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Abstract. We describe a public-key encryption scheme based on lat-
tices — specifically, based on the hardness of the learning with error
(LWE) problem — that is secure against chosen-ciphertext attacks while
admitting (a variant of) smooth projective hashing. This encryption
scheme suffices to construct a protocol for password-based authenticated
key exchange (PAKE) that can be proven secure based on the LWE as-
sumption in the standard model. We thus obtain the first PAKE protocol
whose security relies on a lattice-based assumption.

1 Password-Based Authenticated Key Exchange

Protocols for password-based authenticated key exchange (PAKE) enable two
users to generate a common, cryptographically-strong key based on an initial,
low-entropy, shared secret (i.e., a password). The difficulty in this setting is to
prevent off-line dictionary attacks where an adversary exhaustively enumerates
potential passwords on its own, attempting to match the correct password to
observed protocol executions. Roughly, a PAKE protocol is “secure” if off-line
attacks are of no use and the best attack is an on-line dictionary attack where an
adversary must actively try to impersonate an honest party using each possible
password. On-line attacks of this sort are inherent in the model of password-
based authentication; more importantly, they can be detected by the server as
failed login attempts and (at least partially) defended against.

Due to the widespread use of passwords, a significant amount of research has
focused on designing PAKE protocols. Early work [13] (see also [14]) considered
a “hybrid” model where users share public keys in addition to a password. In
the more challenging “password-only” setting clients and servers are required to
share only a password. Bellovin and Merritt [4] initiated research in this direc-
tion, and presented a PAKE protocol with heuristic arguments for its security.
It was not until several years later that formal models for PAKE were devel-
oped [3, 5, 11], and provably secure PAKE protocols were shown in the random
oracle/ideal cipher models [3, 5, 18].
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Goldreich and Lindell [11] constructed the first PAKE protocol without ran-
dom oracles, and their approach remains the only one for the plain model where
there is no additional setup. Unfortunately, their protocol is inefficient in terms of
communication, computation, and round complexity. (Nguyen and Vadhan [19]
show efficiency improvements, but achieve a weaker notion of security. In any
case, their protocol is similarly impractical.) The Goldreich-Lindell protocol also
does not tolerate concurrent executions by the same party.

Katz, Ostrovsky, and Yung [17] demonstrated the first efficient PAKE proto-
col with a proof of security in the standard model; extensions and improvements
of this protocol were given in [9, 6, 16, 8]. In contrast to the work of Goldreich
and Lindell, these protocols are secure even under concurrent executions by the
same party. On the other hand, these protocols all require a common reference
string (CRS). While this may be less appealing than the “plain model,” reliance
on a CRS does not appear to be a serious drawback in the context of PAKE
since the CRS can be hard-coded into the protocol implementation. A different
PAKE protocol in the CRS model is given by Jiang and Gong [15].

PAKE based on lattices? Cryptographic primitives based on lattices are ap-
pealing because of known worst-case/average-case connections between lattice
problems, as well as because several lattice problems are currently immune to
quantum attacks. Also, the best-known algorithms for several lattice problems
require exponential time (in contrast to sub-exponential algorithms for, e.g., fac-
toring). None of the existing PAKE constructions (in either the random oracle or
standard models), however, can be instantiated with lattice-based assumptions.1

The barrier to constructing a lattice-based PAKE protocol using the KOY/GL
approach [17, 9] is that this approach requires a CCA-secure encryption scheme
(more generally, a non-malleable commitment scheme) with an associated smooth
projective hash system [7, 9]. (See Section 2.) Until recently, the existence of
CCA-secure encryption schemes based on lattices (even ignoring the additional
requirement of smooth projective hashing) was open. Peikert and Waters [22]
gave the first constructions of CCA-secure encryption based on lattices, but the
schemes they propose are not readily amenable to the smooth projective hashing
requirement. Subsequent constructions [24, 20, 12] do not immediately support
smooth projective hashing either.

1.1 Our Results

Building on ideas of [24, 20, 12], we show a new construction of a CCA-secure
public-key encryption scheme based on the hardness of the learning with er-
ror (LWE) problem [23]. We then demonstrate (a variant of) a smooth projective
hash system for our scheme. This is the most technically difficult aspect of our
work, and is of independent interest as the first construction of a smooth projec-
tive hash system (for a conjectured hard-on-average language) based on lattice
1 To the best of our knowledge this includes the protocol of Goldreich and Lindell [11],

which requires a one-to-one one-way function on an infinite domain (in addition to
oblivious transfer, which can be based on lattice assumptions [21]).



assumptions. (Instantiating the smooth projective hash framework using lattice
assumptions is stated as an open question in [21].) Finally, we show that our
encryption scheme can be plugged into a modification of the Katz-Ostrovsky-
Yung/Gennaro-Lindell framework [17, 9] to give a PAKE protocol based on the
LWE assumption.

Organization of the paper. In Section 2 we define a variant of smooth pro-
jective hashing (SPH) that we call approximate SPH. We then show in Section 3
that a CCA-secure encryption scheme having an approximate SPH system suf-
fices for our desired application to PAKE.

The main technical novelty of our paper is in the sections that follow. In
Section 4 we review the LWE problem and some preliminaries. As a prelude to
our main construction, we show in Section 5 a CPA-secure encryption scheme
based on the LWE problem, with an associated approximate SPH system. In
Section 6 we describe how to extend this initial scheme to obtain CCA-security.

Throughout the paper, we denote the security parameter by n.

2 Approximate Smooth Projective Hash Functions

Smooth projective hash functions were introduced by Cramer and Shoup [7];
we follow (and adapt) the treatment of Gennaro and Lindell [9], who extend
the original definition. Rather than aiming for utmost generality, we tailor the
definitions to our eventual application.

Roughly speaking, the differences between our definition and that of Gennaro-
Lindell are as follows. (This discussion assumes familiarity with [9]; for the reader
not already familiar with that work, a self-contained description is given below.)
In [9] there are sets X and L ⊂ X; correctness is guaranteed for x ∈ L, while
smoothness is guaranteed for x ∈ X \ L. Here, we require only approximate
correctness, and moreover only for elements in a subset L̄ ⊆ L. Details follow.

Fix a CCA-secure (labeled) public-key encryption scheme (Gen,Enc,Dec) and
an efficiently recognizable message space D (which will correspond to the dic-
tionary of passwords in our application to PAKE). We assume the encryption
scheme defines a notion of ciphertext validity such that (1) validity of a cipher-
text (with respect to pk) can be determined efficiently using pk alone, and (2) all
honestly generated ciphertexts are valid. We also assume no decryption error.

For the rest of the discussion, fix a key pair (pk, sk) as output by Gen(1n)
and let C denote the set of valid ciphertexts with respect to pk. Define sets
X, {L̄m}m∈D, and L̄ as follows. First, set

X = {(label, C,m) | label ∈ {0, 1}n; C ∈ C; m ∈ D} .

Next, for m ∈ D let L̄m = {(label,Encpk(label,m),m) | label ∈ {0, 1}n} ⊂ X;
i.e., L̄m is the set of honestly generated encryptions of m (using any label). Let
L̄ = ∪m∈DL̄m. Finally, define

Lm = {(label, C,m) | label ∈ {0, 1}n; Decsk(label, C) = m} ,



and set L = ∪m∈DLm. (Recall we assume no decryption error, and so Lm de-
pends only on pk.) Note that L̄m ⊆ Lm for all m. Furthermore, for any ciphertext
C and label ∈ {0, 1}n there is at most one m ∈ D for which (label, C,m) ∈ L.

Approximate smooth projective hash functions. An approximate smooth
projective hash function is a collection of keyed functions {Hk : X → {0, 1}n}k∈K ,
along with a projection function α : K × ({0, 1}∗ × C)→ S, satisfying notions of
(approximate) correctness and smoothness:

Approximate correctness: If x = (label, C,m) ∈ L̄ then the value of Hk(x)
is approximately determined by α(k, label, C) and x (in a sense we will make
precise below).

Smoothness: If x ∈ X \ L then the value of Hk(x) is statistically close to
uniform given α(k, label, C) and x (assuming k was chosen uniformly in K).

We stress that, in contrast to [9], we require nothing for x ∈ L \ L̄; furthermore,
even for x ∈ L̄ we require only approximate correctness. We highlight also that,
as in [9], the projection function α should be a function of label, C only.

Formally, an ε(n)-approximate smooth projective hash function is defined
by a sampling algorithm that, given pk, outputs (K,G,H = {Hk : X →
{0, 1}n}k∈K , S, α : K × ({0, 1}∗ × C)→ S) such that:

1. There are efficient algorithms for (1) sampling a uniform k ∈ K, (2) com-
puting Hk(x) for all k ∈ K and x ∈ X, and (3) computing α(k, label, C) for
all k ∈ K and (label, C) ∈ {0, 1}∗ × C.

2. For x = (label, C,m) ∈ L̄ the value of Hk(x) is approximately determined
by α(k, label, C), relative to the Hamming metric. Specifically, let Ham(a, b)
denote the Hamming distance of two strings a, b ∈ {0, 1}n. Then there is
an efficient algorithm H ′ that takes as input s = α(k, label, C) and x̄ =
(label, C,m, r) for which C = Encpk(label,m; r) and satisfies:

Pr[Ham(Hk(x), H ′(s, x̄)) ≥ ε · n] = negl(n),

where the probability is taken over choice of k.
3. For any x = (label, C,m) ∈ X \ L, the following two distributions have

statistical distance negligible in n:{
k ← K; s = α(k, label, C) :

(
s,Hk(x)

)}
and

{k ← K; s = α(k, label, C); v ← {0, 1}n : (s, v)} .

3 A PAKE Protocol from Approximate SPH

We use the standard definition of security for PAKE [3, 17, 9].
Here, we show that a modification of the Gennaro-Lindell framework [9] can

be used to construct a PAKE protocol from any CCA-secure encryption scheme
that has associated with it an approximate smooth projective hash function as



Common reference string: pk

Client(w) Server(w)

(VK,SK)← K(1k)

r ← {0, 1}∗

label := VK |Client | Server

C := Encpk(label, w; r) Client |VK |C-
r′ ← {0, 1}∗

label′ := ε

C′ := Encpk(label′, w; r′)

label := VK |Client | Server

k′ ← K; s′ := α(k′, label, C)Server |C′ | s′�
label′ := ε

k ← K; s := α(k, label′, C′)

tk := Hk(label′, C′, w)

⊕Hk′(label, C, w)

sk← {0, 1}`; c := ECC(sk)

∆ := tk⊕ c

σ ← SignSK(C|C′|s′|s|∆) s |∆ |σ -
if VrfyVK(C|C′|s′|s|∆, σ) = 1 :

tk′ := Hk(label′, C′, w)

⊕Hk′(label, C, w)

sk := ECC−1(tk′ ⊕∆)

Fig. 1. A 3-round PAKE protocol. The common session key is sk.

defined in Section 2. A high-level overview of the protocol is given in Figure 1;
a more detailed discussion follows.

Setup. We assume a common reference string is established before any exe-
cutions of the protocol take place. The common reference string consists of a
public key pk for a CCA-secure encryption scheme (Gen,Enc,Dec) that has an
associated ε-approximate smooth projective hash system (K,G,H = {Hk : X →
{0, 1}n}k∈K , S, α : K × ({0, 1}∗×C)→ S). We stress that no parties in the sys-
tem need to hold the secret key corresponding to pk.

Protocol execution. We now describe an execution of the protocol between an
honest client Client and server Server, holding common password w. To begin,
the client runs a key-generation algorithm K for a one-time signature scheme
to generate verification key VK and corresponding secret (signing) key SK. The



client sets label := VK|Client|Server and then encrypts the password w using this
label to obtain ciphertext C. It then sends the message Client|VK|C to the server.

Upon receiving the initial message Client|VK|C from the client, the server
computes its own encryption of the password using label label′ = ε, resulting in
a ciphertext C ′. The server also chooses a random hash key k′ ← K and then
computes the projection s′ := α(k′, label, C). It sends C ′ and s′ to the client.

After receiving the second protocol message from the server, the client chooses
a random hash key k ← K and computes the projection s := α(k, label′, C ′).
At this point it computes a temporary session key tk = Hk(label′, C ′, w) ⊕
Hk′(label, C, w), where Hk(label′, C ′, w) is computed using the known hash key k,
and Hk′(label, C, w) is computed using the randomness r that was used to gen-
erate C. (Recall that C is an honestly generated encryption of w.) Up to this
point, the protocol follows the Gennaro-Lindell framework exactly. As will be-
come clear, however, the server will not be able to recover tk but will instead
only recover some value tk′ that is close to tk; the rest of the client’s computation
is aimed at repairing this defect.

The client chooses a random session key sk ∈ {0, 1}` for some ` to be specified.
Let ECC : {0, 1}` → {0, 1}n be an error-correcting code correcting a 2ε-fraction
of errors. The client computes c := ECC(sk) and sets ∆ := tk⊕c. Finally, it signs
C|C ′|s′|s|∆ and sends s,∆, and the resulting signature σ to the server.

The server verifies σ in the obvious way and rejects if the signature is invalid.
Otherwise, the server computes a temporary session key tk′ analogously to the
way the client did: that is, the server sets tk′ = Hk(label′, C ′, w)⊕Hk′(label, C, w),
where Hk′(label, C, w) is computed using the hash key k′ known to the server,
and Hk(label′, C ′, w) is computed using the randomness r′ that was used to
generate C ′. (Recall that C ′ is an honestly generated encryption of w.) Finally,
the server computes sk := ECC−1(tk′ ⊕∆).

Correctness. We now argue that, in an honest execution of the protocol, the
client and server compute matching session keys with all but negligible probabil-
ity. Approximate correctness of the smooth projective hash function implies that
Hk(label, C, w) as computed by the client is within Hamming distance εn from
Hk(label, C, w) as computed by the server, except with negligible probability.
The same holds for Hk′(label′, C ′, w). Thus, with all but negligible probability
we have Ham(tk, tk′) ≤ 2ε·n. Assuming this is the case we have

Ham(tk′ ⊕∆, c) = Ham(tk′ ⊕∆, tk⊕∆) ≤ 2ε · n,

and so ECC−1(tk′ ⊕∆) = ECC−1(c) = sk.

Security. The proof of security of the protocol follows [17, 9] closely; we sketch
the main ideas. First, as in [17, 9], we note that for a passive adversary (i.e.,
one that simply observes interactions between the server and the client), the
shared session-key is pseudorandom. This is simply because the transcript of
each interaction consists of semantically-secure encryptions of the password w
and the projected keys of the approximate SPH system.

It remains to deal with active (man-in-the-middle) adversaries that modify
the messages sent from the client to the server and back. The crux of our proof,



as in [17, 9], is a combination of the following two observations (for concreteness,
consider an adversary that interacts with a client instance holding password w).

– By the CCA-security of the encryption scheme, the probability that the ad-
versary can construct a new ciphertext that decrypts to the client’s password
w is at most q/|D| + negl(n), where q is the number of on-line attacks and
D is the password dictionary.

– If the adversary sends the client a ciphertext that does not decrypt to the
client’s password, then the session-key computed by the client is statistically
close to uniform conditioned on the adversary’s view.

We defer a complete proof to the full version.
Recalling the definitions from Section 2, note that correctness of the protocol

relies on (approximate) correctness for honestly generated encryptions of the
correct password (i.e., for x ∈ L̄), whereas security requires smoothness for
ciphertexts that do not decrypt to the correct password (i.e., for x 6∈ L).

4 The Learning with Errors Problem

The “learning with errors” (LWE) problem was introduced by Regev [23] as a
generalization of the “learning parity with noise” problem. For positive integers
n and q ≥ 2, a vector s ∈ Znq , and a probability distribution χ on Zq, let As,χ

be the distribution obtained by choosing a vector a ∈ Znq uniformly at random
and a noise term x← χ, and outputting (a, 〈a, s〉+ x) ∈ Znq × Zq.

For an integer q = q(n) and an error distribution χ = χ(n) over Zq, the learn-
ing with errors problem LWEq,χ is defined as follows: Given access to an oracle
that outputs (polynomially many) samples from As,χ for a uniformly random
s ∈ Znq , output s with noticeable probability. The decisional variant of the LWE
problem, denoted distLWEq,χ, is to distinguish samples chosen according to As,χ

for a uniformly random s ∈ Znq from samples chosen according to the uniform
distribution over Znq ×Zq. Regev [23] shows that for q = poly(n) prime, the LWE
and distLWE problems are polynomially equivalent.

Gaussian error distributions. For any r > 0, the density function of a one-
dimensional Gaussian distribution over R is given byDr(x) = 1/r·exp(−π(x/r)2).
In this work we always use a truncated Gaussian distribution, i.e., the Gaussian
distribution Dr whose support is restricted to x such that |x| < r

√
n. The trun-

cated and non-truncated distributions are statistically close, and we drop the
word “truncated” from now on. For β > 0, define Ψβ to be the distribution
on Zq obtained by drawing y ← Dβ and outputting bq · ye (mod q). We write
LWEq,β as an abbreviation for LWEq,Ψβ .

We also define the discrete Gaussian distribution DZm,r over the integer lat-
tice Zm, which assigns probability proportional to

∏
i∈[m]Dr(ei) to each e ∈ Zm.

It is possible to efficiently sample from DZm,r for any r > 0 [10].
Evidence for the hardness of LWEq,β follows from results of Regev [23],

who gave a quantum reduction from approximating certain problems on n-
dimensional lattices in the worst case to within Õ(n/β) factors to solving LWEq,β



for dimension n, subject to the condition that β ·q ≥ 2
√
n. Recently, Peikert [20]

also gave a related classical reduction for similar parameters. For our purposes,
we note that the LWEq,β problem is believed to be hard (given the state-of-the-
art in lattice algorithms) for any polynomial q and inverse-polynomial β (subject
to the above condition).

Matrix notation for LWE. In this paper, we view all our vectors as column
vectors. At times, we find it convenient to describe the LWE problem LWEq,β
using a compact matrix notation: find s given (A,As + x), where A ← Zm×nq

is chosen uniformly and x ← Ψ
m

β . We also use similar notation for the decision
version distLWE.

Connection to lattices. The LWE problem can be thought of as a “bounded-
distance decoding problem” on a particular kind of m-dimensional lattice defined
by the matrix A. Specifically, define the lattice

Λ(A) = {y ∈ Zm : ∃s ∈ Zn s.t. y ≡ AT s (mod q)}.

The LWE problem can then be restated as: given y which is the sum of a lattice
point As and a short “noise vector” x, find the “closest” lattice vector s. One
can show that as long as x is short (say, ||x|| < q/16), there is a unique closest
vector to y (see, e.g., [10]).

4.1 Some Supporting Lemmas

We present two technical lemmas regarding the LWE problem that will be used
to prove smoothness of our (approximate) SPH systems in Sections 5.2 and 6.2.

If m ≥ n log q, the lattice Λ(A) is quite sparse. In fact, we expect most
vectors z ∈ Zmq to be far from Λ(A). The first lemma (originally shown in [23])
formalizes this intuition.

Let dist(z, Λ(A)) denote the distance of the vector z from the lattice Λ(A).
The lemma shows that for most matrices A ∈ Zm×nq , the fraction of vectors
z ∈ Zmq that are “very close” to Λ(B) is “very small”. The proof is by proba-
bilistic method, and appears in the full version.

Lemma 1. Let n, q,m be integers such that m ≥ n log q. For all but a negligible
fraction of matrices A,

Pr
z←Zmq

[dist(z, Λ(A)) ≤ √q/4] ≤ q−(m+n)/2.

Fix a number r > 0, and let e← DZm,r be drawn from the discrete Gaussian
distribution over the integer lattice Zm. If the vector z is (close to) a linear
combination of the columns of A, then given eTA one can (approximately)
predict eT z. The second lemma shows a converse of this statement when r is
large enough. Namely, it says that if z and all its non-zero multiples are far
from the lattice Λ(A), then eTA does not give any information about eT z.
In other words, given eTA (where e ← DZm,r for a large enough r) eT z is



statistically close to random. This lemma was first shown in [10], and was used
in the construction of an oblivious transfer protocol in [21].

More formally, for a matrix A ∈ Zm×nq and a vector z ∈ Zmq , let ∆r(A, z)
denote the statistical distance between the uniform distribution on Zn+1

q and
the distribution of (eTA, eT z), where e← DZm,r. Then,

Lemma 2. [10, Lemma 6.3] Let r ≥ √q · ω(
√

log n). Then for most matrices
A ∈ Zm×nq , the following is true: if z ∈ Zmq is such that for all non-zero a ∈ Zq,
dist(az, Λ(A)) ≥ √q/4, then ∆r(A, z) ≤ negl(n).

5 Approximate Smooth Projective Hashing from Lattices

As a warmup to our main result we first construct a CPA-secure encryption
scheme with an approximate SPH system. The main ideas in our final construc-
tion are already present here.

5.1 A CPA-Secure Encryption Scheme

The encryption scheme we use is a variant of the scheme presented in [10, 20],
and is based on the hardness of the LWE problem. We stress that the novelty of
this work is in constructing an approximate SPH system for this scheme.

We begin by describing a basic encryption scheme having decryption time ex-
ponential in the message length.2 We then modify the scheme so that decryption
can be done in polynomial time.

The message space is Z`q for some integers q, `. In the basic encryption
scheme, the public key consists of a matrix B ∈ Zm×nq , along with ` + 1 vec-
tors u0, . . . ,u` ∈ Zmq . To encrypt a message w = (w1, . . . , w`) ∈ Z`q the sender
chooses a uniformly random vector s ← Znq and an error vector x ← Ψ

m

β . The
ciphertext is

y = Bs +
(
u0 +

∑̀
i=1

wi · ui
)

+ x ∈ Zmq

The scheme is CPA-secure, since the distLWEq,β assumption implies that the
ciphertext is pseudorandom.

The ciphertext produced by the encryption algorithm is a vector y such that
y −

(
u0 +

∑`
i=1 wi · ui

)
is “close” to the lattice Λ(B) (the exact definition of

“close” depends on the error parameter β). Decrypting a ciphertext is done by
finding (via exhaustive search over the message space) a message w for which
y−

(
u0 +

∑`
i=1 wi ·ui

)
is “close” to Λ(B), using the following trapdoor structure

first discovered by Ajtai [1], and later improved by Alwen and Peikert [2].

2 Interestingly, for our eventual application to PAKE a CCA-secure version of this
scheme would suffice since the scheme has the property that it is possible to efficiently
tell whether a given ciphertext is an encryption of a given message (and this is all
that is needed to prove security for the protocol in Section 3).



Lemma 3 ([1, 2]). Fix integers q ≥ 2 and m ≥ 4n log2 q. There is a ppt
algorithm TrapSamp(1n, q,m) that outputs matrices B ∈ Zm×nq and T ∈ Zm×m
such that the distribution of B is statistically close to the uniform distribution
over Zm×nq , and there is an algorithm BDDSolve(T, ·) that takes as input a vector
z ∈ Zm and does the following:

– if there is a vector s ∈ Zm such that dist(z,Bs (mod q)) ≤ √q/4, then the
output is s.

– if for every vector s ∈ Zm, dist(z,Bs) >
√
q/4, then the output is ⊥.

Proof. T is a full-rank matrix such that (a) each row of ti has bounded `2 norm,
i.e., ||ti|| ≤ 4

√
m, and (b) TB = 0 (mod q). [1, 2] showed how to sample a

pair (B,T) such that B is statistically close to uniform and T has the above
properties.

Given such a matrix T and a vector z ∈ Zm, BDDSolve(T, z) works as follows:

– first, compute z′ = q ·T−1 · b(T · z) /qe (mod q).
– Compute (using Gaussian elimination) a vector s ∈ Znq such that z′ = Bs

(if such exists; else, output ⊥).
– If dist(z,Bs) ≤ √q/4, then output s else output ⊥.

First, if z = Bs + x for some s ∈ Znq and x ∈ Zmq such that ||x|| ≤ √q/4, then
the procedure above computes

z′ = q ·T−1 · b(T · (Bs + x)) /qe (mod q) = Bs (mod q)

This is because each co-ordinate of Tx has magnitude at most ||T|| · ||x|| ≤
4
√
m · √q/4� q, and consequently,

b(T · (Bs + x)) /qe = b(T ·Bs) /qe = T · (Bs)/q

where the final equality is because TB = 0 (mod q).
Finally, if dist(z, Λ(B)) >

√
q/4, then the last line of the procedure above

causes the output to be ⊥ always. ut

We now modify the decryption algorithm in two ways. The first of these
modifications ensures that the decryption algorithm runs in polynomial time,
and the second is needed for our approximate SPH system.

First, to avoid the exponential dependence of the decryption time on the
message length, we modify the encryption scheme by letting the public key con-
tain the matrix A = [B|U], where the columns of U ∈ Zm×(`+1)

q are the vectors
u0, . . . ,u`. The secret-key is a trapdoor for the entire matrix A (as opposed to
just B as in the previous description). The ciphertext from the previous descrip-
tion can then be written as

y = AT

 s
1
w

+ x ∈ Zmq



and decryption uses the BDDSolve procedure from Lemma 3 to recover the vec-
tor (s, 1,m). The crucial point is that, during key generation, the receiver can
generate the matrix A along with an appropriate trapdoor for decryption.

Secondly, we relax the decryption algorithm so that it finds an a ∈ Zq and a
message w for which a

(
y−(u0 +

∑`
i=1 wi ·ui)

)
is “close” to Λ(B). This modified

decryption algorithm correctly decrypts the ciphertexts generated by Enc (which
corresponds to the case a = 1), but it also decrypts ciphertexts that would never
be output by Enc. This modification to the decryption algorithm enables us to
prove smoothness for the approximate SPH system.

Parameters. Let n be the security parameter, and ` = n be the message length.
The parameters of the system are a prime q = q(n, `), a positive integer m =
m(n, `), and a Gaussian error parameter β = β(n, `) ∈ (0, 1] that defines a
distribution Ψβ . For concrete instantiations of these parameters, see Theorem 1.

We now describe the scheme:

Key generation. Choose a matrix A ∈ Zm×(n+`+1)
q together with the trap-

door T by running (A,T) ← TrapSamp(1m, 1n+`+1, q), where TrapSamp is as
described in Lemma 3. Let the public key be A and the secret-key is T.

Encryption. To encrypt the message w ∈ Z`q with respect to a public key as
above, the sender chooses s ← Znq uniformly at random, and an error vector
x← Ψ

mn

β . The ciphertext is

y = A ·

 s
1
w

+ x (mod q)

Decryption. The decryption algorithm works as below.

for a = 1 to q − 1 do

Compute

 s
a′

w

← BDDSolve(T, ay)

if a′ = a then
output w/a and stop

else try the next value of a
end
If the above fails for all a, output ⊥

Theorem 1. Let n, `,m, q, β be chosen such that m ≥ 4(n + `) log q and β <
1/(2 · m2n · ω(

√
log n)). Then the scheme above is a CCA-secure encryption

scheme assuming the hardness of distLWEn,m,q,β.

5.2 An Approximate SPH System

Fix a public key A ∈ Zm×(n+`+1)
q for the system (where we write A = [B|U], as

usual), and a dictionary D def= Z`q. Sets X, Lm and Lm are defined in Section 2.



(For our purposes, all vectors y ∈ Zmq are valid ciphertexts). Let r be such that

√
q · ω(

√
log n) ≤ r ≤ ε/(8 ·mn2 · β).

(Looking ahead, we remark that the upper bound on r will be used for correct-
ness, and the lower bound will be used for smoothness.)

A key for the SPH system is a k-tuple of vectors (e1, . . . , ek) where each
ei ← DZm,r is drawn independently from the discrete Gaussian distribution. The
reader may want to keep in mind the inverse relationship between the parameters
r and β: the larger the error parameter β in the encryption scheme, the smaller
the discrete-Gaussian radius r (and vice versa).

1. The projection set S def= (Znq )k. For a key (e1, . . . , ek) ∈ (Zmq )k, the projection
is α(e1, . . . , ek) = (u1, . . . ,uk), where ui = BTei.

2. We now define the smooth projective hash function H = {Hk}k∈K . On input
a key (e1, . . . , ek) ∈ K and a ciphertext c = (label,y,m), the hash function
is computed as follows. First compute

zi = eTi

[
y −U ·

(
1
m

)]
∈ Zq.

Treat zi as a number in [−(q−1)/2 . . . (q−1)/2] and output b1 . . . bk ∈ {0, 1}k
where

bi =
{

0 if zi < 0
1 if zi > 0 .

3. On input a projected key (u1, . . . ,uk) ∈ S, a ciphertext c = (label,y,m)
and a witness s ∈ Znq for the ciphertext, the hash function is computed as
H ′u(c, s) = b1 . . . bk where

bi =
{

0 if uTi s < 0
1 if uTi s > 0 .

Theorem 2. Let the parameters n, `,m, q, β be as in Theorem 1, and r be as
above. Then, H = {Hk}k∈K is an ε-approximate smooth projective hash system.

Proof. Clearly, the following procedures can all be done in polynomial time:
(1) sampling a uniform key for the hash function (e1, . . . , ek) ← (DZm,r)k,
(2) computing the hash function H on input the key (e1, . . . , ek) and a cipher-
text c, (3) computing the projection-key α(e1, . . . , ek), and (4) computing the
hash function given the projected key (u1, . . . ,uk), a ciphertext c, and a witness
s for the ciphertext c.

Approximate correctness. We now show ε-approximate correctness. Consider
any (label,y,m) ∈ L, i.e., where y is a ciphertext produced by the encryption
algorithm on input the message m. This means that y can be written as

y = B · s + U ·
(

1
m

)
+ x (mod q) (1)



where ||x|| ≤ βq ·
√
mn (recall we work with truncated Gaussians).

We first show that for each i ∈ [k], the values zi (computed using the key)
and sTui (computed using the projected key) are “close”. More precisely, we
show that |zi − uTi s| ≤ ε/2 · (q/4). This follows because

|zi − uTi s| = |(eTi (Bs + x)− uTi s| = |eTi x|, (2)

where the first equality uses the fact that y can be written as in Equation (1),
and the second uses the fact that ui = eTi B. Now, |eTi x| ≤ ||ei||·||x|| ≤ (r

√
mn)·

(βq
√
mn) < ε/2 · q/4.

Each ui is statistically close to uniform, by an application of the leftover
hash lemma; in particular, this means that sTui ∈ Zq is uniformly random.3 Let
bi be the ith bit of H(e1,...,ek)(c) and b′i be the ith bit of H ′(u1,...,uk)

(c, s). Using
Equation (2), we see that the probability that bi 6= b′i (over the randomness
of ei) is at most ε/2. Thus, by a Chernoff bound, the Hamming distance between
H(e1,...,ek)(c) and H ′(u1,...,uk)

(c, s) is at most εk with overwhelming probability.
This shows approximate correctness.

Smoothness. Consider any (label,y,m) ∈ X \L. By definition of L, this means
that the decryption algorithm, on input (label,y,m) and any possible secret key
sk, does not output m. In other words, the decryption algorithm outputs either
⊥, or a message m′ 6= m. Define

z := y −U ·
(

1
m

)
and z′ := y −U ·

(
1
m′

)
.

We will show that for every non-zero a ∈ Zq, az is far from the Λ(B). More
precisely, we will show that for every non-zero a ∈ Zq,

dist(az, Λ(B)) ≥ √q/4.

An application of Lemma 2 then shows that for every i ∈ [k], the pair (eTi B, eTi z)
is statistically close to the uniform distribution over Zn+1

q .
Let us analyze the two cases:

– The output of the decryption algorithm is ⊥. In particular, this means that
for every a ∈ [1 . . . q − 1], the vector az is far from Λ(B).

– The output of the decryption algorithm is a message m′ 6= m. This could
happen only if there is an a′ ∈ Zq such that a′z′ is close to the lattice Λ(B).
Suppose, for contradiction, that az is close to Λ(B) as well. The claim below
shows that this cannot happen with high probability over the random choice
of U. Thus, with high probability, az is far from Λ(B).

Claim. The following event happens with negligible probability over the uni-
formly random choice of U ∈ Zm×`q : there exist numbers a, a′ ∈ Zq, vectors
m 6= m′ ∈ Z`q and a vector y ∈ Zmq s.t.

dist(az, Λ(B)) ≤ √q/4 and dist(a′z′, Λ(B)) ≤ √q/4.
3 This holds only for s 6= 0. We omit consideration of this technical issue for the

purposes of this paper.



Proof. Fix some a, a′ ∈ Zq, m 6= m′ ∈ Z`q and y ∈ Zmq . We first observe

that since the vectors
(

1
m

)
and

(
1
m′

)
are linearly independent and U

is uniformly random, the vectors az and a′z′ are uniformly random and
(statistically) independent. Applying Lemma 1, we get that

PrU∈Zm×`q
[dist(az, Λ(B))

√
q/4 and dist(a′z′, Λ(B)) ≤ √q/4]

≤ (q−m/2 · negl(n))2 = q−m · negl(n).

Now, an application of union bound shows that the required probability is
at most q2 · q2` · qm · (q−m · negl(n)), which is negligible in n. ut

This completes the proof of Theorem 2. ut

6 A CCA-Secure Encryption Scheme based on Lattices

In this section we describe a CCA-secure encryption scheme, along with an
approximate SPH system, based on the hardness of the LWE problem. The CCA-
secure encryption scheme builds on the CPA-secure encryption scheme described
in Section 5.1, and the SPH system is the same as the one from Section 5.2 with
a few modifications.

6.1 A CCA-Secure Encryption Scheme

The encryption scheme is similar to the schemes in [20, 12] (which, themselves,
are instantiations of the general construction of Rosen and Segev [24]). The main
difference between [20, 12] and our scheme is the relaxed notion of decryption,
which we already use in the CPA-secure construction in Section 5.1. A formal
description of the scheme follows.

Parameters. Let n be the security parameter, and ` = poly(n) be the message
length. The parameters of the system are a prime q = q(n, `), an integer m =
m(n, `) ∈ Z+, and a Gaussian error parameter β = β(n, `) ∈ (0, 1] that defines a
distribution Ψβ . For concrete instantiations of these parameters, see Theorem 3.

Key generation. For i ∈ [n] and b ∈ {0, 1}, choose 2n matrices Ai,b ←
Zm×(n+`+1)
q together with short bases Si,b ∈ Zm×m for Λ⊥(Ai,b). More pre-

cisely, let
(Ai,b,Si,b)← TrapSamp(1m, 1n+`+1, q),

where TrapSamp is as described in Lemma 3. Output the public and secret keys

pk = {Ai,0,Ai,1}i∈[n] and sk = {S1,0,S1,1}.

(Note that the receiver does not use the trapdoors for i > 1 and so the {Ai,b}i>1

could, in fact, simply be chosen at random.)



Encryption. To encrypt the message w ∈ Z`q with respect to a public key as
above, the sender first generates a key pair (VK,SK)← SigKeyGen(1n) for a one-
time signature scheme; let VK = VK1, . . . ,VKn denote the bits of the verification
key. Define the matrix AVK as

AVK =

A1,VK1

...
An,VKn

 .
Choose s← Znq uniformly at random, and choose an error vector x← Ψ

mn

β . The
ciphertext is (V K,y, σ) where

y = AVK ·

 s
1
w

+ x (mod q)

and σ = SignSK(y).

Decryption. To decrypt a ciphertext (VK,y, σ), first verify that σ is a correct
signature on y and output ⊥ if not. Otherwise, parse y into n consecutive blocks
y1, . . . ,yn, where yi ∈ Zmq . Then,

for a = 1 to q − 1 do

Compute t :=

 s
a′

w

← BDDSolve(T1,VK1 , ay)

if a′ = a then
if ||Ai,VKi · t− ayi|| ≤

√
q/4 for all i ∈ [n] then

output w/a and stop
else try the next value of a

end
If the above fails for all a, output ⊥

Theorem 3. Let n, `,m, q, β be such that m ≥ 4(n + `) log2 q and β < 1/(2 ·
m2n · ω(

√
log n)). Then, the scheme above is a CCA-secure encryption scheme

assuming the hardness of distLWEn,m,q,β.

The proof of correctness is similar to that of the CPA-secure encryption
scheme. CCA-security follows from the ideas of [20, 12]. As we observed, the
main change between our encryption scheme and the one in [20, 12] is that the
decryption algorithm tries to decrypt “all multiples of the ciphertext”. We defer
the details of the proof to the full version.

6.2 An Approximate SPH System

Fix a public key {Ai,0,Ai,1}i∈[n], and a password dictionary D def= Z`q. The main
difference from the presentation in Section 5.2 is in the definition of cipher-
text validity: now, a labeled ciphertext (label,VK,y, σ) is defined to be valid



if VerifyVK(label||y, σ) = accept. Clearly, all honestly generated ciphertexts are
valid and this condition can be checked in polynomial time. We define the sets
X, Lm, and Lm for m ∈ D exactly as in Section 2.

As in Section 5.2, a hash key is a k-tuple of vectors (e1, . . . , ek) where each
ei ← DZm,r is drawn independently from the discrete Gaussian distribution.
The projection function and the hash computation are the same, except that
here they use the matrices BVK and UVK respectively (instead of B and U in
Section 5.2). In particular, this means that the projection function depends on
the ciphertext (as allowed by the definition of an approximate SPH). The proof
of the theorem below follows analogously to that of Theorem 2; we defer the
proof to the full version of this paper.

Theorem 4. Let m ≥ 4(n+ `) log q, β < 1/(2 ·m2n · ω(
√

log n)) and r be such
that √

q · ω(
√

log n) ≤ r ≤ ε/(8 ·mn2 · β).

Then H = {Hk}k∈K is an ε-approximate smooth projective hash system.
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