from a discrete
Gaussian, and deterministically set v to be Ae (mod q); and (b) sample v uniformly and use the
pre-image sampler to produce an inverse of v under gA that is distributed according to the right

55

https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
https://cims.nyu.edu/~regev/papers/gghattack.pdf

conditional distribution. This distribution happens to be the discrete Gaussian over a coset of the
lattice, that is,

Λ⊥v (A) := {e ∈ Zm : Ae = v (mod q)}

In fact, this not quite enough; we need a multi-sample version of this. That is,(
A← Zn×mq ,{ei ← DZm,s,v := Ae (mod q)}poly(λ)

i=1

)
≈s (A← Zn×mq , {e← PreSamp(A,T,v),v← Znq }

poly(λ)
i=1

)
This is quite cumbersome to work with, so we propose an alternate stronger definition. That

is, we require that for most A← Zn×mq and any trapdoor T of length bounded by ` and s� `:(
e← DZm,s,v := Ae (mod q)

)
≈s (e← PreSamp(A,T,v),v← Znq

)
Proof of Security. With the one change that the inverter is replaced by a pre-image sampler,
our signature scheme becomes secure in the random oracle model. We showed the proof in the
class.

6.5 Discrete Gaussian Sampling

Throughout, we will deal with sampling from a zero-centered discrete Gaussian.

Näıve Sampling

Let us first consider sampling from a discrete Gaussian over the simplest possible lattice, namely
the one-dimensional lattice of integers Z. The first idea to sample from the discrete Gaussian DZ,s
is to sample from a continuous Gaussian Ns with parameter s and round to the nearest integer.
Unfortunately, this is not a discrete Gaussian, not even statistically close to it. This is true even if
s is much larger than the smoothing parameter.

Lemma 25. The statistical distance between DZ,s and Round(Ns) is at least 1/s3.

Proof. First, the probability assigned to zero by Round(Ns) is

2

s
·
∫ 1/2

0
e−πx

2/s2dx =
2√
π
·
∫ √π/2s

0
e−t

2
dt =

2√
π
· erf(

√
π/2s) ≥ 2√

π
·
(√

π

2s
− Ω

(√
π

2s

)3)
where the latter is due to a Taylor series approximation of the erf function and holds for a sufficiently
large s. This quantity is at most

1/s− Ω(1/s3)

On the other hand, let’s compute∑
x∈Z

ρs(x) = s ·
∑
x∈Z

ρ1/s(x) = s · (1 + negl(λ))

56

if s is above the negl(λ)-smoothing parameter of Z which is ω(
√

log λ).
Therefore, the probability assigned to zero by DZ,s is

1∑
x∈Z e

−πx2/s2 ≈ 1/s

upto a negligible term.
Thus, the statistical distance between the two distributions in question is Ω(1/s3) which is

non-negligible unless s itself is super-polynomial.

For n-dimensional lattices, this statistical distance degrades with n as well making the situation
much worse.

The reader may recall that the first step of Regev’s worst-case to average-case reduction was
sampling from a discrete Gaussian over a lattice for which Regev used the above procedure. How-
ever, he could afford to use an exponential s which makes the statistical distance small.

Sampling Discrete Gaussians over Z

So, how do we sample from DZ,s for polynomial s? We will show that the general method of
rejection sampling works. Let Z = [−t · s, t · s] be a sufficiently large interval, where t = ω(

√
log λ).

We do the following:

1. Sample a random integer z ← Z.

2. Output z with probability ρs(z) := e−πz
2/s2 ; else go to step 1 and repeat.

First of all, we will show that the probability that DZ,s assigns to numbers outside of the interval
Z is negligible.

Lemma 26. Let s ≥ ηε(Z) for some ε = negl(λ), and t > 0. We have

Pr
x←DZ,s

[|x| > t · s] ≤ c · e−πt2

for some absolute constant c > 0.

Consider the probability distribution D′Z,s which assigns probability ρs(x) for all x ∈ Z ∩Z and
0 otherwise. The lemma above shows that D′Z,s is close to DZ,s if s is larger than the negl(λ)-

smoothing parameter of Z, namely ω(
√

log n), and t = ω(
√

log n).
It is not hard to see that the procedure above samples from the distribution D′Z,s exactly. It

remains to see that it terminates in polynomial time. We show two things which we leave as an
exercise: (a) the probability that z sampled in step 1 lies in [−s, s] is Ω(1/t) and (b) if such a z
is sampled, it is output with probability Ω(1). Put together, the expected time for termination is
O(t) = poly(λ).

Klein-GPV algorithm

We demonstrate the sampler in two dimensions. The generalization to n dimensions follows quite
naturally.

57

CHAPTER 7
Identity-Based Encryption and

Friends

7.1 Identity-based Encryption

Let us think first about deploying a public-key encryption scheme on a large scale. We need a
mechanism to maintain a directory of (ID, PK) pairs where ID is the identifying information of a
person, say Alice’s e-mail address or phone number, that other people use to send her a message.
Then, when you wish to send an email to Alice, you look up her public key in the directory and
encrypt to the public key.

The directory, which forms part of a public-key infrastructure (PKI), has to be authenti-
cated and trusted. For example, an adversary should not be able to insert an entry of the form
(IDA, PK

′
A), where she presumably knows SK ′A, into the directory.

Identity-based encryption (IBE) solves the problem of having to maintain an authenticated
PKI. In an IBE:

• there is a master authority who generates a master public key MPK together with a master
secret key MSK, and publishes the MPK.

• To encrypt a message µ, one needs to know MPK and the identity ID (e.g., the e-mail
address) of the recipient.

• Each user goes to the master authority and receives SKID after authenticating that they
indeed are the owner of ID.

• Using SKID, the user can decrypt ciphertexts encrypted to the identity ID.

Let us now define the syntax of an IBE, formalizing the discussion above.

• Setup(1λ): is a probabilistic algorithm that generates a master public key MPK and a master
secret key MSK.

58

• Enc(MPK, ID, µ): is a probabilistic algorithm that generates a ciphertext C of a message µ
(for simplicity, we will encrypt bits but that is largely irrelevant) w.r.t. identity ID.

• KeyGen(MSK, ID ∈ {0, 1}∗): is a probabilistic algorithm that generates a secret key SKID.

• Dec(SKID, C): is a deterministic decryption algorithm.

You may have noticed that the master authority can decrypt all the ciphertexts generated in
this system and is therefore very powerful.

Application: Access Delegation across Space. I can act as the master authority and use an
IBE to delegate decryption of certain subsets of messages to other people (e.g., my administative
assistant). For example, all messages are tagged with a keyword ID = CS294, and I can issue the
SKID to my assistant that lets him decrypt only those messages tagged with ID.

Application: Access Delegation across Time. Imagine that I go on (virtual) vacation to
Cancun and want to take my laptop. However, I am worried that it will be stolen. So, I ask folks
encrypting messages to me to use an IBE and tag the messages with an ID which is the current
date. This allows me to generate a small set of secret keys, corresponding to the days that I am
away, which allows me to decrypt only the corresponding small subset of messages. IBE lets me
enjoy my vacation worry-free!

Application: Chosen-Ciphertext Security. IBE can be used in surprisingly non-trivial ways
to construct other cryptographic systems, e.g., chosen ciphertext secure public-key encryption
schemes and digital signature schemes (that we will describe later in this lecture).

Constructions. The first constructions used bilinear maps on elliptic curves (Boneh-Franklin’00)
and quadratic residuosity (Cocks’00). We will present the third IBE scheme from LWE (Gentry-
Peikert-Vaikuntanathan’08) and several variants today. Recently, Garg and Dottling have come
up with a completely different scheme that relies on Diffie-Hellman groups (no need for bilinear
maps!) Following up, Brakerski-Lombardi-Segev-Vaikuntanathan came up with a scheme based on
learning parity with very low noise.

Definitions of Security

We imagine a PPT adversary that plays the following game with a challenger. This captures the
requirement that encryptions relative to ID∗ should be secure even to an adversary that can obtain
secret keys for polynomially many different identities ID 6= ID∗. This is called the adaptive security
or full security definition. The weaker selective security definition restricts the adversary to pick
the identity it is attacking at the very beginning of the game (before it receives MPK).

Selectively secure IBE schemes can be generically proven to be fully secure under a sub-
exponentially stronger assumption. Therefore, we will not attempt to optimize the strength of
the assumption and focus on selective security for this lecture.

59

IBE=Signatures+Public-Key Encryption

Moni Naor observed that any IBE scheme gives us for free a digital signature scheme. The intu-
ition is that the identity secret key SKID can act as a signature for the “message” ID.
How so?

• It can be generated using the master secret key MSK (which will serve as the secret signing
key.)

• It can be verified using the master public key MPK – indeed, encrypt a bunch of random
messages using MPK and attempt to use the “signature” to decrypt. If decryption produces
the correct message, accept the signature. Otherwise, reject.

• after receiving signatures SKID on polynomially many messages ID, being able to produce
the “signature” on a different message ID∗ constitutes a signature forgery; but being able to
do that breaks IBE security. Conversely, in a signature scheme derived from a secure IBE
scheme, it should be infeasible to do that.

60

Indeed, turning this around, we will use the GPV signature scheme we saw in the last class as
a starting point to build an IBE scheme.

7.2 Recap: GPV Signatures

• KeyGen(1λ): Generate a random matrix A ∈ Zn×mq and its trapdoor T by running TrapSamp.

• Sign(µ): first compute v = H(µ) ∈ Znq where H is treated as a random oracle in the analysis.
Then, use Gaussian sampling (via the GPV algorithm) to compute a Gaussian solution e ∈ Zm
to the equation

Ae = v (mod q)

Let Λ⊥(A) denote the lattice

{e ∈ Zm : Ae = 0 (mod q)}

and let Λ⊥v (A) denote a coset of Λ⊥(A) indexed by v. That is,

Λ⊥v (A) = {e ∈ Zm : Ae = v (mod q)}

Note that the distribution of e is DΛ⊥v (A),σ where σ ≈ ||T|| · ω(
√

log n). (The ω(
√

log n) is
so that the sampling algorithm can achieve negligible statistical distance from a true discrete
Gaussian.)

• Verify(A, e, µ): check that (1) e is short, that is ||e|| ≤ ||T || ·ω(
√
n log n); and (2) Ae = H(µ)

(mod q).

The key question now is how to we build an encryption algorithm whose public key is v (which
will be treated as H(ID)) and the corresponding private key is e as above. Indeed, we have seen
precisely such a scheme in the first lecture (cf. lecture notes) called the GPV encryption scheme or
more commonly, the dual-Regev encryption scheme.

But before we get there, the scheme as stated above is insecure – do you see why? Bonus points
if you see how to fix it.

7.3 The Dual Regev Encryption Scheme

• KeyGen: the public key is an LWE matrix A ∈ Zn×mq and a random vector v ∈ Znq . The
private key is a short vector e such that Ae = v (mod q).

pk = (A,v) sk = e

• Enc(pk, µ): pick an LWE secret s ∈ Znq and output

(cT1 , c2) :=

(
sTA + xT , sTv + x′ +mbq/2c

)
as the ciphertext. We will call this ciphertext the dual Regev encryption of µ relative to A
and v.

61

• Dec(sk, (cT1 , c2)): Compute
µ̃ := Round(c2 − cT1 e)

where Round(α) outputs 1 if |α− q/2| ≤ q/4 and 0 otherwise.

We will leave the correctness and security as an exercise. (Alternatively, look at lecture 1.)

7.4 The GPV IBE Scheme

• Setup(1λ): Pick the right n = n(λ) for a security level of λ bits. Generate a matrix A ∈ Zn×mq

and its trapdoor T ∈ Zm×m by running the trapdoor sampling algorithm.

(A,T)← TrapSamp(1n)

(The parameters m and q are picked internally by the trapdoor sampling algorithm.) The
master public key is mpk = A and the master secret key is msk = T.

• KeyGen(msk, ID): Compute v := H(ID) ∈ Znq where H : {0, 1}∗ → Znq is a hash function
(which, in the security analysis, will be treated as a random oracle.) Generate a short vector

e← DGSamp(A,T,v)

by running the discrete Gaussian sampling algorithm. Recall that Ae = v (mod q). Output
the secret key skID = e.

• Enc(mpk, ID, µ): Run the dual Regev encryption algorithm with pk := (A,v = H(ID)) and
message µ and output the resulting ciphertext.

• Dec(skID, c): Run the dual Regev decryption algorithm with sk := skID = e.

Proof of (Full) Security

We will come up with alternate algorithms called Setup∗,KeyGen∗ and Enc∗ (Dec∗ will be the
same as Dec) which the challenger will run. Our goal will be to show that (1) the adversary
cannot distinguish between the challenger running Algorithm vs Algorithm∗ and (2) Algorithms∗

do not need the master secret key and moreover, a challenger using Algorithm∗ can use a successful
adversary to break LWE.

A crucial advantage of Algorithm∗ for the GPV scheme is that it can use the programmability
of the random oracle as we will see below. We will for simplicity first create algorithms for the
selective security game.

• Setup∗(ID∗, 1λ): Sample random A∗ which forms the MPK∗ (no need for trapdoor).

• Hash∗(ID): Set H(ID∗) = v∗, a random vector in Znq . For all other IDs, set H(ID) = A∗eID
where eID is chosen from a Gaussian. Remember eID.

• KeyGen∗(ID): We know that ID 6= ID∗. So, we know the eID by construction! This is a
consequence of working in the random oracle model!

• Enc∗(MPK∗, ID∗, µ): return the dual Regev encryption of µ relative to A∗ and v∗.

62

The Algorithm∗ produce the same distribution as the original algorithms. Thus, an adver-
sary will break the challenge ciphertext when interacting with Algorithm∗ just as well as with
Algorithms. By embedding the dual-Regev challenge matrix A as the master public key and the
dual-Regev public key v∗ as the hash of ID∗, we can easily turn the IBE adversary into an attack
against the dual Regev public key encryption scheme.

A Note on Full Security. Since Setup∗ does not know ID∗, it guesses which of the (polynomially
many) hash queries will be for ID∗. (1) any adversary that succeeds has to know H(ID∗) which it
can only find out by making a hash query; and (2) if the guess is correct (happens with probability
1/Q) we can translate an IBE breaker into a dual-Regev breaker just as above.

7.5 The CHKP IBE Scheme

The CHKP Trick: Trapdoor Extension.
Given the trapdoor for a matrix A, can you generate a trapdoor for [A||B] where B is an arbitrary
matrix?

The Scheme

• Setup(1λ): Pick the right n = n(λ) for a security level of λ bits. Generate matrices

A1,0,A1,1, . . . ,A`,0,A`,1 ∈ Zn×mq

where ` is the length of the identities. The master public key is

mpk =
(
Ai,b

)
i∈[`],b∈{0,1},v

where v ∈ Znq is a random vector, and the master secret key is

msk = (TA0 ,TA1)

We will never use the trapdoors for the other matrices (except in the security proof.)

• KeyGen(msk, ID ∈ {0, 1}`): Let

AID := [A1,ID1 ||A2,ID2 || . . . ||A`,ID`]

where ID1, . . . , ID` are the bits of ID. Generate a short vector e← DGSamp(AID,TAID
,v)

by running the discrete Gaussian sampling algorithm. Recall that AID · e = v (mod q).
Output the secret key skID = e.

• Enc(mpk, ID, µ): Run the dual Regev encryption algorithm with pk := (AID,v) and message
µ and output the resulting ciphertext.

• Dec(skID, c): Run the dual Regev decryption algorithm with sk := skID = e.

63

Proof of (Selective) Security

As before, we will come up with alternate algorithms called Setup∗,KeyGen∗ and Enc∗ (Dec∗ will
be the same as Dec) which the challenger will run. We will not be able to use random oracles here.

• Setup∗(ID∗, 1λ): sample random v∗. sample ` random matrices B1, . . . ,B` and set

Ai,ID∗i
= Bi

sample ` matrices B′1, . . . ,B
′
` together with their trapdoors and set

Ai,1−ID∗i = B′i

MPK∗ consists of all the Ai,b and v∗. MSK∗ consists of the trapdoors of all Ai,1−ID∗i .

• KeyGen∗(ID): We know that ID 6= ID∗. Therefore, I know the trapdoor of the matrix

AID := [A1,ID1 || . . . ||A`,ID`]

(do you see why?)

• Enc∗(MPK∗, ID∗, µ): return the dual Regev encryption of µ relative to AID∗ and v∗. (note
that MSK∗ does not tell us anything about a trapdoor for AID∗ .)

One can also prove full security with a more sophisticated proof. In one sentence, the idea is
to set up Ai,b so that Algorithm∗ can generate secret keys for all the Q secret key queries and yet
not be able to generate the secret key for ID∗.

CHKP: Pros and Cons

• PLUS: the scheme is secure without resorting to the random oracle model.

• MINUS: the public parameters are rather large, namely O(nm log q · `) as opposed to GPV
where it is O(nm log q). Consequently, also ciphertexts are large.

• PLUS: While we only showed selective security, one can augment the scheme to be adaptively
(fully) secure.

• PLUS: The scheme naturally extends to a hierarchical IBE scheme, described next.

A Brief Note on Hierarchical IBE

Think of hierarchies in an organization. The CEO (the master key generator) can delegate access
to the VP of Engineering who can in turn delegate to programmers and so forth (but not the other
way round). In a hierarchical IBE, one can generate SKID using MSK; in turn, the owner of
SKID can generate SKID||ID′ etc.

The CHKP scheme has a natural hierarchical structure. Namely, if you know the trapdoor
for AID, you can generate a trapdoor for AID||ID′ = [AID||AID′]. Constructing a HIBE scheme
building off of this idea is left as an exercise.

64

7.6 The ABB IBE Scheme

The ABB Trick: Punctured Trapdoors.
Given the trapdoor for a matrix A0, a matrix R with small entries, and a trapdoor for G, can you
generate a trapdoor for

[A0||A0R + α ·G]

for an arbitrary integer α 6= 0 (mod q)?

How about for α = 0 (mod q), that is, [A0||A0R]?

The Scheme

• Setup(1λ): Pick the right n = n(λ) for a security level of λ bits. Generate matrices

A0,A1 ∈ Zn×mq

The master public key is
mpk = A0,A1,v

where v ∈ Znq is a random vector, and the master secret key is

msk = TA0

We will never use the trapdoor for A1.

• KeyGen(msk, ID ∈ {0, 1}`): Let h be a collision-resistant hash function that maps identities
to Z∗q . Define

AID := [A0||A1 + h(ID) ·G]

where G is the gadget matrix. Note that by trapdoor extension, KeyGen knows a trapdoor
for AID for any ID.

Generate a short vector e← DGSamp(AID,TAID
,v) by running the discrete Gaussian sam-

pling algorithm. Recall that AID · e = v (mod q). Output the secret key skID = e.

• Enc(mpk, ID, µ): Run the dual Regev encryption algorithm with pk := (AID,v) and message
µ and output the resulting ciphertext.

• Dec(skID, c): Run the dual Regev decryption algorithm with sk := skID = e.

ABB: Proof of Selective Security

As before, we will come up with a bunch of alternate algorithms called Setup∗,KeyGen∗ and Enc∗

(Dec∗ will be the same as Dec) which the challenger will run. We will not be able to use random
oracles here either.

• Setup∗(ID∗, 1λ): sample random v∗. sample a random matrix A0 and a matrix R with small
entries. Set

A1 := [A0||A0R− h(ID∗)G]

MPK∗ consists of A0,A1 and v∗. MSK∗ consists of R (and the trapdoor for G.)

65

• KeyGen∗(ID): We know that ID 6= ID∗. Therefore, I know the trapdoor of the matrix

AID := [A0||A1 + h(ID)G] = [A0||A0R + (h(ID)− h(ID∗)G]

(do you see why?)

• Enc∗(MPK∗, ID∗, µ): given a dual Regev encryption of µ relative to A0 and v∗, compute a
dual Regev encryption of µ relative to

AID∗ = [A0||(A0R− h(ID∗)G) + h(ID∗)G] = [A0||A0R]

and v∗. (do you see how to do this?)

ABB: Pros and Cons

• PLUS: the scheme is secure without resorting to the random oracle model.

• PLUS: the public parameters and ciphertexts are as small as GPV, namely O(nm log q).

• PLUS: Can be extended to full security.

• PLUS: Extensible to hierarchical IBE. A different ABB paper uses additional techniques to
construct a “better” HIBE (where the lattice dimension stays the same regardless of the
number of levels of delegation).

7.7 Application: Chosen Ciphertext Secure Public-key
Encryption

We will now show a very simple construction of a chosen ciphertext secure (CCA2-secure) public-
key encryption scheme from IBE. This is due to Canetti, Halevi and Katz [CHK04]. In fact, here
we will describe a solution for the weaker notion of CCA1-security.

But first, the definition of CCA1-security. In the CCA1 game, the adversary gets the public-key
PK of the encryption scheme, and can ask to get polynomially many ciphertexts decrypted. That
is, a challenger will, on input c, run Dec(SK, c) and return the answer to the adversary. Note that
c need not be distributed like an honestly generated ciphertext, and may not even live in the range
of the encryption algorithm (i.e., may not be a valid ciphertext). Eventually, the adversary gets an
encryption of a random bit b under PK and is asked to guess b. CCA1 security requires that no
PPT adversary can guess b with probability better than 1/2 + negl(λ).

Here is the construction.

• KeyGen(1λ): run IBE.Setup(1λ) to get an MPKIBE and an MSKIBE . The public key PK
of the CCA scheme is MPKIBE and the secret key SK is MSKIBE .

• Enc(PK,µ): pick a random string ID. Run IBE.Enc(PK = MPKIBE , ID, µ) and output ID
together with the resulting ciphertext.

• Dec(SK, (ID, c)): use SK = MSKIBE to create SKID and run the IBE decryption algorithm
µ = IBE.Dec(SKID, c).

66

The CCA security proof is super simple. The intuition?

• the decryption algorithm only uses SKID (and not the MSK per se) and

• the identity in the challenge ciphertext is random and hence different w.h.p. from the (ad-
versarially chosen) identities in all the decryption queries.

Put together, IBE security should say that breaking the security of the challenge ciphertext is hard.

7.8 Registration-based Encryption

We will say just a few words about RBE here. Recall from the beginning of the lecture that a
major disadvantage of IBE is the power of the master key authority to decrypt all ciphertexts.

A completely orthogonal approach which does not have this problem starts from the following
strawman scheme: the master public key, curated by the authority, is the concatenation of all
the users’ public keys... Of course, this leads us back to exactly the PKI problem we wanted to
solve. However, it is possible that the authority can publish a short digest of the concatenation of
all public keys, which is nevertheless good enough for encryption (although it should not be clear
exactly how yet!)

It turns out that this idea can be brought to fruition using the methodology of deferred encryp-
tion due to Garg et al. We refer the reader to the papers [GHMR18, GHM+19]. The construction
proceeds in a completely different way from everything we saw today, and is quite inefficient. An
open problem is to come up with an RBE that is as efficient as (or more efficient than!) the IBE
schemes we saw here.

67

CHAPTER 8
Encrypted Computation from Lattices

In this lecture, we will explore various facets of encrypted computation which, generally speaking,
refers to the set of cryptographic tasks where you encrypt computational objects – for example,
a program or a circuit and/or its input – in a way that anyone holding these encrypted objects
can perform meaningful manipulations on them. Examples include (fully) homomorphic encryp-
tion, (various flavors of) attribute-based encryption, (fully) homomorphic signatures, constrained
pseudorandom functions, functional encryption and indistinguishability obfuscation.

We will see constructions of all but the last two in this lecture. Indeed, we will present a single
lattice tool, the key lattice equation, that will give us all these constructions.

8.1 Fully Homomorphic Encryption

In a fully homomorphic (private or public-key) encryption, anyone can take a set of encrypted
messages Enc(x1), . . . ,Enc(xk) and produce an encryption of any polynomial-time computable func-
tion of them, that is, Enc(f(x1, . . . , xk)) where f is any function with a poly(λ)-size circuit. By a
result of Rothblum, any private-key (even additively) homomorphic encryption scheme can be con-
verted to a public-key homomorphic scheme, so we will focus our attention on private-key schemes
henceforth.

The formal definition of the functionality of fully homomorphic encryption follows.

• KeyGen(1λ): produces a secret key sk, possibly together with a public evaluation key ek.

• Enc(sk, µ), where µ ∈ {0, 1}: produces a ciphertext c.

• Dec(sk, c): outputs µ.
// So far, everything is exactly as in a regular secret-key encryption scheme.

• Eval(ek, f, c1, . . . , ck) takes as input a poly(λ)-size circuit that computes a function f : {0, 1}k →
{0, 1}, as well as k ciphertexts c1, . . . , ck, and outputs a ciphertext cf .

Correctness says that

Dec(sk,Eval(ek, f,Enc(sk, µ1), . . . ,Enc(sk, µk))) = f(µ1, . . . , µk)

68

for all f, µ1, . . . , µk with probability 1 over the sk, ek and the randomness of all the algorithms.

Security is just semantic (IND-CPA) security, that is the encryptions of any two sequences of
messages (µi)i∈poly(λ) and (µ′i)i∈poly(λ) are computationally indistinguishable. (the fact that the
encryption scheme is homomorphic is a functionality requirement, and does not change the notion
of security.) (

Enc(sk, µ1), . . . ,Enc(sk, µp(λ))

)
≈c
(
Enc(sk, µ′1), . . . ,Enc(sk, µ′′p(λ))

)
A final and important property is compactness, that is, |cf | = poly(λ), independent of the circuit
size of f . (Weaker compactness conditions are possible, and indeed, we will see one in the sequel.)

8.2 The GSW Scheme

The first candidate FHE scheme was due to Gentry in 2009. The first LWE-based FHE Scheme
was due to Brakerski and Vaikuntanathan in 2011. We will present a different FHE scheme due to
Gentry, Sahai and Waters (2013) which is both simple and quite flexible.

• KeyGen: the secret key is a vector s =

[
s′

−1

]
where s′ ∈ Znq .

• Enc: output A + µG where A is a random matrix such that

sTA ≈ 0 (mod q)

Here is one way to do it: choose a random matrix A′ and let

A :=

[
A′

(s′)TA′ + e′

]

• Dec: exercise.

• Eval: we will show how to ADD (over the integers) and MULT (mod 2) the encrypted bits
which will suffice to compute all Boolean functions.

8.3 How to Add and Multiply (without errors)

Let’s start with a variant of the scheme where the ciphertext is

C = A + µI

where I is the identity matrix and sTA = 0 (as opposed to sTA ≈ 0.)

Now,

sTC = µsT

69

• ADD(C1,C2) outputs C1 + C2. This is an encryption of µ1 + µ2 since

sT (C1 + C2) = (µ1 + µ2)sT

Eigenvalues add.

• MULT(C1,C2) outputs C1C2. This is an encryption of µ1µ2 since

sT (C1C2) = µ1s
TC2 = µ1µ2s

T

Eigenvalues multiply.

We need one ingredient now to turn this into a real FHE scheme.

8.4 How to Add and Multiply (without errors)

We have to be careful to multiply approximate equations by small numbers. Once we make adjust-
ments to this effect, we get the GSW scheme. The ciphertext is

C = A + µG

where sTA ≈ 0. Think of G as an error correcting artifact for the message µ.
Now,

sTC ≈ µsTG

which is the approximate eigenvalue equation.

• ADD(C1,C2) outputs C1 + C2. This is an encryption of µ1 + µ2 since

sT (C1 + C2) ≈ (µ1 + µ2)sTG

Approximate eigenvalues add (if you don’t do it too many times.)

• MULT(C1,C2) outputs C1G
−(C2). This is an encryption of µ1µ2 since

sT (C1G
−(C2)) = (sTC1)G−(C2) ≈ (µ1s

TG)G−(C2) = µ1(sTC2) ≈ µ1µ2s
TG

where the first ≈ is because G−(C2) is small and the second ≈ because µ1 is small.

Approximate eigenvalues multiply if you only multiply by small numbers/matrices.

Put together, it is not hard to check that you can evaluate depth-d circuits of NAND gates with
error growth mO(d). (You can do better for log-depth circuits by converting them to branching
programs; see Brakerski-Vaikuntanathan 2014.)

8.5 Bootstrapping to an FHE

With this, we get a leveled FHE scheme. That is, we can set parameters (in particular q = mΩ(d))
such that the scheme is capable of evaluating depth-d circuits. What if we want to set parameters
such that the scheme can evaluate circuits of any polynomial depth? That would be an FHE scheme
for real.

The only way we know to construct an FHE scheme at this point is using Gentry’s bootstrapping
technique which we describe below. Doing so involves making an additional assumption on the
circular security of the GSW encryption scheme, which we don’t know how to reduce to LWE.

70

The Idea

Assume that you are the homomorphic evaluator and in the course of homomorphic evaluation, you
get two ciphertexts C and C ′ which are (a) decryptable to µ and µ′ respectively, in the sense that
their decryption noise has `∞ norm less than q/4; but (b) not computable, in the sense that they
will become undecryptable after another homomorphic evaluation, say of a NAND. What should
you do with these ciphertexts?

Here is an idea: If you had the secret key, you could decrypt C and C ′, re-encrypt them with
fresh small noise and proceed with the computation. In fact, you could do this after every gate.
But this is clearly silly. If you had the secret key, why bother with encrypted computation in the
first place?

Here is a better idea: assume that you have a ciphertext C̃ of the FHE secret key encrypted
under the secret key itself (a so-called “circular encryption”). Then, you could homomorphically
evaluate the following circuit on input C̃:

BootNANDC,C′(sk) = Decsk(C) NAND Decsk(C
′)

What you get out is an encryption of µ NAND µ′. How did this happen (and what did hap-
pen?) First of all, note that C̃ is a fresh encryption of sk. Secondly, assume that the BootNAND
circuit (which is predominantly the decryption circuit) has small depth, small enough that the
homomorphic evaluation can handle it. The output of the circuit on input sk is indeed µ NAND
µ′; therefore, putting together this discussion, the output of the homomorphic evaluation of the
circuit is an encryption of µ NAND µ′ under sk.

Once we can implement BootNAND, this is how we evaluate every NAND gate. You get as
input two ciphertexts C and C ′. You do not homomorphically evaluate on them, as then you
will get garbage. Instead, use them to construct the circuit BootNANDC,C′ . and homomorphically

evaluate it on an encryption C̃ of the secret key sk that you are given as an additional evaluation
key.

Voila! This gives us a fully homomorphic encryption scheme.

Circular Security

Is it OK to publish a circular encryption? Does the IND-CPA security of the scheme hold when the
adversary additionally gets such an encryption? First of all, the IND-CPA security of the underlying
encryption scheme (GSW in this case) alone does not tell us anything about what happens in this
scenario. Indeed, you can construct an IND-CPA secure encryption scheme whose security breaks
completely given such a circular encryption. (I will leave it as an exercise.)

Secondly, and quite frustratingly, we do know how to show that the Regev encryption scheme
is circular-secure assuming LWE, but showing that the GSW scheme is circular-secure is one of my
favorite open problems in lattice-based cryptography.

8.6 The Key Equation

Let us abstract out the mathematics behind GSW into a key lattice equation which will guide us
through constructing the rest of the primitives in this lecture.

71

Recall the approximate eigenvector relation:

sTAi ≈ µisTG

and rewrite it as

sT (Ai − µiG) ≈ 0 (8.1)

Let Af be the homomorphically evaluated ciphertext for a function f . We know that

sTAf ≈ f(µ)sTG

or

sT (Af − f(µ)G) ≈ 0 (8.2)

We will generalize this to arbitrary matrices A1, . . . ,A` – not necessarily ones that
share the same eigenvector.

First, we know that Af is a function of A1, . . . ,A` and f (but not µ1, . . . , µ`). Henceforth,
when we say Af , we will mean a matrix obtained by the GSW homomorphic evaluation procedure.
(That is, homomorphic addition of two matrices is matrix addition; homomorphic multiplication is
matrix multiplication after bit-decomposing the second matrix).

Second, and very crucially, we can show that for any sequence of matrices A1, . . . ,A`,

[A1 − µ1G|| . . . ||A` − µ`G] Hf,µ = Af − f(µ)G

where Hf,µ is a matrix with small coefficients. We call this the key lattice equation.

72

To see this for addition, notice that

[A1 − µ1G||A2 − µ2G]

[
I
I

]
︸ ︷︷ ︸

H+,µ1,µ2

= A1 + A2 − (µ1 + µ2)G = A+ − (µ1 + µ2)G

and for multipication,

[A1 − µ1G||A2 − µ2G]

[
G−(A2)
µ1I

]
︸ ︷︷ ︸

H×,µ1,µ2

= A1G
−(A2)− µ1µ2G = A× − µ1µ2G

By composition, we get that

[A1 − µ1G||A2 − µ2G|| . . . ||A` − µ`G] Hf,µ = Af − f(µ)G

where Hf,µ is a matrix with small entries (roughly proportional to mO(d) where d is the circuit
depth of f).

An Advanced Note: Given arbitrary matrices Ai and Af , there exists such a small matrix H;
but if Af is arbitrary, it is hard to find.

Let’s re-derive FHE from the key equation:

• The ciphertexts are the matrices Ai and we picked them such that

sTA ≈ µsTG

• Homomorphic evaluation is computing Af starting from A1, . . . ,A`.

• Correctness of homomorphic eval follows from the key equation: We know that

sT [A1 − µ1G|| . . . ||A` − µ`G] ≈ 0

by the equation above that characterizes ciphertexts. Therefore, by the key equation,

sT [Af − f(µ)G] = sT [A1 − µ1G|| . . . ||A` − µ`G] Hf,µ ≈ 0

as well meaning that Af is an encryption of f(µ). Note that no one needs to know or compute
the matrix H; it only appears in the analysis.

73

8.7 Fully Homomorphic Signatures

We will use the key equation quickly in succession to derive three applications. The first is fully
homomorphic signatures (FHS). Here is a first take in defining what one might want from an FHS
scheme: a way to take a bunch of messages µ1, . . . , µ` together with their signatures σ1, . . . , σ` that
verify under a public key PK and compute a signature σf of the message f(µ1, . . . , µ`) that verifies
under PK (for any function f).

However, this is meaningless. You could produce signatures for constant functions fα(x) = α
and thereby forge the signature on any message whatsoever.

Rather, what we need from an FHS is that it produces a signature σf that binds the output of
a computation f(µ) with the computation itself f . Here is the definition:

1. PK, f → PKf .

2. (µ1, σ1), . . . , (µ`, σ`)→ (f(µ), σf).
// Both the operations above are as expensive as computing f .

3. Verify(PKf , f(µ), σf) = 1.

4. For any f and any y 6= f(µ), no PPT adversary can produce a (fake) signature σ′ such that
Verify(PKf , y, σ

′) = 1 (except with negligible probability.)

Why is this useful? An application is (online-offline) verifiable delegation of computation.
Here is a basic construction using the key equation.

• PK is B,A1, . . . ,A`. (This scheme can sign ` bits). SK is trapdoor of B.

• Signature σi for a message µi is a short Ri such that BRi = Ai − µiG.
// (Can you see how the signing algorithm works?)

• PKf is Af .

• To homomorphically compute on the signatures, start from the key equation:

[A1 − µ1G|| . . . ||A` − µ`G] Hf,µ = Af − f(µ)G

Notice that the way we constructed signatures,

B [R1|| . . . ||R`] Hf,µ︸ ︷︷ ︸
σf

= Af︸︷︷︸
PKf

−f(µ)G

σf is thus the homomorphic signature of f(µ) under PKf .

• Why can’t an adversary cheat? Suppose an adversary produces a signature σ′ that verifies
for the message y 6= f(µ) w.r.t. PKf . So,

Bσ′ = Af − yG

Subtracting the last two equations, we get

B(σ′ − σf) = (f(µ)− y)G

So, σ′ − σf is an inhomogenous trapdoor for B, constructing which breaks SIS.

74

8.8 Attribute-based Encryption

Attribute-based encryption (ABE) generalizes IBE in the following way.

• Setup produces MPK,MSK.

• Enc uses MPK to encrypt a message m relative to attributes (µ1, . . . , µ`) ∈ {0, 1}`.

(In an IBE scheme, µ = ID.)

• KeyGen uses MSK to generate a secret key SKf for a given Boolean function f : {0, 1}` →
{0, 1}.

(IBE is the same as ABE where f is restricted to be the point (delta) function fID′(ID) = 1
iff ID = ID′.)

• Dec gets µ (attributes are in the clear) and uses SKf to decrypt a ciphertext C if f(µ) = 1
(true). If f(µ) = 0, Dec simply outputs ⊥.

Here is an ABE scheme (called the BGG+ scheme) using the key equation. It’s best to view
this as a generalization of the Agrawal-Boneh-Boyen IBE scheme.

• KeyGen outputs matrices A,A1, . . . ,A` and a vector v and these form the MPK. The MSK
is the trapdoor for A.

• Enc computes

sT [A||A1 − µ1G|| . . . ||A` − µ`G]

(plus error, of course, and we will consider that understood.) Finally, the message is encrypted
as sTv + e+mbq/2c.

• Let’s see how Dec might work. You (and in fact anyone) can compute

sT [A||A1 − µ1G|| . . . ||A` − µ`G]

[
I 0
0 Hf,µ

]
= sT [A||Af − f(µ)G]

using the key equation.

If you had a short r that maps [A||Af −G] to v, that is

[A||Af −G] r = v

you can decrypt and find m. (Can you fill in the blanks?)

Two notes:

• The security definition mirrors IBE exactly, and the security proof of this scheme mirrors that
of the ABB IBE scheme that we did in the last lecture. I will leave it to you as an exercise.
The reference is the work of [BGG+14].

75

• One might wonder if the attributes µ need to be revealed. The answer is “NO”, in fact one
can construct an attribute-hiding ABE scheme (also called a predicate encryption scheme).
There are two flavors of security of such a scheme, the weaker one can be realized using
LWE [GVW15] and the stronger one implies indistinguishability obfuscation, a very powerful
cryptographic primitive which we don’t know how to construct from LWE yet. More in the
next lecture.

8.9 Constrained PRF

A constrained PRF is a special type of PRF where the owner of the PRF key K can construct a
special key Kf which enables anyone to compute

∀x s.t. f(x) = 0 : PRF(K,x)

(here, arbitrarily and for convention, we will set 0 to mean true.) The PRF values at all other
values should remain hidden given Kf , the constrained key.

We will only consider single-key CPRFs here, that is the adversary gets to see the constrained
key for a single function f of her choice. Constructing many-key CPRFs from LWE is another one
of my favorite open problems!

More generally, the adversary can get a single constrained key together with oracle access to
the PRF (as usual). Her job is to compute PRF(K,x∗) for some x∗ where (a) f(x∗) = 1 (false) and
(b) she did not make an oracle query on x∗.

Here is a construction of a constrained PRF using the key equation. See [BV15] for details and
extensions.

• The scheme has public parameters B0,B1 and A1, . . . ,Ak where k is an upper bound on the
description length of any function f that will be constrained. The PRF key is s.

• To define the PRF, consider the universal function U :

∀f where|f | ≤ k, x ∈ {0, 1}` : U(f, x) = f(x)

The key equation applied to the universal circuit U now tells us that

[A1 − f1G|| . . . ||Ak − fkG||Bx1 − x1G|| . . . ||Bx` − x`G] HU ,f,x

= AU ,x − U(f, x)G

= AU ,x − f(x)G

Here, AU ,x (which we will simply denote as Ax) is a result of the GSW homomorphic
evaluation on the matrices A1, . . . ,Ak,Bx1 , . . . ,Bx` .

• The PRF is defined to be
⌊
sTAx

⌉
on every input x.

Note that the PRF has to be defined independent of which function the key will later be
constrained with. Indeed, this definition of the PRF does not depend on f at all.

Here is a construction of a constrained PRF using the key equation. See [BV15] for details and
extensions.

76

• The scheme has public parameters B0,B1 and A1, . . . ,Ak where k is an upper bound on the
description length of any function f that will be constrained. The PRF key is s.

• To define the PRF, consider the universal function U :

∀f where|f | ≤ k, x ∈ {0, 1}` : U(f, x) = f(x)

The key equation applied to the universal circuit U now tells us that

[A1 − f1G|| . . . ||Ak − fkG||Bx1 − x1G|| . . . ||Bx` − x`G] HU ,f,x

= AU ,x − U(f, x)G

= AU ,x − f(x)G

Here, AU ,x (which we will simply denote as Ax) is a result of the GSW homomorphic
evaluation on the matrices A1, . . . ,Ak,Bx1 , . . . ,Bx` .

• The PRF is defined to be
⌊
sTAx

⌉
on every input x.

• The constrained key for a function f is

sT [A1 − f1G|| . . . ||Ak − fkG||B0||B1 −G]

On input x, the constrained eval proceeds as follows. First you can get

[A1 − f1G|| . . . ||Ak − fkG||Bx1 − x1G|| . . . ||Bx` − x`G]

for any x of your choice. Second, using the key equation, multiplying this on the right by
HU ,f,x:

sT [Ax − f(x)G]

from which one computes
⌊
sTAx

⌉
:= PRF(K,x) if f(x) = 0 (true).

Here is a construction of a constrained PRF using the key equation. See [BV15] for details and
extensions.

• The scheme has public parameters B0,B1 and A1, . . . ,Ak where k is an upper bound on the
description length of any function f that will be constrained. The PRF key is s.

• To define the PRF, consider the universal function U :

∀f where|f | ≤ k, x ∈ {0, 1}` : U(f, x) = f(x)

The key equation applied to the universal circuit U now tells us that

[A1 − f1G|| . . . ||Ak − fkG||Bx1 − x1G|| . . . ||Bx` − x`G] HU ,f,x

= AU ,x − U(f, x)G

= AU ,x − f(x)G

Here, AU ,x (which we will simply denote as Ax) is a result of the GSW homomorphic
evaluation on the matrices A1, . . . ,Ak,Bx1 , . . . ,Bx` .

77

• The PRF is defined to be
⌊
sTAx

⌉
on every input x.

• The constrained key for a function f is

sT [A1 − f1G|| . . . ||Ak − fkG||B0||B1 −G]

On input x, you can compute
sT [Ax − f(x)G]

• For security: suppose an adversary managed to compute

sTAx + e

for some x where f(x) = 1. We can ourselves compute

sT (Ax −G) + e′

using constrained evaluation. Put together, these reveal sTG plus error, and therefore s,
breaking LWE.

78

CHAPTER 9
Constrained PRFs and Program

Obfuscation

9.1 Constrained PRF

A constrained PRF is a special type of PRF where the owner of the PRF key K can construct a
special key Kf which enables anyone to compute

∀x s.t. f(x) = 1 : PRF(K,x)

The PRF values at all other values should remain hidden given Kf , the constrained key.
We will only consider single-key CPRFs here, that is the adversary gets to see the constrained

key for a single function f of her choice. Constructing many-key CPRFs from LWE is another one
of my favorite open problems!

More generally, the adversary can get a single constrained key together with oracle access to
the PRF (as usual). Her job is to compute PRF(K,x∗) for some x∗ where (a) f(x∗) = 0 (false) and
(b) she did not make an oracle query on x∗.

9.2 Private Constrained PRFs

A (single key) private constrained PRF is a constrained PRF where, in addition, the constrained
key hides the function that it constrains.

In other words, given a constrained key (denoted as K{f}) and oracle access to PRFK(·), it is
computationally hard to determine what f is. There are of course settings where this is impossible
to achieve. (Can you think of one?)

There are of course settings where this is impossible to achieve. For example, assume that an
adversary gets K{f} and wants to check if f(x) = 0 or 1 for some x in her mind. This can be done:
she makes an oracle query to x and gets PRFK(x). She also uses K{f} to compute something, and
she knows that the output matches PRFK(x) iff f(x) = 1. This reveals some information, so it is
not reasonable to expect to hide all information about f given K{f} and oracle access to the PRF.

How then shall we define private constrained PRFs?

80

Security is defined in terms of an indistinguishability game where the adversary produces two
functions f0, f1 and gets oracle access to PRF but only for those x for which f0(x) = f1(x).

9.3 Private Constrained PRF: Construction

Dual-BLMR

We will start with the following PRF (that we will call dual-BLMR).

PRF{Si,b}(x1x2 . . . x`) = bS1,x1S2,x2 . . .S`,x`Aep (mod q)

where Si,b are (secret) square matrices with random small entries, and A is a (public) uniformly
random matrix mod q.

(This is closely related to the BLMR construction which if you recall looks as follows:

PRFS(x1x2 . . . x`) = bSA1,x1G
−(A2,x2) . . .G−(A`,x`)ep (mod q)

where the Ai,xi are random matrices. This is actually a slight generalization of BLMR using a
secret matrix S and 2` public matrices.)

We’d like to generate constrained keys for dual-BLMR.

Constrained Key for the Identity Function

For starters, let’s try generating the constrained key for the identity function. That is, given the
constrained key, one should be able to compute the PRF on all inputs. (We want the construction
to be non-trivial in the sense that the constrained key should not reveal the PRF key).

Here is a try.

S1,0A + E1,0, S2,0A + E2,0, . . . , S`,0A + E`,0

S1,1A + E1,1, S2,1A + E2,1, . . . , S`,1A + E`,1

This certainly hides the Si,b (the PRF key) but it’s not clear how to compute the PRF output
from it.

When you are stuck, you start by naming things. So, let’s do it.

B1,0 := S1,0A + E1,0, B2,0 := S2,0A + E2,0, . . . , B`,0 := S`,0A + E`,0

B1,1 := S1,1A + E1,1, B2,1 := S2,1A + E2,1, . . . , B`,1 := S`,1A + E`,1

It’s not clear what you get by multiplying, say, B1,0 with B2,0. What we need is to enable some
sort of homomorphic multiplication. Let’s take inspiration from GSW13.

B1,0 := S1,0A + E1,0, B2,0 := S2,0A + E2,0, . . . , B`,0 := S`,0A + E`,0

B1,1 := S1,1A + E1,1, B2,1 := S2,1A + E2,1, . . . , B`,1 := S`,1A + E`,1

81

Here is how GSW enables multiplication.

B1,0 ·A−1(B2,0) = S1,0A + E1,0 ·A−1(S2,0A + E2,0)

= S1,0A ·A−1(S2,0A + E2,0) + E1,0A
−1(B2,0)︸ ︷︷ ︸
≈0

≈ S1,0 · (S2,0A + E2,0)

= S1,0S2,0A + S1,0E2,0︸ ︷︷ ︸
≈0

≈ S1,0S2,0A

where A−1(B) is a matrix R with small random entries such that AR = B (mod q).
Continuing along these lines, you can compute the PRF on all inputs if you can compute

A−1(Bi,b). Since computing A−1(·) requires the trapdoor of A, the owner of the PRF key can
precompute all these matrices

Di,b := A−1(Si,bA + Ei,b)

and release them.

D1,0 := A−1(S1,0A + E1,0), D2,0 := A−1(S2,0A + E2,0), . . . , D`,0 := A−1(S`,0A + E`,0)
D1,1 := A−1(S1,1A + E1,1), D2,1 := A−1(S2,1A + E2,1), . . . , D`,1 := A−1(S`,1A + E`,1)

How about security? This is tricky because we would like to argue that each Si,bA + Ei,b is
pseudorandom, invoking LWE. But the constrained key depends on the trapdoor for A in the
presence of which LWE is not hard.

82

So, let’s modify the construction a bit more.

A0,
D1,0 := A−1

0 (S1,0A1 + E1,0), D2,0 := A−1
1 (S2,0A2 + E2,0), . . . , D`,0 := A−1

`−1(S`,0A` + E`,0)

D1,1 := A−1
0 (S1,1A1 + E1,1), D2,1 := A−1

1 (S2,1A2 + E2,1), . . . , D`,1 := A−1
`−1(S`,1A` + E`,1)

where Ai are distinct random matrices (chosen during the generation of the constrained key),
and we think of A` = A.

We have that

A0D1,x1D2,x2 . . .D`,x` ≈ S1,x1S2,x2 . . .S`,x`A (mod q)

Thus, we have a construction of a PRF together with a constrained key (and an algorithm to
generate it) that can evaluate the PRF at all inputs while (plausibly) hiding the original PRF key.

We now have two questions: (a) allow more expressive constraint functions and (b) show secu-
rity! We will do these in turn.

Interlude: Matrix Branching Programs

This is a convenient model of computation for us as we are already working with matrices! In a
matrix branching program computing a Boolean function f on k input bits, we have 2` matrices
Mi,b ∈ {0, 1}w×w (where think of w as a constant) and a vector v ∈ {0, 1}1×w where ` ≥ k:

v = (1 0 . . . 0),
M1,0 M2,0 . . . M`,0

M1,1 M2,1 . . . M`,1

In general, each location i (corresponding to a pair of full-rank matrices Mi,0 and Mi,1) is indexed
by an input bit, say xj = xj(i). To avoid complicating matters, we will let ` = k and let j(i) = i.

To compute the program on an input x, you compute

u := vM1,x1M2,x2 . . .M`,x`

u is either (1 0 . . . 0) or (0 1 . . . 0). If u[1] 6= 0, output 1 (true), otherwise output 0 (false).
We know that every function in NC1 (circuits with log depth and poly size) can be computed by

poly-size matrix branching programs where each matrix is 5-by-5 permutation matrix (it’s in S5).
This is Barrington’s theorem. So, matrix branching programs are a pretty powerful computational
model.

(Give a simple example of a matrix branching program.)

Constructing a Constrained Key

Let’s now incorporate matrix BPs into the constrained key. The construction is due to Canetti and
Chen (2017), improved later by Chen-Vaikuntanathan-Wee’18.

Say you want to constrain the PRF key for a constraint function f . Create a length-` matrix
branching program for f first.

The constrained key is

v̂A0,
D1,0 := A−1

0 (Ŝ1,0A1 + E1,0), D2,0 := A−1
1 (Ŝ2,0A2 + E2,0), . . . , D`,0 := A−1

`−1(Ŝ`,0A` + E`,0)

D1,1 := A−1
0 (Ŝ1,1A1 + E1,1), D2,1 := A−1

1 (Ŝ2,1A2 + E2,1), . . . , D`,1 := A−1
`−1(Ŝ`,1A` + E`,1)

83

where Ŝi,b = Mi,b ⊗ Si,b is a tensor product of the two matrices and v̂ = v ⊗ I.
The key property of tensor products is the following associative property.

(A⊗B) · (C⊗D) = AC⊗BD

where ⊗ is the tensor product and · is matrix multiplication.
(Note that the Ŝi,b are now nw × nw matrices and Ai have to be corresponding larger, i.e.,

nw ×m for a large enough m.)
We have that

v̂A0D1,x1D2,x2 . . .D`,x` ≈ v̂Ŝ1,x1Ŝ2,x2 . . . Ŝ`,x`A` (mod q) =

(
(v
∏

Mi,xi)⊗ (
∏

Si,xi)

)
A`

We know that v
∏

Mi,xi is either (1 0 0 . . . 0) or (0 1 0 . . . 0). So the entire product is close to∏
Si,xiA

(1)
` if f(x) = 1 or

∏
Si,xiA

(2)
` if f(x) = 0. where

A` :=


A

(1)
`

A
(2)
`

. . .

A
(w)
`


So, letting A

(1)
` := A in the definition of the PRF finishes the construction.

We will give this monster a compact name:

v̂A0,
D1,0 := A−1

0 (Ŝ1,0A1 + E1,0), D2,0 := A−1
1 (Ŝ2,0A2 + E2,0), . . . , D`,0 := A−1

`−1(Ŝ`,0A` + E`,0)

D1,1 := A−1
0 (Ŝ1,1A1 + E1,1), D2,1 := A−1

1 (Ŝ2,1A2 + E2,1), . . . , D`,1 := A−1
`−1(Ŝ`,1A` + E`,1)

Call this a GGH15 chain (after the inventors Gentry, Gorbunov and Halevi) for the program

f , secrets Si,b and the final matrices A
(1)
` := A(1) and A

(2)
` := A(2).

On input x, we can compute
≈ SxA

(2−f(x))

where now and henceforth Sx :=
∏

Si,xi .

Proof of Constraint-Hiding

We will now sketch the proof that the scheme is constraint-hiding. We start by showing that the
constrained key is pseudorandom.

v̂A0,
D1,0 := A−1

0 (Ŝ1,0A1 + E1,0), D2,0 := A−1
1 (Ŝ2,0A2 + E2,0), . . . , D`,0 := A−1

`−1(Ŝ`,0A` + E`,0)

D1,1 := A−1
0 (Ŝ1,1A1 + E1,1), D2,1 := A−1

1 (Ŝ2,1A2 + E2,1), . . . , D`,1 := A−1
`−1(Ŝ`,1A` + E`,1)

1. Observe first that
ŜA + E

is pseudorandom by LWE where Ŝ = M⊗S where S is a random small matrix and M is any
full-rank matrix. (Can you see what happens if M is not full-rank?)

84

2. The trapdoor issue still rears its head, that is, the constrained key is a function of trapdoors
for various matrices A, in the presence of which LWE for those matrices does not hold!

However, and this is the thing that saves us, observe that the trapdoor for A` is never used!!

3. So, we can do a right-to-left proof where we replace matrices by random small matrices in
two mini-steps:

• First replace Ŝ`,bA` + E`,b by uniformly random and independent matrices U`,b. This is
by an invocation of LWE.

• Second, replace A−1
`−1(U`,b) by a Gaussian matrix D`,b. This is by an invocation of

the GPV theorem (the same thing we used to construct digital signatures via Gaussian
sampling.)

• Now, we are at a hybrid experiment where we never use the trapdoor for A`−1! Rinse
and repeat.

Of course, we need to prove more. That it is constraint-hiding even with oracle access to the
PRF (in the sense that we defined) and that the constraint key does not enable evaluation of PRF
on x such that f(x) = 0. We will leave these as a (non-trivial but doable) exercise.

An advanced comment. Before we move on, let’s ask if we can use this to release more than
one constrained key. Ie, can we plausibly conjecture security?

9.4 Program Obfuscation and Other Beasts

How much more useful is it to have the code of a program than merely oracle access (or input/output
access) to it? This is a foundational question in cryptography, and indeed in theoretical computer
science and even all of computing.

In a cryptographic context, we ask: can we transform a program into another (obfuscated)
program which has the same input/output functionality but is no more revealing than having
black-box access? This is the problem of program obfuscation.

On the one hand, given a program P , it is hard to even say whether it halts on input 0n (this
is the Halting problem). Indeed, any “non-trivial” property of a program is undecidable (this is
Rice’s theorem). So, worst-case programs seem naturally obfuscated. Yet, these are programs we
do not necessarily care about. This brings into sharper focus the problem of program obfuscation,
the problem of transforming arbitrary programs, ones that we do care about, into their obfuscated
versions.

Aside from their obvious uses in software protection, program obfuscation is of fundamental
importance to cryptography. Let us illustrate two of their uses.

Applications of Program Obfuscation (Informally)

In the early 1970s, the big problem in cryptography was whether there is a method of encrypting
messages from A to B which does not require A and B to have met beforehand and come up with
a common private key. In other words, is public-key cryptography possible?

In a landmark paper that kickstarted the field, Diffie and Hellman wondered about the following
possibility. Take the encryption program of a secret-key encryption scheme and obfuscate it!

85

They didn’t quite manage to make it work, and went a different route, but it’s a fascinating
route.

Indeed, being able to obfuscate programs (in an appropriate sense) makes nearly every crypto-
graphic task trivial. Can you see how to achieve fully homomorphic encryption if I gave you a way
to obfuscate programs?

Defining Program Obfuscation

What does it mathematically mean to obfuscate programs?

One way to define it leads to the notion of virtual black-box obfuscation due to Hada and Barak
et al. In a nutshell, it defines an obfuscator O to be a probabilistic algorithm that takes programs
(or circuits or Turing machines...) and converts them into other programs that are:

• functionally equivalent and nearly as fast (asymptotically!); and

• virtual black-box. That is, for every PPT adversary A that tries to learn a predicate of the
original program given its obfuscation, there is a black-box PPT adversary S (also called the
simulator) that does the same thing given oracle access. That is,

∀A,∃S,∀π : {0, 1}∗ → {0, 1} and ∀ programs P :

Pr[A(O(P) = π(P)] ≈ Pr[SP (1n) = π(P)]

This is a pretty strong definition and formalizes the idea that the obfuscated program should
be no more revealing than black-box access to it. Unfortunately, it is also impossible to construct
a universal program obfuscator. (can you see, perhaps informally, why?)

Defining Program Obfuscation: Take 2

Nevertheless, researchers have shown multiple paths to circumvent this (one!) impossibility. The
most well-studied is to relax the definition to indistinguishability obfuscation. We will explore a
different route today, relaxing the class of functions we plan to obfuscate. In particular, we will
look at the following class of functions.

Ff,α,β(x) =

{
β if f(x) = α
0 otherwise

where f is some function and α, β are strings (of length at least the security parameter).

We call this lockable obfuscation, a terminology due to Wichs-Zirdelis’17 and Goyal-Koppula-
Waters’17. (A special case of this is obfuscating point functions).

86

(A slightly weaker version we will look at is

Ff,α(x)

which outputs 1 if f(x) = α and 0 otherwise.)
We will obfuscate this class when f is pretty complex (all we need is that there is a matrix

branching program that computes it) and α is a uniformly random string (really, all we need is that
it has large min-entropy.) In fact, in this world, we require that the lockable obfuscation for any
function f , random α and arbitrary β is pseudorandom or simulatable with no other information.

9.5 Lockable Obfuscation: An Application

As we mentioned in the last class, it is easy to construct an example of an encryption scheme
which is CPA-secure but releasing an encryption of the secret key under the matching public key
is completely insecure (let’s try!)

However, what if the encryption algorithm is restricted to encrypting bits? That is, when we say
“encrypt the secret key”, we will encrypt the bits of the secret key one by one. The counterexample
we just constructed falls apart. So maybe every bit encryption scheme is circular-secure?! For a
while, we did not have counterexamples for this under plausible conjectures, but now we do, thanks
to lockable obfuscation.

Take any CPA-secure encryption scheme (KeyGen,Enc,Dec). Modify it to (KeyGen′,Enc′,Dec′)
that works as follows.

• KeyGen′ generates a (pk, sk) pair from KeyGen and lets

pk′ = (pk, LO(Ffsk,α,sk)) and sk′ = (sk, α)

for a random α. Here, fsk takes a bunch of ciphertexts and decrypts them using sk. That is,
if you feed an encryption of α to the lockable obfuscation, it reveals sk. You see where this
is going!

• Enc′ is the same as Enc.

• Dec′ is the same as Dec.

This scheme remains CPA-secure (using the security of lockable obfuscation) but it is not
circular-secure.

9.6 Lockable Obfuscation: Construction

The final item for the day is a construction of lockable obfuscation using the machinery of GGH15
chains. (We will show the slightly weaker construction today, but it’s easy to modify it to get the
stronger version.) To do lockable obfuscation Ff,α of a function f with lock α ∈ {0, 1}2λ, do:

• generate 2λ matrices A(j,b) with j ∈ [λ] and b ∈ {0, 1} such that∑
j

A(j,αj) = 0 (mod q)

87

• generate λ GGH15 chains, one for the function fj that outputs the j-th bit of f , and the final
matrix pair (A(j,0),A(j,1)). All GGH15 chains share the same S matrices.

For correctness, note that we can compute

≈ SxA
(j,fj(x))

for all j. Sum them up to get

≈ Sx
∑
j

A(j,fj(x))

This sum is ≈ 0 if each fj(x) = αj , in other words if f(x) = α.
We will only say two words about security, which we argue in two steps.

1. First, the fact that α is random (or has min-entropy) can be used to show using Leftover hash
lemma that the matrices A(j,b) are truly random (as if there were no additive constraint on
them.)

2. Now, we have ` GGH15 chains with the same S matrices but random and independent A
matrices. The same proof that we did before can be argued to show security in this case as
well.

88

CHAPTER 10
Ideal Lattices, Ring-SIS and

Ring-LWE

This chapter is adapted from notes by Noah Stephens-Davidowitz.

10.1 Hash Functions

The SIS problem yields a very simple collision-resistant hash function that is provably secure if
worst-case lattice problems are hard:

hA(e) = Ae (mod q)

where the key A ∈ Zn×mq is uniformly random and the input is e ∈ {0, 1}m. Recall that finding an
hA collision is equivalent to solving the SIS problem, whose definition we reproduce below.

Definition 27. For parameters n,m, q, the (average-case, homogenous) Short Integer Solutions
(SIS) problem is defined as follows. The input is a uniformly random matrix A ∈ Zn×mq . The goal
is to find a non-zero vector e ∈ {−1, 0, 1}m such that Ae = 0 (mod q).

hA has a lot going for it as a hash function. It is remarkably simple—a linear collision-resistant
hash function! And, we saw that it is provably secure under the assumption that certain well-
studied worst-case lattice problems are hard. If those two things are not enough, hA is also worthy
of study because of its close relationship with LWE, the topic of this course and an extremely
important problem for cryptographers.

Unfortunately, hA is quite inefficient, since just reading the public hash description A takes
time roughly nm log q > n2 (where the inequality follows from the fact that we must have m > n in
order for hA to be a compressing function). But, hA is breakable in time 2O(m) (even by brute-force
search).

Ideal ly, we would hope for a hash function that can be broken in time 2O(m) to run in time
roughly linear in m ≈ n. Our goal is therefore to show a variant of hA whose running time is in
fact roughly linear in n.

90

10.2 The cyclic shift matrix, and the ring Z[x]/(xn − 1)

Since just reading the key of hA requires time greater than n2, any attempt to speed up the
computation of hA will presumably have to first compress the key size. E.g., we could take some
short uniformly random seed r (with bit length, say, O(n)) and set A = H(r) for some suitable
expanding function H. If H is modeled as a random oracle, then the resulting hash function hH(r)

retains its security. (This idea is actually quite useful in practice [?] in the context of LWE.)
However, if H is an arbitrary function, then we do not expect to be able to compute hH(r)(e) in
time faster than n2. So, though this idea immediately yields a hash function with a smaller key,
we need to do more work to get a faster hash function.

Even so, assuming that we are happy with a small key and quadratic runtime, I do not know
how to prove the security of this approach from standard assumptions, e.g., SIS.

Open Problem. Construct a hash function with a linear-size key which is as secure as SIS or
LWE (in particular, without relying on the random oracle assumption.)

In order to speed up our computation, we presumably need our matrix A to be a very special
function of the seed. To that end, we take our short random seed to be ` = m/n uniformly random
vectors a1, . . . ,a` ∈ [q]n, and we take the columns of our matrix A to be the vectors a1, . . . ,a`
together with all “cyclic rotations” of the ai. I.e., for a = (a1, . . . , an)T ∈ Zn, we define

Rot(a) :=



a1 an · · · a3 a2

a2 a1 · · · a4 a3

a3 a2 · · · a5 a4
...

...
. . .

...
...

an−2 an−3 · · · an an−1

an−1 an−2 · · · a1 an
an an−1 · · · a2 a1


∈ Zn×n ,

where each column is a simple cyclic permutation of the previous column.1 Matrices of the form
Rot(a) are sometimes referred to as “cyclic matrices” or “circulant matrices.” We then take

A = (Rot(a1),Rot(a2), . . . ,Rot(a`)) ∈ Zn×m .

We claim that for A with this structure, we can compute Ae mod q in time n` · polylog(n, q) =
Õ(m). This is because the set of all integer cyclic matrices, R̃ := {Rot(a) : a ∈ Zn} is actually a
very nice set with nice algebraic structure. In particular, we can write

Rot(a) = (a, Xa, . . . , Xn−1a) ,

where

X :=


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ∈ {0, 1}n×n
1Notice that the definition of Rot does not depend at all on q. It is convenient to forget about q for now and to

think of a as some arbitrary vector in Zn.

91

is the “cyclic shift” matrix. Notice that R̃ ⊂ Zn×n is a lattice in n×n dimensions with rank n and
basis In, X,X

2, . . . , Xn−1. Indeed, for any a = (a1, . . . , an)T ∈ Zn, we can write

Rot(a) = a1In + a2X + · · ·+ anX
n−1 .

This identity immediately shows us that R̃ is actually closed under (matrix) multiplication (note
that Xn = In) and that multiplication is commutative over R̃. I.e., R̃ is a commutative ring!

In fact, R̃ is isomorphic to the polynomial ring R := Z[x]/(xn − 1). I.e., R is the ring of
polynomials in the variable x of degree at most n−1 and integral coefficients, with addition defined
in the obvious way and multiplication defined by the distributive law together with the identity

x · xi =

{
xi+1 i < n− 1

1 i = n− 1
.

(The polynomial xn − 1 is the characteristic polynomial of the cyclic shift matrix X, which is why
it arises in this context.) To see that these two rings are isomorphic, one only needs to check that
the map X 7→ x is a bijection that preserves addition and multiplication of basis elements.

So, there’s no reason to drag these n×nmatrices around, and we can instead think of Rot(a) ∈ R̃
as the corresponding polynomial a ∈ R of degree at most n− 1. (I.e., we change notation slightly.)
We can therefore identify our matrix A ∈ [q]n×m with a tuple of ring elements (a1, . . . , a`)

T ∈ R`[q],
and similarly the input e ∈ {0, 1}m is a tuple of ring elements (e1, . . . , e`)

T ∈ R`{0,1}, where we use
the notation RS to represent the set of polynomials in R with coefficients in S. Therefore, our hash
function is now ha1,...,a`(e1, . . . , e`) = a1e1 + · · · + a`e` mod qR.2 For convenience, we abbreviate
this by ha(e).

Now, to gain in efficiency, we simply recall that we can multiply two elements in R[q] in
time n · polylog(n, q) via the fast Fourier transform. Therefore, we can compute ha in time
`n · polylog(n, q) = m · polylog(n, q), which is a tremendous speedup over the nm · polylog(q)
running time of the original hA. Indeed, we typically think of q = poly(n) and ` = polylog(n), so
that this running time is quasilinear in n.

Towards Ring-SIS

Of course, this is not very useful if ha is not secure. In fact, Micciancio showed that ha is secure as a
one-way function (under a plausible worst-case lattice assumption) [?]. I.e., with certain reasonable
parameters, it is difficult to invert ha on a random input. This result is really quite remarkable,
but we will not state it formally.

Unfortunately, ha is not a collision-resistant hash function. To see this, it helps to define the
Ring-SIS problem, which is the analogue of SIS in this setting.

Definition 28. For a ring R, integer modulus q ≥ 2, and integer ` ≥ 1, the (average-case) Ring-SIS
problem is defined as follows. The input is a1, . . . , a` ∈ R[q] sampled independently and uniformly
at random. The goal is to output e1, . . . , e` ∈ R{−1,0,1} not all zero such that a1e1 + · · · + a`e` =
0 mod qR.

2Here, we have chosen to think of the ei as ring elements as well. This is formally justified by the identity

Rot(a) · Rot(e) = Rot
(
Rot(a) · e

)
.

The reduction mod qR simply means that we reduce the coefficients of the result of our polynomial multiplication
modulo q.

92

One can easily see that finding a collision in ha is equivalent to solving Ring-SIS, just like finding
a collision in hA is equivalent to solving SIS.

Unfortunately, Ring-SIS over Z[x]/(xn− 1) is not hard. The issue is that the ring Z[x]/(xn− 1)
has non-trivial zero divisors (i.e., it is not an integral domain). To see this, let ẽ = 1 + x + x2 +
· · · + xn−1 ∈ Z[x]/(xn − 1), and notice that (x − 1)ẽ = xn − 1 = 0. (In terms of Rot and R̃, this
corresponds to the fact that Rot(u) is singular, where u = (1, 1, . . . , 1)T 6= 0.) This leads to an
attack.

Claim 29. For any integer modulus q ≥ 2 and integer n ≥ 1, let R := Z[x]/(xn − 1) and let
ẽ = 1 + x+ x2 + · · ·+ xn−1 ∈ R−1,0,1. Then, aẽ = 0 mod qR with probability 1/q when a ∈ R[q] is
sampled uniformly at random.

In particular, ẽ, 0, . . . , 0 ∈ R{−1,0,1} is a solution to Ring-SIS over R with probability 1/q, and
the hash function ha can be broken efficiently with probability 1/q.

Proof. Suppose that a ∈ R[q] is divisible by x − 1 modulo qR. I.e., a = (x − 1)a′ mod qR. Then,
ẽa = ẽ(x−1)a′ = 0 mod qR. The result follows by noting that a ∈ R[q] is divisible by x−1 modulo
qR with probability 1/q. (Notice that being divisible by x − 1 is equivalent to having coefficients
that sum to zero mod q.)

If our original hash function hA is in fact 2Ω(n) secure, then this result makes ha uninteresting
as a collision-resistant hash function. In particular, in order for ha to have a chance of matching
this security, we would need to take q = 2Ω(n), in which case ha is actually a slower hash function
than hA.

10.3 The ring Z[x]/(xn + 1), ideal lattices, and a secure
collision-resistant hash function

Recall that our attack on ha over Z[x]/(xn−1) relied on the fact that xn−1 has a nontrivial factor
over the integers, xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ 1). So, it is natural to try replacing xn − 1
with an irreducible polynomial. Indeed, one can easily show that Z[x]/(p(x)) for some polynomial
p(x) ∈ Z[x] is an integral domain if and only if p is irreducible.

93

We strongly prefer sparse polynomials with small coefficients (both because they are easy to
work with and because this ensures that our ring has nice “geometric” properties). Since xn − 1
failed, we try xn + 1. This is irreducible over Z if and only if n is a power of two.3 So, we take
R := Z[x]/(xn + 1) for n some power of two. I.e., R is the ring of polynomials over Z of degree at
most n− 1 with addition defined in the obvious way and multiplication defined by

x · xi =

{
xi+1 i < n− 1

−1 i = n− 1
.

From the matrix perspective of the previous section, this corresponds to taking

Rot(a) = (a, Xa, . . . , Xn−1a) =



a1 −an · · · −a3 −a2

a2 a1 · · · −a4 −a3

a3 a2 · · · −a5 −a4
...

...
. . .

...
...

an−2 an−3 · · · −an −an−1

an−1 an−2 · · · a1 −an
an an−1 · · · a2 a1


∈ Zn×n ,

where

X :=


0 0 · · · 0 −1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ∈ {0, 1}n×n .
Notice that X differs in just one entry from our choice in the previous section. Matrices of the
form Rot(a) as above are occasionally called “anti-cyclic.”

As before, we define our hash function ha(e) = a1e1 + · · · + a`e` mod qR, where the ai are
chosen uniformly ai ∈ R[q] and ei ∈ R{0,1}. But, we stress that the underlying ring has changed
from Z[x]/(xn − 1) to R = Z[x]/(xn + 1), so that this is not the same hash function as before.
(Formally, we should include the ring as a parameter in h, i.e. ha,Z[x]/(xn+1), to distinguish it, but
we prefer to keep the notation uncluttered.) As before, finding a collision for this hash function is
equivalent to solving Ring-SIS, now over this new ring, Z[x]/(xn + 1).

Ring-SIS is in fact hard over this ring, under a reasonable worst-case complexity assumption.
We will describe this complexity assumption (which will lead us to the topic of ideal lattices) but
will not prove the worst-case to average-case reduction for Ring-SIS.
Remark The ring R is rather special; it is the ring of integers of the cyclotomic number field
Q[x]/(xn + 1). Number fields and their rings of integers are very well-studied and very interesting
objects, and these notes stop short of presenting some of the beautiful mathematics that is lurking
beneath the surface here. (The fact that R is such a rich mathematical object also seems relevant
for the security of ha. In particular, there are algorithmic results for related problems that exploit
rather deep properties of R [?, ?, ?, ?].)

3If p > 1 is a non-trivial odd factor of n, then xn/p + 1 is a non-trivial factor of xn + 1. If n has no odd factors,
then xn + 1 is the 2nth cyclotomic polynomial—i.e., the minimal polynomial over Z of any primitive 2nth root of
unity.

94

Ideal lattices

In order to present the worst-case hardness assumption that will imply the security of our hash
function, we will need to introduce a special class of lattices known as ideal lattices. Recall that a
lattice is an additive subgroup of Zn. I.e., a subset of Zn closed under addition and subtraction.
An ideal I ⊆ R is an additive subgroup of a ring R that is closed under multiplication by any ring
element. I.e., I is closed under addition and subtraction, and for any y ∈ I and r ∈ R, we have
ry ∈ I.

For our choice of ring, we can view I as a lattice by embedding R in Zn via the trivial embedding
that maps xi to the unit vector ei. So, I can equivalently be viewed as a lattice I ⊆ Zn that is
invariant under the linear transformation X. I.e., I ⊆ Zn is a lattice such that (y1, . . . , yn)T ∈ I if
and only if (−yn, y1, y2, . . . , yn−1)T ∈ I. Such lattices are sometimes called “anti-cyclic,” and the
corresponding lattices over Z[x]/(xn − 1) are often called “cyclic.”

In particular, this embedding allows us to consider the geometry of an ideal I, as a subset of
Zn. E.g., we can define the `2 norm and the inner product over I by taking the `2 norm and the
inner product over Zn.4 We then see that ideal lattices I are a strange class of lattices in which
non-zero lattice elements y ∈ I can be divided into groups of n linearly independent elements,
y, xy, x2y, . . . , xn−1y, all with the same length, ‖xiy‖ = ‖xjy‖. In particular λ1(I) = λn(I).
(Notice that we move freely between the representation of R as Zn and the representation of R
as a polynomial ring. I.e., we can think of y1, y2 ∈ R as scalars, written in plain font, as opposed
to boldface vectors y1,y2 ∈ Zn. We can still talk about their norms ‖y1‖, ‖y2‖ and inner product
〈y1, y2〉.)
Remark Ideals are very important objects in the study of rings, and they have a rich history
that we do not discuss here. In fact, much of the early study of lattices was motivated by the study
of the geometry of ideals, going back all the way to the seminal work of Minkowski, Dirichlet, and
others in the middle of the 19th century.

SVP over ideal lattices and worst-case hardness

For our purposes, this view of ideals as lattices is useful because it allows us to extend computational
lattice problems to ideals. I.e., for some fixed ring R, we can define the computational problems
γ-IdealSVP, γ-IdealSIVP, γ-GapIdealSVP, etc., as the corresponding computational problems re-
stricted to ideal lattices. In fact, the above discussion shows that γ-IdealSVP and γ-IdealSIVP are
equivalent over our ring R = Z[x]/(xn + 1). A slightly more sophisticated argument shows that
γ-GapIdealSVP is easy over R for γ >

√
n because the length of the shortest vector in an ideal

can be approximated up to a factor of
√
n by the determinant. We therefore only present a formal

definition of γ-IdealSVP.

Definition 30. For a ring R (with an associated norm ‖ · ‖) and approximation factor γ ≥ 1,
γ-IdealSVP over R is the approximate search problem defined as follows. The input is (a basis for)
an ideal lattice I over R. The goal is to output a non-zero element y ∈ I with ‖y‖ ≤ γλ1(I).

4For more general rings of integers over number fields, there is actually a different notion of geometry obtained
via the “canonical embedding” of I into Cn, which has very nice properties. E.g., in the canonical embedding, ring
multiplication is coordinate-wise. For our very special choice of ring, Z[x]/(xn + 1) for n a power of two, these two
embeddings actually yield the same geometry.

95

With this, we can present the worst-case to average-case hardness of Ring-SIS, which was
discovered independently by Peikert and Rosen [?] and by Lyubashevsky and Micciancio [?].

Theorem 31 ([?, ?]). For any power of two n, integer ` ≥ 1, and integer modulus q ≥ 2n2`, γ-Ideal
SVP over R = Z[x]/(xn + 1) can be efficiently reduced to Ring-SIS over R, where γ = ` · poly(n).

Regarding the hardness of IdealSVP

Of course, Theorem 31 is only interesting if γ-IdealSVP is hard over the ring Z[x]/(xn + 1). Until
very recently, our best algorithms for this problem were essentially no better than our generic
algorithms for γ-SVP over general n-dimensional lattices. However, very recently, polynomial-time

quantum algorithms for γ-IdealSVP with the very large approximation factor γ = 2Õ(
√
n) were

discovered in a series of works [?, ?, ?, ?]. (The best known algorithms for 2
√
n-SVP run in time

roughly 2
√
n, even on a quantum computer. And, our best polynomial-time algorithms for γ-SVP

only achieve an approximation factor of γ = 2Θ̃(n). So, this is a very big improvement.)
These algorithms are not known to extend to attacks on Ring-SIS for two reasons. First, the

approximation factor γ = 2Õ(
√
n) is much larger than the approximation factors that are relevant to

Ring-SIS. Second, Ring-SIS is not exactly an ideal lattice problem. Instead, notice that a solution
to Ring-SIS consists of a vector of ring elements (e1, . . . , e`) ∈ R`. Indeed, Ring-SIS is technically
a lattice problem over rank ` modules. It is therefore not currently known how to efficiently reduce
Ring-SIS to IdealSVP.

As a result of all of this, the status of Ring-SIS is a bit unclear at the moment. The barriers
mentioned in the previous paragraph seem to be quite hard to overcome, so perhaps this new line
of research will not lead to an attack. As far as we know, Ring-SIS is just as hard as SIS, and
indeed, as far as we know, it could yield a collision-resistant hash function that is computable in
Õ(n) time and only breakable in time 2Ω(n).

We will not present the worst-case to average-case reduction for Ring-SIS. It is a slight variant
of the reduction that we have already seen for SIS, and is included in the posted lecture notes
(http://people.csail.mit.edu/vinodv/CS294/lecturenotes.pdf).

The reduction

Finally, we present the worst-case to average-case reduction for Ring-SIS, which is a slight variant
of the reduction that we have already seen for SIS. For simplicity, we leave out some details, sweep
some technical issues under the rug, and assume that the reader is familiar with the presentation
of the SIS reduction from an earlier lecture.

Proof of Theorem 31. The reduction receives as input some ideal I ⊆ R. We may assume without
loss of generality that it is also given some parameter s such that s/2 ≤

√
nλn(I) ≤ s and some

non-zero element b ∈ I in the ideal with not-too-large norm, say ‖b‖ ≤ 2nλn(I). (Such an element
b can be found by running the LLL algorithm, and we can simply try many different parameters
si =

√
n‖b‖/2i/2 for i = 0, . . . , 2n to obtain s.) As in the reduction for SIS, we will show a reduction

that makes “slow progress.” I.e., it finds a non-zero b′ ∈ I with

‖b′‖ ≤ `n2‖b‖/q + `n1.5s .

We may repeat this procedure, say, 10n times to eventually find a vector of length at most, say,

10`n1.5s ≤ 20n2λn(I) = 20n2`λ1(I) ,

96

http://people.csail.mit.edu/vinodv/CS294/lecturenotes.pdf

as needed.

For simplicity, we first assume that I is a principal ideal generated by b. I.e., every element in
I can be written as rb for some r ∈ R. This is definitely not true in general,5 and we will sketch
how to remove this assumption at the end of the proof.

The reduction samples y1, . . . ,y` ∈ Rn from the (continuous) Gaussian distribution with pa-
rameter s. Let b ∈ Zn be the vector of coefficients of b, and let y′i ∈ I/q be yi with its co-
ordinates in Rot(b) rounded to the nearest integer multiple of 1/q. Let y′i ∈ R/q be the as-
sociated polynomial with coefficients given by the vector y′i. Finally, let ai ∈ R[q] such that
bai = qy′i mod qR. The reduction calls the Ring-SIS oracle on input a1, . . . , a`, receiving as output
non-zero e1, . . . , e` ∈ R{−1,0,1} such that a1e1 + · · ·+ a`e` = 0 mod qR. (We might actually need to
repeat this procedure many times to receive valid output from the oracle, but we ignore this here.)
The reduction outputs

b′ = y′1e1 + · · ·+ y′`e` .

We first note that the input a1, . . . , a` ∈ R[q] is statistically close to random because of our
choice of s >

√
nλn(I), just like in the reduction for SIS. So, the input to the Ring-SIS oracle is

distributed correctly.

We next notice that b′ ∈ I. In particular, we see from the definition of ai that

b′ = (ba1e1 + · · ·+ ba`e`)/q mod I .

Since the right-hand side is in I, b′ is as well.

We next study the length of b′. To do this, we need the inequality ‖ye‖ ≤
√
n‖y‖‖e‖ for

any e, y ∈ R, which follows from the definition of polynomial multiplication together with the
Cauchy-Schwarz inequality. Therefore,

‖b′‖ ≤
∑̀
i=1

‖y′iei‖ ≤
√
n
∑̀
i=1

‖y′i‖‖ei‖ ≤ n
∑̀
i=1

‖y′i‖ ≤ `n2‖b‖/q + n
∑̀
i=1

‖yi‖ ,

where the last inequality follows from the fact that ‖y′i − yi‖ ≤
∑
‖xjb‖/q = n‖b‖/q. And, since

‖yi‖ was sampled from a Gaussian with parameter s, we have ‖yi‖ ≤
√
n · s except with negligible

probability. The result follows.

So, b′ is a short element in the ideal, but we must still show that it is non-zero. Notice that the
oracle’s input depends only on the coset yi mod I, and if ei 6= 0, there is at most one value of yi in
this coset that yields b′ = 0. (Notice that this fact is true over an integral domain, when there are
no non-trivial zero divisors in our ring. If we used the ring Z[x]/(xn − 1) instead, then there could
potentially be many values of yi that cause b′ = 0, such as when ei = ẽ from our earlier attack.)
Just like in the SIS case, our choice of parameter s >

√
nλn(I) guarantees that yi has high entropy,

even conditioned on its coset. Therefore, b′ will often be non-zero.

Finally, we sketch how to remove the assumption that I is principal. The basic idea is just to
still do the reduction but to work with the lattice I ′ generated by b. The problem is that we might
have λn(I ′) > s/

√
n. (Indeed I ′ might not have any vectors shorter than b.) This causes issues in

two steps of the proof: when we argue that ai is uniformly random, and when we argue that b′ is
non-zero.

5Most ideals are not principal at all—i.e., there is no element b that generates the ideal. Even if our ideal is
principal, our specific b will typically not be a generator.

97

To ensure that ai is still uniformly random, we add to each yi an element vi ∈ I that is
uniformly random mod I ′. We can then “subtract out” vi later to ensure that it does not increase
the length of b′. This effectively gives us a short vector in a coset I ′ + v, where v is an R-linear
combination of the vi. In fact, once we have done this, we can show that the distribution over vi
of the input to the oracle depends only on the coset of yi modulo I. It follows that our output
vector b′ has high entropy and is therefore rarely zero.

10.4 Ring-LWE basics and some properties of Z[x]/(xn + 1)

From Ring-SIS to Ring-LWE

Now, we do unto LWE what we just did to SIS. In particular, the problem (search) LWE asks us
to find s ∈ Znq given (A, sTA + eT mod q), where A ∈ Zn×mq and s ∈ Znq are uniformly random
and e ∈ Zm is chosen from some error distribution on short vectors. We will define Ring-LWE in a
similarly natural way. We will see that the hardness of Ring-LWE implies more efficient public-key
cryptography, and that this hardness can be based on the worst-case hardness of the worst-case
ideal lattice problem γ-IdealBDD (which we will define later). Because we will rely very heavily on
special properties of our specific ring R = Z[x]/(xn + 1) for n a power of two, we only define Ring-
LWE over this specific ring. Everything presented here can be generalized, but doing so requires
quite a bit more work [?].6

Definition 32. For integers `, q ≥ 2, power of two n, and an error distribution χ over short
elements in R, the (average-case, search) Ring-LWE problem is defined as follows. The input is
a1, . . . , a` ∈ Rq sampled independently and uniformly at random together with b1, . . . , bn ∈ Rq,
where bi := ai · s+ ei mod qR for s ∈ Rq, and ei ∼ χ. The goal is to output s.

Notice that we take s to be worst-case, rather than uniformly random. This is without loss of
generality, since we can trivially randomize s if necessary. Just like before, we will also need the
decisional version of the problem, which asks us to distinguish the (ai, bi) from uniformly random
and independent elements of Rq.

Basic properties

Ring-LWE inherits many of LWE’s nice properties. In particular, Ring-LWE is equivalent to the
planted variant of Ring-SIS, and the hardness of Ring-LWE (both search and decision) remains
unchanged if we sample the secret s from the error distribution χ (at the expense of one sample).
One can prove both of these facts in more-or-less the same way that we proved the corresponding
facts for plain LWE, at least for appropriate choices of q.

For example, given ` Ring-LWE samples (a1, b1), . . . , (a`, b`) with bi := ais + ei, we can try to
convert them into `− 1 Ring-LWE samples with the secret sampled from the error distribution as
follows. We assume that one of the ai is invertible in Rq (i.e., there exists an element a−1

i ∈ Rq
such that aia

−1
i = 1, which happens with non-negligible probability, as shown in [?, Claim 2.25]).

6The “right” notion of Ring-LWE for more general rings has a more sophisticated definition based on the canonical
embedding of a number field. In particular, the naive coefficient embedding in which the norm of a ring element is just
the norm of its coefficient vector does not behave nicely for general rings. In the special case when R = Z[x]/(xn + 1)
for n a power of two, the canonical embedding and coefficient embedding are identical (up to scaling and rotation),
so we can largely ignore these issues.

98

Then, aja
−1
i bi = ajs+ aja

−1
i ei, and aja

−1
i bi − bj = aja

−1
i ei + ej . We can therefore create the new

samples (aja
−1
i , aja

−1
i bi − bj) for all j 6= i, which are `− 1 valid Ring-LWE samples with secret ei

and error ej , as needed.

Encryption

Recall that we saw both a secret-key encryption scheme and a public-key encryption scheme from
plain LWE. Both of these schemes have natural analogues in the Ring-LWE world. Just like our
Ring-SIS-based hash function, these schemes are remarkably efficient.

The secret-key encryption scheme is as follows. Both this scheme and the public-key scheme
naturally use R{0,1} as their message space, i.e., polynomials with {0, 1} coefficients. (Compare this
to the one-bit message space that we obtained for LWE.)

• Key generation: The secret key is simply a uniformly random element s ∈ Rq.

• Encryption: To encrypt m ∈ R{0,1}, compute (a, b) for b := a · s + e + bq/2e ·m mod qR,
where a ∈ Rq is chosen uniformly at random and e ∼ χ.

• Decryption: To decrypt (a, b), compute b−a·s mod qR = bq/2e·m+e mod qR. Round each
coefficient to either q/2 or zero, whichever is closest (where we assume that our representation
modulo qR uses coefficients in [q]), and interpret 0 as 0 and q/2 as 1.

Clearly, this scheme is correct if and only if the coefficients of e are smaller than roughly q/4.
Furthermore, the CPA-security of the scheme is immediate from Ring-LWE. And, this scheme is
quite efficient:

• secret keys have size n log q;

• encrypting n-bit messages using roughly n log q-bit ciphertexts; and

• encryption and decryption run in time n · polylog(n, q).

As far as we know, this scheme is 2Ω(n) secure for appropriate parameters, so that we may take n
only linear in the security parameter.

As a parenthetical remark, we can achieve such short ciphertexts from LWE as well (as shown
by Peikert, Vaikuntanathan and Waters.) with the following properties:

• secret keys have size n2log q;

• encrypting n-bit messages using roughly n log q-bit ciphertexts; and

• encryption and decryption run in time n2 ·polylog(n, q).

The public-key encryption scheme is as follows.

• Key generation: The secret key is a short secret s ∼ χ. The public key is (â, y) for â ∈ Rq
uniformly random and y := â · s+ e mod qR, where e ∼ χ.

• Encryption: To encrypt m ∈ R{0,1}, compute (a, b), where a := âr + x mod q and b :=
yr + x′ + bq/2em mod q for r, x, x′ ∼ χ.

99

• Decryption: To decrypt (a, b), compute b − a · s mod qR = bq/2em + er + x′ − xs mod q
and again do our rounding procedure to find m.

Clearly, this scheme is correct if and only if er + x′ − xs is less than q/4. (So, we can take our
error to have size roughly

√
q/2.) Security follows from a proof similar to the one for plain LWE in

our first lecture. I.e., we use the hardness of decisional Ring-LWE with short secrets once to show
that the public key can be replaced by uniformly random ring elements and then again to show
that the element b in the ciphertext can also be replaced by a uniformly random ring element.

Again, we note the remarkable efficiency of this scheme. As far as we know, it is 2Ω(n) secure
and all operations are computable in time n · polylog(n, q). Taking q = poly(n) gives a public-
key encryption scheme with key generation, encryption, and decryption all computable in time
quasilinear in the security parameter. And, Lyubashevsky, Peikert, and Regev proved that breaking
this scheme is at least as hard as a certain worst-case ideal lattice problem [?]—even an ideal lattice
problem that is plausibly 2Ω(n) hard.

Reduction modulo ideals and Chinese Remainder Theorem

Recall that for an element r ∈ R in some ring R (e.g., R = Z), we define equivalence of s1, s2 ∈ R
modulo r by s1 = s2 mod r if and only if there exists an r′ ∈ R with s1 = s2 + r′r. Equivalently,
s1 = s2 mod r if and only if there exists an ideal element y ∈ rR := {r′ · r : r′ ∈ R} in the
ideal rR generated by r such that s1 = s2 + y. This is an equivalence relation because the ideal
is closed under addition, which also implies that it respects addition. It respects multiplication
because the ideal is closed under multiplication by any ring element. I.e., if s1 = s2 + y for y ∈ rR,
then xs1 = xs2 + xy, which implies that xs1 = xs2 mod r, since xy ∈ rR also.

This immediately shows that we can also reduce modulo an arbitrary ideal I, not just an ideal
generated by a single element. I.e., we define s1 = s2 mod I if and only if there exists y ∈ I such
that s1 = s2 + y. (This is a big part of the reason why ideals are such important objects in the
study of rings, as opposed to, say, subrings.) Just like before, addition and multiplication are well
defined modulo I, and we write R/I for the ring of equivalence classes modulo I.7

We will need something slightly more general. For an ideal J ⊆ I (e.g, J = qI), we can again
define the quotient I/J . This quotient is also a ring, and we can define multiplication by x in I/J
in the obvious way.

We can now present the Chinese Remainder Theorem over R. (A far more general theorem
holds here over a very large class of rings.) We say that two ideals I and J are coprime if there
exists y ∈ I, z ∈ J such that y + z = 1.

Theorem 33 (Chinese Remainder Theorem for R). For any pairwise coprime ideals I1, . . . , Ik ⊆ R
over R, let I :=

⋂
Ij. Then, R/I is isomorphic (as a ring) to the direct product

R

I1
× R

I2
× · · · × R

Ik
.

Indeed, an isomorphism is given by the natural map

r 7→ (r mod I1, r mod I2, . . . , r mod Ik) ,

and it can be efficiently inverted.

7In fact, we have already been sneakily using this notation, writing mod qR, rather than mod q.

100

Furthermore, in the special case when I = qR for a prime q, we may take the Ij to be the ideal
generated by q and the jth irreducible factor of xn + 1 modulo q. Then, the quotients R/Ij are
actually fields of characteristic q.

In particular, turning back to the question of invertibility of ai from Section 10.4, we see that at
least for prime q, a ∈ Rq is invertible unless a = 0 mod Ij for some j (since the quotients are fields
and therefore do not have zero divisors). Since the quotient has size at least q, this happens with
probability at most 1/q. Because of the product structure guaranteed by the Chinese Remainder
Theorem, we then see that a is invertible with probability at least (1− 1/q)n.

10.5 Search to decision

We will prove the following search-to-decision reduction for Ring-LWE, which was originally proven
by Lyubashevsky, Peikert, and Regev [?]. We say that a polynomial splits mod q if it is the product
of distinct linear factors modulo q. We say that an error distribution χ over R is spherically
symmetric if the probability of sampling a ring element from χ depends only on its norm.

Theorem 34. For a prime q ≥ 2, integer ` ≥ 2, power of two n such that xn + 1 splits mod q, and
spherically symmetric error distribution χ, there is a reduction from search Ring-LWE to decision
Ring-LWE that runs in time q · poly(n, `)

Many new issues arise in the ring setting. Therefore, the proof is quite a bit more difficult
than the relatively easy proof for plain LWE. Indeed, lurking behind this reduction is quite a bit
of Galois theory. (We refer the reader to [?] for a much more thorough discussion.) Furthermore,
the result is not entirely satisfying for at least two reasons.

First, the running time proportional to q is unfortunate, since our worst-case to average-case
reduction will only work for exponentially large moduli q. Recall that we had this issue in the
plain LWE case as well, but there we saw that modulus-switching techniques can be used to reduce
exponential q to polynomial q (with a large loss in parameters) [?]. However, nothing similar is
known in the Ring-LWE setting. Indeed, the only hardness results known for Ring-LWE with small
q use a quantum reduction [?, ?], which we will not present here.

Second, the fact that our polynomial xn + 1 splits mod q is a bit worrisome, since we saw an
attack on Ring-SIS when the polynomial modulus has a high-degree factor with small coefficients
over the integers. That attack does extend to Ring-LWE, but as far as we know, there is no attack
that exploits a modulus q over which xn+1 factors. Indeed, the worst-case to average-case reduction
in [?] shows that, if Ideal-SVP with appropriate parameters is hard for a quantum computer, then
Ring-LWE is also hard for any sufficiently large modulus q, regardless of whether xn + 1 splits
modulo q.

Where we’re going

Recall that our search-to-decision reduction for plain LWE worked by guessing the coordinates of
the secret vector s ∈ Znq one by one. One might therefore hope to find a similar reduction for
Ring-LWE that works by guessing the coefficients of the secret ring element s ∈ Rq one by one.
However, it is not at all clear how to do this. In the plain LWE case, we crucially used the fact
that knowing a coordinate of s allows us to compute 〈a, s〉 mod q for some a ∈ Znq . (Namely,
the standard basis vector corresponding to the relevant coordinate.) However, knowing just one

101

coefficient of s (or even n− 1 coefficients of s) does not allow us to compute a · s mod qR for any
non-zero a ∈ Rq.

We will need to develop a few tools in the next few subsections to correct this. The high-
level structure is as follows. First, we show how to use a different coordinate system, based on the
Chinese Remainder Theorem, to make multiplication coordinate-wise. This is nice because it allows
us to guess a coordinate in a meaningful way. However, when we guess wrong, we will not end up
with uniformly random samples. Instead, we will get Ring-LWE samples that are uniform in just
one coordinate, and it is not immediately clear how to use a decision oracle to distinguish these
two cases. In order to get around this, we will show the existence of very special functions that
essentially allow us to “swap” coordinates. Finally, we will use a hybrid argument together with
these tools to prove that hardness of search Ring-LWE implies hardness of decision Ring-LWE.

The CRT embedding (which is very different from the coefficient embedding!)

Our first task is to find a coordinate system in which multiplication is coordinate-wise. E.g., in these
coordinates, the product of (s1, s2, . . . , sn) with (1, 0, 0, . . . , 0) should simply be (s1, 0, 0, . . . , 0).
Indeed, since xn+1 splits modulo q, the Chinese Remainder Theorem tells us that Rq is isomorphic
as a ring to the ring Znq under coordinate-wise multiplication. So, we can in fact write ring elements
a, s ∈ Rq in a coordinate system such that a · s = (a1s1, · · · ansn). We call this the CRT embedding,
in contrast to the coefficient embedding in which we view the ring elements as polynomials. We
recall that the Chinese Remainder Theorem guarantees that we can move efficiently between these
two embeddings. (Indeed, this is accomplished via an invertible linear map over the field Zq.)

It might seem a bit silly to have gone through all of the trouble of defining Ring-LWE over
polynomial rings just to end up working with Znq under coordinate-wise multiplication! But, we
stress that the error distribution looks quite different in the CRT embedding. (If we used as an
error distribution that is short in the CRT embedding, the resulting Ring-LWE problem would be
easy.)

To see this, let’s consider the smallest non-trivial example. The polynomial x2 +1 splits modulo
13 as x2 + 1 = (x+ 5)(x− 5) mod 13, so an element ax+ b ∈ Z13/(x

2 + 1) has CRT representation
(5a+ b, b− 5a) ∈ Z2

13. (Check this!) Therefore, if our initial error distribution is, say, uniform over
polynomials with a, b ∈ {−1, 0, 1}, then in the CRT embedding, our error distribution is uniform
over the rather strange set {(0, 0),±(5,−5),±(1, 1),±(6,−4),±(6,−4)}, which in particular con-
tains quite long elements, relative to q = 13. I.e., the mapping from the coefficient embedding to
the CRT embedding is a linear transformation with large distortion (to the extent that one can
define “distortion” over a finite vector space).

So, while we can equivalently define Ring-LWE in terms of Znq (when xn + 1 splits modulo q),
we would end up with a much less natural error distributions. In particular, the error distributions
obtained from our worst-case to average-case reduction would be rather strange and depend on q
in complicated ways.

When and how xn + 1 splits modulo q

We now consider when xn + 1 splits modulo q and show that the factors take a nice form. Notice
that xn+1 is the minimal polynomial over Z of the (complex) primitive 2nth roots of unity ekπi/(2n)

for odd k. I.e., xn+1 splits over C precisely because C contains such elements. In analogy with this,
suppose that z ∈ Z∗q is a primitive 2nth root of unity modulo q. That is, suppose z2n = 1 mod q but

102

zk 6= 1 mod q for all 0 < k < 2n. Then, clearly zn 6= 1 mod q is a square root of 1 in Zq. Since Zq is
a field, the only square roots of 1 are ±1, so we must have zn = −1 mod q. I.e., zn + 1 = 0 mod q.

Furthermore, for any odd k, zkn is also a primitive 2nth root of unity. So, z, z3, z5, . . . , z2n−1 ∈
Znq are all roots of xn + 1 modulo q. Indeed, they are distinct because zk 6= 1 for 0 < k < 2n.
Finally, since Zq is a field, there is only one non-zero polynomial over Zq of degree n with these
roots, and we must have xn + 1 = (x− z)(x− z3)(x− z5) · · · (x− z2n−1) mod q. I.e., xn + 1 splits
modulo q.

So, xn + 1 splits modulo a prime q if (and only if) there is an element of order 2n in Z∗q (i.e., a
primitive 2nth root of unity modulo q). To find such a prime, we recall that Z∗q is cyclic of order
q − 1, so that it has an element of order 2n if and only if 2n divides q − 1. Therefore, xn + 1
splits modulo a prime q if (and only if) q = 1 mod 2n. The Prime Number Theorem in arithmetic
progressions guarantees that such primes exist and can be found efficiently. And, when this is the
case, the factors of xn + 1 modulo q can be written as x− zk for all odd 1 ≤ k ≤ 2n− 1.

Some very special automorphisms τk

The above discussion shows a very natural way to think of the coordinates CRT embedding. Each
coordinate in the CRT embedding of a polynomial p(x) is simply p(x) mod Ii = p(z2i−1) mod Ii
for some i ∈ [n], where z is some fixed primitive 2nth root of unity modulo q and Ii is the ideal
generated by q and x−z2i−1. It is therefore natural to order the coordinates in the CRT embedding
so that the ith coordinate is p(z2i−1). We then observe a nice symmetry of the CRT embedding. Let
k := (2i− 1)−1(2j − 1) mod 2n (where we have used the fact that all odd numbers have an inverse
modulo 2n). Then, we see that the ith CRT coordinate of p(x) ∈ Rq is the jth CRT coordinate of
p(xk).

So, we define τk : Rq → Rq for odd k such that τk(p(x)) := p(xk). We see that τk can be
viewed as a certain permutation of the coordinates in the CRT embedding. It is therefore a ring
automorphism (i.e., it is a bijection respecting addition and multiplication). In fact, it also preserves
norms in the coefficient embedding! I.e., ‖τk(p(x))‖ = ‖p(xk)‖ = ‖p(x)‖, which can be seen by
observing that τk simply permutes the coordinates of p(x) (and flips some of their signs). Such
maps are very rare,8 and very useful. The next lemma extracts the specific property that we will
need from them.

Lemma 35. The maps τk : Rq → Rq as described above are efficiently computable ring auto-
morphisms preserving the norm (in the coefficient embedding). Furthermore, τk acts on the CRT
embedding by permuting the coordinates, and for each i, j ∈ [n], there is an efficiently computable
k such that τk maps the ith CRT coordinate to the jth CRT coordinate.

The reduction

We can now finally present our reduction. As we discussed above, we can guess the coordinate s1

and replace the Ring-LWE sample (ai, bi) by

(ai + αiv1 mod qR, b+ αiσ1v1 mod qR)

8As we’ve described these maps here, they only exist for our specific choice of Rq! They can, however, be
generalized to more rings if we work in the canonical embedding rather than the coefficient embedding [?].

103

where v1 = (1, 0, 0, . . . , 0)T in the CRT embedding, σ1 ∈ Zq is our guess for the first coordinate s1 of
s in the CRT embedding, and αi ∈ Zq is uniformly random. Clearly, when our guess σ1 is correct,
the result is still a valid Ring-LWE sample with the same secret s, and the same error. However,
when σ1 is not correct, the result is not uniformly random. Instead, the first coordinate in the CRT
embedding is uniformly random, but the remaining coordinates are completely unchanged.

To fix this, we use a hybrid argument together with the special maps τk. In particular, we let
Ring-LWEj be the variant of decision Ring-LWE that asks us to distinguish Ring-LWE samples in
which the first j − 1 coordinates in the CRT embedding are replaced by uniformly random noise
from Ring-LWE samples in which the first j CRT coordinates are replaced by uniformly random
noise. To show the hardness of decision Ring-LWE, it suffices to show the hardness of Ring-LWEj
for each j.

Notice that the above argument lets us use an oracle for Ring-LWE1 to learn the first coordinate
s1 in the CRT embedding of the secret s of a Ring-LWE instance. More generally, we can use an
oracle for Ring-LWEj to find the jth coordinate sj . So, to finish our proof, we need to show how
the ability to find the jth coordinate sj in the CRT embedding allows us to find all coordinates si.
This is where we use the maps τk. In particular, Lemma 35 lets us find a k such that τk maps the
ith coordinate to the jth coordinate in the CRT embedding. Since τk is a ring automorphism, it
converts Ring-LWE samples with secret s to Ring-LWE samples with secret τk(s). Furthermore,
since τk preserves the norm and the error distribution χ is spherically symmetric, τk preserves the
error distribution.

So, our full reduction from search Ring-LWE to Ring-LWEj behaves as follows. (We will denote
ring elements by bold-face.) For each i = 1, . . . , n, we use our Ring-LWEj oracle to find the ith
coordinate si of s in the CRT embedding by first computing k = (2i − 1)−1(2j − 1) mod 2n such
that τk maps the ith CRT coordinate to the jth CRT coordinate, as in Lemma 35.

Let vj ∈ Rq be the element whose coordinates in the CRT embedding are (0, 0, . . . , 1, 0, . . . , 0),
where the 1 is in the jth position. For each σ ∈ Zq, we replace our Ring-LWE samples (a`, b`) by

(τk(a`) + α`vj , τk(b`) + σα`vj + u`)

where α` ∈ Zq is uniformly random, and u` ∈ Rq has its first j − 1 coordinates uniformly random
in the CRT embedding and last n − j + 1 coordinates equal to zero. If σ = si, then the resulting
distribution

(τk(a`) + α`vj , τk(a`)τk(s`) + α`σvj + τk(e`) + u`)

will be exactly the YES case of Ring-LWEj with secret τk(s)—i.e., the first j − 1 coordinates
will be uniformly random and the last n − j + 1 coordinates will correspond to valid Ring-LWE
samples. Otherwise, the distribution will be exactly the NO case—i.e., the jth coordinate will also
be uniformly random.

10.6 The worst-case to average-case reduction

We can now move on to the worst-case to average-case reduction for (search) Ring-LWE. Fortu-
nately, very little of the math from the previous section is needed for this part. We will, however,
assume a basic familiarity with the worst-case to average-case reduction for plain LWE, as presented
in the earlier lectures or as described in [?] (or in [?] as the “classical part”).

Recall that we defined the Bounded Distance Decoding problem (BDD) as the problem that
asks us to find a lattice vector y ∈ L that is closest to some target t, given the promise that this

104

vector is actually very close, D(t,L) � λ1(L). We define the analogous problem for ideal lattices
over R. (We take our target t ∈ R[x]/(xn+1), but we do not need many properties of this structure.
We just need that it is a ring that contains R and that we can round from R[x]/(xn + 1) to R in
the natural way.)

Definition 36. For a power of two n and an approximation factor α < 1/2, the α-IdealBDD
problem over R = Z[x]/(xn + 1) is defined as follows. The input is (a basis for) an ideal I over
R and a target t ∈ R[x]/(xn + 1) such that D(t, I) ≤ αλ1(I). The goal is to output the (unique)
element y ∈ I with ‖y − t‖ ≤ αλ1(I).

In the plain LWE case, we reduced BDD to LWE, and then we reduced GapSVP to BDD,
so that we were able to prove hardness from a more standard lattice problem. We could do the
same thing here, but recall that γ-IdealGapSVP for γ >

√
n. So, our worst-case problem will

simply be IdealBDD. (There is actually a quantum reduction that reduces IdealSVP to IdealBDD
with appropriate parameters [?, ?], but we will not present this here.) In particular, we prove the
following theorem. (To make the proof easier, we have chosen the rather extreme noise parameter
σ > nω(1)αq, which makes the theorem vacuous unless α < n−ω(1). More careful analysis of
essentially the same reduction gives σ ≥ poly(n, `)αq for some fixed polynomial and therefore
allows for α = 1/poly(n, `). Removing the dependence on ` takes much more work [?].)

Theorem 37 (Weak variant of [?]). For any power of two n, q ≥ 2n, and any α < n−ω(1), there
is an efficient reduction from α-IdealBDD over R = Z[x]/(xn + 1) to Ring-LWE over R with noise
sampled from the discrete Gaussian DR,σ over R with parameter σ > nω(1)(n+ αq).

The inverse ideal and discrete Gaussian samples

As in the reduction for plain LWE, a key tool will be the dual L∗ of our worst-case lattice L. Recall
that L∗ is defined as the set of vectors that have integral inner product with every lattice vector,

L∗ := {w ∈ Qn : ∀y ∈ L, 〈w,y〉 ∈ Z} .

One can check that L∗ is itself a (scaling of a) lattice. The important property of L∗ that we use
in the reduction is that, for a BDD target t ∈ Rn, we can write

〈w, t〉 = 〈w,y〉+ 〈w, e〉 ,

where 〈w,y〉 is an integer and 〈w, e〉 is relatively small.

In the context of ideals, we will instead work with the inverse ideal

I−1 := {w ∈ Q[x]/(xn + 1) : ∀y ∈ I, w · y ∈ R} .

(There is a notion of a dual ideal that is different than this notion, whose definition only makes
sense in the canonical embedding. So, we avoid calling I−1 the “dual ideal.” Again, we are relying
here on the very special properties of the ring Z[x]/(xn + 1) for n a power of two in order to
simply things.) To see that this is an ideal, we simply need to observe that (1) it is closed under
addition, and (2) it is closed under multiplication by x. Both facts are immediate from the relevant

105

definitions. E.g., (xw) ·y = w · (xy) ∈ R for any w ∈ I−1.9 Furthermore, we have the ring analogue
of the above identity,

wt = wy + we ,

where wy ∈ R and we is short.

As in the plain LWE case, our vectors w will be sampled from the discrete Gaussian distribution
DI−1,σ′ , defined by

Pr
W∼DI−1,σ′

[W = w] ∝ e−π‖w‖2/σ′2

for all w ∈ I−1. (Since this is a probability distribution, we only need to define this up to the
constant of proportionality.)

We will only need some very basic properties from DI−1,σ′ . First, we can sample efficiently from
DI−1,σ′ for σ′ > 2n · λn(I−1). Second, for σ′ >

√
nq · λn(I−1), a sample w ∼ DI−1,σ′ is statistically

close to uniformly random modulo qI−1. Third, a sample w ∼ DI−1,σ′ is not too long, i.e. except
with negligible probability we have ‖w‖ <

√
nσ′. We have seen all of these properties in previous

lectures, and none of them depend on the ideal structure at all.

Mapping I−1/(qI−1) to Rq

We noted in the previous section that w ∼ DI−1,σ′ is essentially uniformly random modulo qI−1

for appropriate σ′. We would like to create Ring-LWE samples (a, b) where a ∈ Rq = R/(qR)
somehow corresponds to this coset. I.e., we would like to map I−1/(qI−1) to R/(qR). In the plain
LWE world, this was simply a matter of computing the coordinates B−1w mod q modulo q in some
basis B for L∗ of the dual lattice vector w ∈ L∗.

In the ring case, we must be more careful because our map must preserve the multiplicative
structure of I−1/(qI−1) and Rq. We will need a bijective map θ : I−1/(qI−1)→ Rq that is linear
(i.e., θ(w1 +w2) = θ(w1)+θ(w2) mod qR for any w1, w2 ∈ I−1/(qI−1)) and respects multiplication
by any ring element, i.e., θ(xw) = xθ(w) mod qR for all w ∈ I−1/(qI−1). (Formally, this is an
isomorphism of R modules.)

Lemma 38. For q ≥ 2 and an ideal I ⊆ R, let z ∈ I be any element such that there exists ŵ ∈ I−1

and r̂ ∈ R such that ŵz + r̂q = 1. Then, the map θz : I−1/(qI−1) → Rq defined by θz(w) =
zw mod qR is a linear bijection satisfying θz(xw) = xθz(w) mod qR for all w ∈ I−1/(qI−1).

Furthermore, such a z always exists and can be found efficiently given (a basis for) I and q,
and θz and its inverse are efficiently computable.

Proof. It follows from the basic properties of multiplication that θz is linear and respects multipli-
cation. So, we only need to prove that θz is a bijection. Indeed, multiplication by ŵ is the inverse
of θz. I.e., for each r ∈ R, we have θz(ŵr) = zŵr mod qR = r mod qR, where we have used the
fact that ŵr = 1 mod qR. Therefore, θz is surjective. To prove that it is bijective, it suffices to
note that the domain and range have the same size, qn. The fact that θz is efficiently computable
is trivial, and the fact that it can be inverted efficiently follows from the fact that it is a linear
bijection. (I.e., we can write down the matrix corresponding to θz, which is guaranteed to have an
inverse. So, we can simply compute its inverse.)

9Since I−1 6⊆ R, it is technically only a fractional ideal. I.e., there exists some denominator z ∈ Z and some ideal
J ⊆ R such that I−1 = z−1J .

106

For the proof that z exists and can be found efficiently, see [?, Lemma 2.14]. It relies on the
Chinese Remainder Theorem together with the factorization of an ideal into the product (i.e.,
intersection) of prime ideals (i.e., ideals P such that for any ideal J , either P and J are coprime
or J ⊆ P).

The reduction

Recall that in the plain LWE reduction, we sampledwi ∼ DL∗,σ′ for appropriately chosen parameter
s > 0 and created LWE samples

(B−1wi mod q, b〈wi, t〉e+ ẽi mod q) ,

where L ⊆ Zn is the input lattice to the BDD instance, t ∈ Rn is the input target, and ẽi is some
extra noise that we add.

In the Ring-LWE world, the natural analogue is as follows. We take as input (a basis for) an
ideal I ⊆ R over R and a target t ∈ R[x]/(xn + 1). We sample w1, . . . , w` ∼ DI−1,σ′ from the
discrete Gaussian for

√
nqλn(I−1) < σ′ ≤ 2

√
nqλn(I−1).10

We then create Ring-LWE samples (ai, bi) with bi := bwi · te+ ẽi mod qR, where ẽi ∼ χ is some
additional noise and b·e just means rounding the coefficients to integers. To create ai, we find z ∈ I
with θz : I−1/(qI−1)→ Rq as guaranteed by Lemma 38. We then set ai := θz(wi) = zwi mod qR.
Notice that the fact that wi is statistically close to uniformly random modulo qI−1 together with
the fact that θz is a bijection immediately implies that ai ∈ Rq is statistically close to uniformly
random.

It remains to study the distribution of bi. We can write

bwi · te+ ẽi mod qR = wiy + bwiee+ ẽi mod qR ,

where y ∈ I is a closest lattice vector to t, and e := y − t, and we have used the fact that wiy ∈ R
to write bwiy + wiee = wiy + bwiee. We are promised that ‖e‖ ≤ αλ1(I).

We first study the error term bwiee + ẽi. We just need to show that ‖ bwiee ‖ ≤ σ/nω(1)

is short, since ẽi is sampled from a Gaussian with parameter σ (and it is a basic fact that a
Gaussian with parameter σ is within statistical distance O(d/σ) of the same Gaussian shifted by
d). Indeed, recall from the previous lecture that ‖wie‖ ≤

√
n‖wi‖‖e‖ (which follows immediately

from Cauchy-Schwarz). We noted earlier that ‖wi‖ ≤
√
nσ ≤ 2nqλn(I−1) with high probability.

And, by assumption ‖e‖ ≤ αλ1(I) ≤ αn/λn(I−1), where the second inequality is the transference
theorem that we discussed in an earlier lecture [?]. Putting all of this together, we see that
‖ bwiee ‖ ≤ n+ ‖wiei‖ ≤ n+ 2αn2.5q with high probability. Since we took σ > nω(1)(n+ αq), our
error is statistically close to a Gaussian with parameter σ. (I.e., the additional noise from wie does
not affect the overall distribution much.)

Next, we turn to wiy. Recall from Lemma 38 that we can write 1 = ŵz + r̂q for some ŵ ∈ I−1

and r̂ ∈ R. Therefore,

wiy = wiy(ŵz + r̂q) = wizŵy + wiyr̂q = aiŵy mod qR ,

where we have used the definition of ai = wiz mod qR and the fact that wiy ∈ R, since wi ∈ I−1

and y ∈ I.

10We can try many different parameters until we find one that happens to work, using the 2n-approximation to
λn(I−1) given by the LLL algorithm to guarantee that we need only try O(n) different parameters.

107

Finally, we note that ŵy ∈ R is independent of i, so we simply define s := ŵy mod qR, and
we notice that the (ai, bi) are valid Ring-LWE samples with secret s. We then simply note that
zs = y mod qI, so that we can recover y mod qI from s. So, our Ring-LWE oracle allows us to
find y mod qI. To finish, we need to find y given t and y mod qI, which is equivalent to solving
IdealBDD with parameter α′ = α/q < 2−n. This can be solved efficiently, e.g., by rounding the
coordinates of the target in an LLL-reduced basis.

A note on the error

If we had not chosen the rather extreme approximation factor α = n−ω(1), then we would have had
to study the error wie more carefully. In fact, this error is not really “average case” in the sense
that it depends fundamentally on e. For example, recall that e is a polynomial and suppose that it
has some root, perhaps over the integers. Then, clearly, wie must have the same root, so it lies in a
subspace and cannot be distributed like a spherical Gaussian, regardless of the distribution of wi.
In general, the distribution of wie will be close to a discrete Gaussian over R with some covariance
matrix that depends on e. (In the canonical embedding, which we have avoided defining, each
coordinate will be an independent Gaussian whose parameter is proportional to the corresponding
coordinate of e.) I.e., we will not get the same error distribution regardless of the input IdealBDD
instance.

Lyubashevsky, Peikert, and Regev offer two solutions for this [?]. The first is to solve this
problem “in the lattice regime,” by rerandomizing the target t. I.e., we reduce IdealBDD to a
variant of IdealBDD in which the target is sampled from a Gaussian distribution. This still does
not quite allow us to reduce to Ring-LWE with fixed spherical Gaussian error. Instead, this gives
us a distribution over covariance matrices such that Ring-LWE with error given by the Gaussian
whose covariance is sampled from this distribution is worst-case hard with high probability. This
is enough to build cryptography, but naturally this is not used in practice.

The second solution in [?] is to use noise flooding in the RingLWE instance itself. I.e., we take ẽ
to be a spherical Gaussian that is significantly larger than ‖wie‖, just like we did. However, to avoid
having to take α = n−ω(1), we allow the noise parameter to depend on the number of samples ` in
the Ring-LWE instance. We then get a distribution wie+ ẽ that is not within negligible statistical
distance of a spherical Gaussian, but the two distributions will still have large overlap, even over `
samples.

10.7 NTRU

Finally, we mention a different elegant way to build public-key encryption using polynomial rings,
such as Rq, the NTRU encryption scheme, due to Hoffstein, Pipher, and Silverman [?]. Historically,
NTRU predates LWE by nearly a decade and Ring-LWE by about 15 years. As far as we know,
it is more-or-less as secure as Ring-LWE-based schemes for most reasonable parameter settings.
However, unlike Ring-LWE-based schemes, NTRU comes with no worst-case hardness guarantee.
We present it here because (1) it is pretty; (2)one of the relatively few concrete assumptions known
to imply public-key cryptography; and (3) people who work in lattice-based cryptography should
know what NTRU is.

As before, we work over R := Z[x]/(xn + 1) for power-of-two n with Rq := R/(qR) for some
modulus q = poly(n). A “typical” element in R is invertible modulo 3R (i.e., the polynomial xn+1

108

does not have low-degree factors modulo 3),11 and we may, e.g., take q to be prime to guarantee
the same modulo qR. (NTRU can be defined over any polynomial ring, and it is often actually
defined over Z[x]/(xn − 1). This causes some annoying issues related to those that we observed
in the context of Ring-SIS. They can be overcome, but we ignore this issue by using our preferred
ring.)

• Key generation: Sample two short polynomials g, f ∈ R. E.g., sample them uniformly at
random from R{0,1}. If f is not invertible modulo both qR and 3R, we resample it. Otherwise,

we denote these respective inverses by f−1
q and f−1

3 . The public key is h := gf−1
q mod qR,

and the private key is f, g.

• Encryption: Let m ∈ R{−1,0,1} be some ternary message. The encryption algorithm com-
putes the ciphertext c := hr + 3e + m mod qR, where r and e are some random short poly-
nomials.

• Decryption: Given a ciphertext c, we compute fc = 3(fe + rg) + fm mod qR. As long as
q is sufficiently large, this element 3(fe+ rg) + fm should have small coefficients relative to
q. I.e., by choosing our representative of 3(fe+ rg) + fm mod qR to have coefficients in the
interval (−q/2, q/2], we can actually recover 3(fe + rg) + fm ∈ R, not just its coset in Rq.
This allows us to reduce the result modulo 3R to recover fm. Finally, we multiply by f−1

3 to
find m, which is uniquely determined by its coset modulo 3R.

The security of NTRU is typically proven under the assumption that the public key h is indistin-
guishable from random. However, there is no known reduction from a more standard computational
problem to the problem of distinguishing h from random. For most choices of parameters, however,
our best attack on NTRU is a lattice attack that searches for a short vector in the so-called NTRU
lattice, spanned by the basis (

In 0
Rot(h) qIn ,

)
∈ Z2n×2n

where

Rot


h1

h2
...
hn

 :=


h1 −hn −hn−1 · · · −h2

h2 h1 −hn · · · −h3
...

...
...

. . .
...

hn−1 hn−2 hn−3 · · · −hn
hn hn−1 hn−2 · · · h1

 ,

as in the previous lecture, and h is the coefficient vector of the public key h. Notice that the NTRU
lattice contains the short vector (f , g) ∈ Z2n corresponding to the secret key. Indeed, any short
enough vector in this lattice can be used to break the NTRU encryption scheme.

11It’s factorization into irreducible polynomials is xn + 1 = (xn/2 + xn/4− 1)(xn/2− xn/4− 1) modulo 3. The fact
that these polynomials are irreducible is equivalent to saying that a finite field of characteristic 3 contains a primitive
2nth root of unity if and only if it has size 3m for m divisible by n/2, i.e., that 2n divides 3m − 1 if and only if n/2
divides m (since the multiplicative group of a finite field is cyclic). I was frustrated by my inability to find a nice
enough proof of this, so I asked on Math StackExchange and got some very nice answers [?]—three very nice proof
as of the last time I checked, as well as my own rather clunky proof.

109

CHAPTER 11
Quantum Computing and Lattices

Quantum computing and lattices have had a close relationship ever since the work of Regev in
2004 [?] which showed a connection between the unique shortest vector problem (which we now
know is equivalent to bounded distance decoding) to the hidden subgroup problem on dihedral
groups. Since then, the relationship has been very productive.

On the one hand, lattices give us one of the most prominent ways to do “post-quantum”
cryptography. For this to be meaningful, we need to be reasonably confident that there are no
“fast” quantum algorithms for LWE/SIS. Many have tried and failed.

We will see one of the most important such attempts, Kuperberg’s algorithm for the dihedral
hidden subgroup problem and its connnection to LWE. Another example is the recent advances in
quantum algorithms for the principal ideal problem (PIP) which we will not describe today.

On the other hand, lattices have given us ways to solve fundamental problems in cryptography
and quantum computing including generating a verifiable stream of truly random coins, designing
classical protocols which check that a quantum computer is doing its job correctly, and designing
a quantum money scheme. (See recent works of Mahadev, of Brakerski, Christiano, Mahadev,
Vazirani and Vidick, and of Zhandry.) We will unfortunately not have time to delve into any of
these today, but please see the course website for pointers.

11.1 A Quantum Computing Primer

States. A (pure) quantum state is a unit vector in the Hilbert space CN for some N . Here, N
is the universe under consideration. For example, for a one qubit system, N = 2; for two qubits,
N = 4; and for n qubits, N = 2n. For every x ∈ [N] = {0, 1}n, we will denote the elementary
states as

|x〉 =



0
0
. . .
1
0
. . .
0


110

with a 1 in the xth location and 0 everywhere else. In particular, when n = 1, we have

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
The vectors |x〉 form an orthonormal basis for CN . (Indeed, as we will see later, any orthonormal

basis is just as good). A general (pure) quantum state can be written as

|Ψ〉 =
∑
x∈[N]

αx|x〉

where αx ∈ C such that
∑

x∈[N] |αx|2 = 1. For example,

|+〉 =
1√
2

(|0〉+ |1〉) =
1√
2

(
1
1

)
and |−〉 =

1√
2

(|0〉 − |1〉) =
1√
2

(
1
−1

)
The joint state of n qubits lives in the tensor product of the corresponding Hilbert spaces. If

|x〉 ∈ CN1 and |y〉 ∈ CN2 then the joint state, denoted |x, y〉 ∈ CN1N2 .

Operations. Legal operations on qubits have to turn unit vectors into unit vectors; therefore,
they are unitary matrices U ∈ CN×N . That is,

U †U = I

where U † is the conjugate transpose of U (In case U is a real matrix, this is simply the transpose
of U .)

• For a single qubit, the X gate is defined by

X =

(
0 1
1 0

)
This turns |0〉 into |1〉 and vice versa. The Z gate is defined by

Z =

(
1 0
0 −1

)
This keeps |0〉 the same and turns |1〉 into −|1〉.

• For two qubits, the controlled not (CNOT) gate turns |a, b〉 into |a, a⊕ b〉. That is, if a = 0,
it leaves everything the same, but if a = 1, it flips the second bit.

This is defined by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


111

• The quantum Fourier transform QFTn over ZN := Z2n is defined by the N×N unitary matrix
where the (a, b)th entry is e2πiab/N := ωabN where ωN denotes the primitive N th root of unity.
(The indices run from 0 to N − 1.)

For example, QFT1 is defined by (
1 1
1 −1

)
and QFT2 is defined by

1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


We care about unitaries on n qubits that can be implemented using a quantum circuit with

poly(n) gates that each act on a constant number of qubits. We will assert, but not prove, that
QFTn can be implemented with a poly-size quantum circuit.

Measurement. When measuring a qubit |v〉 in an orthonormal basis (|b0〉, |b1〉), you get 0 with
probability |〈v, b0〉|2 and 1 with probability |〈v, b1〉|2. For example, let

|v〉 = cos(θ)|0〉+ sin(θ)|1〉

Measuring it in the |0〉, |1〉 basis gives us 0 with probability cos2(θ) and 1 with probability sin2(θ).
Measuring it in the |+〉, |−〉 basis gives us 0 (+) with probability cos2(θ − π/4) and 1 (−) with
probability sin2(θ − π/4).

Measuring collapses the state to one of the two basis vectors.
Measuring one qubit in a multi-qubit system does something very similar. Let us show just an

example. Let |v〉 = 1
2(|00〉+ |01〉+ |10〉 − |11〉) be a state (this is a so-called Bell state.) Measuring

the second qubit in the standard basis (|0〉, |1〉) gives us a uniform bit, and the state collapses to
either 1√

2
(|0〉+ |1〉) := |+〉 or 1√

2
(|0〉 − |1〉) := |−〉.

What happens when you measure the second qubit in the Hadamard basis, that is, |+〉, |−〉?

11.2 Dihedral Hidden Subgroup Problem and LWE

The Hidden Subgroup Problem

For a finite set S, let |S〉 denote the state

|S〉 =
1√
|S|

∑
s∈S
|s〉

In the hidden subgroup problem, we have a known finite group G (presented explicitly), a finite
set S, and (black-box access to) a function f : G → S which is constant on all (right) cosets of a
hidden subgroup H ≤ G. The goal is to discover H, say as a set of its generators.

Nearly all quantum algorithms that achieve superpolynomial speedup do so by solving a hidden
subgroup problem, typically over Abelian groups). Examples are Simon’s algorithm over Zn2 and
Shor’s algorithm over ZN where N is a composite number that we wish to factor.

112

Figure 11.1: Dihedral group D6 as a group of symmetries of a regular hexagon. y denotes reflection
across the vertical axis; x denotes a counter-clockwise rotation; and yx (as the reader should check)
is reflection across the slanted line.

Dihedral Group. This is a (non-Abelian) group of order 2N generated by two elements x and
y such that

xN = 1, y2 = 1, and yxy = x−1

We think of the dihedral group as the group of symmetries of a regular N -gon; x is a rotation and
y is a reflection along the vertical axis. See the accompanying figure for an illustration.

The subgroups of DN are either:

1. cyclic subgroups of ZN , consisting only of rotations;

2. subgroups of order 2 generated by some reflection yxs; or

3. subgroups generated by a reflection and a copy of a subgroup of ZN .

(1) is Abelian and therefore easy. (3) can be shown to be essentially as easy as (2). If H contains
a copy of a cycle C, one can reduce the problem to an HSP where H ′ = H/C on the group
G′ = DN/C ≡ DN ′ . So, we will focus on (2).

As we will see, dihedral HSP is very closely related to LWE.

113

Dihedral HSP

Let H be (the order-2 subgroup) generated by an element ybxs in DN which we will denote by the
pair (b, s) ∈ Z2 × ZN . Note that with this notation, the group law can be written as

(b, s)� (b′, s′) = (b⊕ b′, (−1)b
′
s+ s′)

where ⊕ denotes mod-2 addition. Note that in the non-trivial case we are considering, b = 1.
Finally, note that order of operation matters here as the group is non-Abelian.

The (right) cosets of H are

Ha := {(0, a), (1, s+ a)}

for all a ∈ ZN .

Generating coset states (Coset sampling). First, create a superposition |G〉 over all elements
of G := DN . ∑

b′∈{0,1},s′∈ZN

|b′, s′〉

Tensor this with the singleton state to produce∑
b′∈{0,1},s′∈ZN

|b′, s′, 0〉

Compute the function f : G→ S in the description of the hidden subgroup problem coherently in
superposition. ∑

b′∈{0,1},s′∈ZN

|b′, s′, f(b′, s′)〉

Measure the third register to get the state∑
(b′,s′)∈Ha

|b′, s′〉 = |0, a〉+ |1, s+ a〉

for some (unknown) a ∈ ZN .

From LWE to (Robust) Dihedral HSP

We start by showing the relevance of the dihedral HSP by showing how to reduce LWE to it. In
fact, we will crucially need a stronger version of dihedral HSP which we call robust dihedral HSP.
In this variant, the function f can make an error with some small probability ε so that the coset
states are “correct” with probability 1 − ε, and are a singleton state (which is not a valid coset
state) with probability ε.

Jumping ahead, we remark that we will show a subexponential algorithm for dihedral HSP in
a little bit. But the algorithm seems to be not particularly noise-tolerant. Rather frustratingly (or
shall we say fortunately), this is what prevents us from using the reduction this section together
with Kuperberg’s algorithm to come up with a subexponential quantum algorithm for LWE!

For simplicity, we will reduce from a one-dimensional version of LWE (which, for appropriate
parameters, can be shown to be as hard as LWE itself) to dihedral HSP.

114

So, you are given
(a,b := sa + e) ∈ Z1×m

N × Z1×m
N

for some N (which you should think of as exponential in the security parameter λ) and m (which
you should think of as polynomial in λ). Your goal is to recover s ∈ ZN .

Partition the space into cubes of side-length `. We will set ` so that `
√
m < λ1(L) ≈ O(q), but

so that ` � ||e||. (Note that this already places a limit on the LWE error for which we can solve
it, i.e., ||e|| � q/

√
m.) Let φ be the function that maps a point in ZmN to its associated cube.

Create the state

|0〉
∑
t∈ZN

|t, φ(ta)〉+ |1〉
∑
t∈ZN

|t, φ(b + ta)〉 = |0〉
∑
t∈ZN

|t, φ(ta)〉+ |1〉
∑
t∈ZN

|t− s, φ(e + ta)〉

Measure the second register which will give us the name of a subcube. The rest of the state will
either collapse to a singleton (when there is either a lattice point or a shifted lattice point in the
cube, but not both) or a superposition of two points (when there is both a lattice point and a
shifted lattice point in the cube). It is easy to check that the way we set up parameters, there will
never be two lattice points (resp. two shifted lattice points in the same cube).

So, in the good case, we get
|0〉|t〉+ |1〉|t− s〉

115

Starting from our LWE sample, we can produce as many of these states as we like. As we saw
a few minutes ago, these are precisely the coset states of the dihedral HSP. So, any algorithm that
solves the dihedral HSP by coset sampling will give us an algorithm for LWE.

The one wrinkle in this reduction is that sometimes we get singleton states which are not valid
coset states for the dihedral HSP (and we never know when we got those, so we can’t throw them
away.) How often do we get singleton states?

I will leave it to you to check that this happens with probability roughly ||e|| · n1.5/N .

Kuperberg’s Algorithm for Dihedral HSP

We will show the algorithm for N = 2n. This can be generalized to any N with essentially the
same complexity.

Let H be (the order-2 subgroup) generated by an element ybxs in DN which we will denote by
the pair (b, s) ∈ Z2 × ZN . Note that with this notation, the group law can be written as

(b, s)� (b′, s′) = (b⊕ b′, (−1)b
′
s+ s′)

where ⊕ denotes mod-2 addition. Note that in the non-trivial case we are considering, b = 1.
Finally, note that order of operation matters here as the group is non-Abelian.

The (right) cosets of H are

Ha := {(0, a), (1, s+ a)}

for all a ∈ ZN .

Generating coset states. First, create a superposition |G〉 over all elements of G := DN .∑
b′∈{0,1},s′∈ZN

|b′, s′〉

Tensor this with the singleton state to produce∑
b′∈{0,1},s′∈ZN

|b′, s′, 0〉

Compute the function f : G→ S in the description of the hidden subgroup problem coherently in
superposition. ∑

b′∈{0,1},s′∈ZN

|b′, s′, f(b′, s′)〉

Measure the third register to get the state∑
(b′,s′)∈Ha

|b′, s′〉 = |0, a〉+ |1, s+ a〉

for some (unknown) a ∈ ZN .

116

Quantum Fourier Transform over ZN . QFT gives us the state

|0〉
∑
x∈ZN

ωaxN |x〉+ |1〉
∑
x∈ZN

ω
x(s+a)
N |x〉

= η ·
(∑
x∈ZN

|0, x〉+ ωxsN |1, x〉
)

where η is a global phase (which no measurement can distinguish and can be ignored.)
Measure the second register to get a value x ∈ ZN and the state

|Ψx〉 := |0〉+ ωxsN |1〉

This can be repeated many times to generate a random x ∈ ZN together with the state Ψx.

Kuperberg Sieve. We now have many copies (x, |Ψx〉) and wish to find s, therefore solving the
HSP. We will now focus on finding a single bit of s, namely its least significant bit. This can later
be iterated with every single bit of s to recover the entire value.

That is, our goal will be to somehow produce the state

|0〉+ (−1)s mod 2|1〉

from which s mod 2 can be recovered by measuring in the |+〉, |−〉 basis.
What we will next do should remind you of an algorithm we have already seen in class. (Can

you remember which one?)
We produce Q such states. We note that if we take two such states

|00〉+ ωx1sN |10〉+ ωx2sN |01〉+ ω
(x1+x2)s
N |11〉

and apply a CNOT operator (with the first qubit as the control), we get

|00〉+ ωx1sN |11〉+ ωx2sN |01〉+ ω
(x1+x2)s
N |10〉

Measure the second qubit to get

|0〉+ ω
(x1+x2)s
N |1〉 or |0〉+ ω

(x1−x2)s
N |1〉

where the former happens if the measurement resulted in 0 and the latter if it resulted in 1.
Here is the consequence. Assume that k least significant bits of x1 and x2 were the same to

begin with. This gives us a procedure to take two qubits and with probability 1/2 produce a single
qubit |0〉 + ωxsN |1〉 where k of the least significant bits of x are 0. We can continue this procedure
to “clear out” more and more of the LSBs and eventually keep just the MSB of x. In this case, it
is easy to check that the resulting state is |0〉+ ωs mod 2

N |1〉 if the MSB of x is 1.
Each step “consumes” on average four qubits to produce a better qubit.

• If k is too small, we need many qubits to get to the end, roughly 4n/k.

• If k is too large, we may not be able to “pair up” the qubits with friends so that the least
significant bits of the corresponding x match. Roughly speaking, we need about 2k qubits to
make sure, by the coupon collector bound, that most qubits have friends.

117

Fortunately, there is a point in the tradeoff space, and as the calculation suggests, the right
thing to do is set 2n/k ≈ k or k ≈

√
2n.

Thus, we start with producing Q0 = (k + n/4k) · 2k · 4n/k qubits

(x, |Ψx〉)

Each step potentially loses 2k qubits which cannot be paired, and roughly a factor 4 because of the
sieving step. So, we get in expectation Q1 = (Q0 − 2k)/4 qubits. At the end,

Qn/k = Q0 · 4−n/k − 2k · (n/4k) ≈ k2k � O(1)

qubits remain. Since none of the operations “looked at” the MSB of the x, the resulting bits will
have MSB(x) = 0 or 1 nearly equiprobably. In the event that MSB(x) = 1, we obtain the desired
outcome, i.e., the LSB of s.

Setting the Parameters. Balancing k and n/k gives us a roughly

2O(
√
n) = 2O(

√
logN)

time quantum algorithm. The memory consumption is nearly the same as time, but this has been
improved subsequently by Kuperberg to use 2O(

√
logN) time and classical space but only O(logN)

quantum memory.

118

Bibliography

[BD20] Zvika Brakerski and Nico Dttling. Hardness of lwe on general entropic distributions.
Cryptology ePrint Archive, Report 2020/119, 2020. https://eprint.iacr.org/2020/
119.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic en-
cryption, arithmetic circuit ABE and compact garbled circuits. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes
in Computer Science, pages 533–556. Springer, 2014.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 575–584. ACM, 2013.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lat-
tices. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology -
EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,
volume 7237 of Lecture Notes in Computer Science, pages 719–737. Springer, 2012.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October
22-25, 2011, pages 97–106. IEEE Computer Society, 2011.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF. In Yev-
geniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptography - 12th Theory of
Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceed-
ings, Part II, volume 9015 of Lecture Notes in Computer Science, pages 1–30. Springer,
2015.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-
based encryption. In Christian Cachin and Jan Camenisch, editors, Advances in Cryp-
tology - EUROCRYPT 2004, International Conference on the Theory and Applications

120

https://eprint.iacr.org/2020/119
https://eprint.iacr.org/2020/119

of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, vol-
ume 3027 of Lecture Notes in Computer Science, pages 207–222. Springer, 2004.

[GHM+19] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi,
and Sruthi Sekar. Registration-based encryption from standard assumptions. In Dong-
dai Lin and Kazue Sako, editors, Public-Key Cryptography - PKC 2019 - 22nd IACR
International Conference on Practice and Theory of Public-Key Cryptography, Beijing,
China, April 14-17, 2019, Proceedings, Part II, volume 11443 of Lecture Notes in Com-
puter Science, pages 63–93. Springer, 2019.

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza
Rahimi. Registration-based encryption: Removing private-key generator from IBE.
In Amos Beimel and Stefan Dziembowski, editors, Theory of Cryptography - 16th In-
ternational Conference, TCC 2018, Panaji, India, November 11-14, 2018, Proceedings,
Part I, volume 11239 of Lecture Notes in Computer Science, pages 689–718. Springer,
2018.

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Ro-
bustness of the learning with errors assumption. In Andrew Chi-Chih Yao, editor,
Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China,
January 5-7, 2010. Proceedings, pages 230–240. Tsinghua University Press, 2010.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 197–206. ACM, 2008.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from LWE. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 503–523. Springer, 2015.

[Kim20] Sam Kim. Key-homomorphic pseudorandom functions from lwe with a small modulus.
Cryptology ePrint Archive, Report 2020/233, 2020. https://eprint.iacr.org/2020/
233.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close. In
David B. Shmoys, editor, Proceedings of the Eleventh Annual ACM-SIAM Symposium
on Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA, pages 937–941.
ACM/SIAM, 2000.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31
- June 2, 2009, pages 333–342. ACM, 2009.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6):34:1–34:40, 2009.

121

https://eprint.iacr.org/2020/233
https://eprint.iacr.org/2020/233

	Contents
	The Learning with Errors Problem: Introduction and Basic Cryptography
	Solving Systems of Linear Equations
	Basic Theorems
	Basic Cryptographic Applications

	The Learning with Errors Problem: Algorithms
	An algebraic Algorithm: Arora-Ge
	A Combinatorial Algorithm: Blum-Kalai-Wasserman
	A Geometric (Suite of) Algorithm(s): Lattice Reduction

	Worst-case to Average-case Reduction for SIS
	Lattices and Minkowski's Theorem
	Lattice Smoothing
	Worst-case to Average-case Reduction for SIS

	Worst-case to Average-case Reduction for LWE
	Decision to Search Reduction for LWE
	Bounded Distance Decoding and LWE
	Discrete Gaussians
	From (Worst-case) BDD to (Average-case) LWE
	From (Worst-case) SIVP to (Worst-case) BDD

	Pseudorandom Functions from Lattices
	Pseudorandom Generator from LWE
	GGM Construction
	BLMR13 Construction
	BP14 Construction

	Trapdoors, Gaussian Sampling and Digital Signatures
	Lattice Trapdoors
	Trapdoor Sampling
	Trapdoor Functions
	Digital Signatures
	Discrete Gaussian Sampling

	Identity-Based Encryption and Friends
	Identity-based Encryption
	Recap: GPV Signatures
	The Dual Regev Encryption Scheme
	The GPV IBE Scheme
	The CHKP IBE Scheme
	The ABB IBE Scheme
	Application: Chosen Ciphertext Secure Public-key Encryption
	Registration-based Encryption

	Encrypted Computation from Lattices
	Fully Homomorphic Encryption
	The GSW Scheme
	How to Add and Multiply (without errors)
	How to Add and Multiply (without errors)
	Bootstrapping to an FHE
	The Key Equation
	Fully Homomorphic Signatures
	Attribute-based Encryption
	Constrained PRF

	Constrained PRFs and Program Obfuscation
	Constrained PRF
	Private Constrained PRFs
	Private Constrained PRF: Construction
	Program Obfuscation and Other Beasts
	Lockable Obfuscation: An Application
	Lockable Obfuscation: Construction

	Ideal Lattices, Ring-SIS and Ring-LWE
	Hash Functions
	The cyclic shift matrix, and the ring Z[x]/(xn-1)
	The ring Z[x]/(xn+1), ideal lattices, and a secure collision-resistant hash function
	Ring-LWE basics and some properties of Z[x]/(xn+1)
	Search to decision
	The worst-case to average-case reduction
	NTRU

	Quantum Computing and Lattices
	A Quantum Computing Primer
	Dihedral Hidden Subgroup Problem and LWE

	Bibliography

