
A Framework for Efficient and Composable Oblivious Transfer

Chris Peikert
SRI International

Vinod Vaikuntanathan
MIT∗

Brent Waters†

SRI International

September 20, 2007

Abstract

We propose a simple, general, and unified framework for constructing oblivious transfer
(OT) protocols that are efficient, universally composable, and generally realizable from a variety
of standard number-theoretic assumptions, such as the decisional Diffie-Hellman assumption
and the Quadratic Residuosity assumption. More interestingly, we can also instantiate our
framework with worst-case complexity assumptions relating to lattices.

Our OT protocols are round-optimal (one message each way), efficient in the parties’ commu-
nication and local computation, and use only one reference string for an unbounded number of
executions. Furthermore, the protocols can provide unconditional security to either the sender
or receiver, simply by changing the distribution of the reference string. (For several versions of
the protocol, even a common random string suffices.)

One of our key technical contributions is a simple and novel abstraction that we call a
dual-mode cryptosystem. We implement dual-mode cryptosystems by taking a unified view
of several cryptosystems in the literature that have what we call “message-lossy” public keys,
whose defining property is that a ciphertext produced under such a “key” carries no information
(even statistically) about the encrypted message.

As a contribution of independent interest, we also provide a multi-bit version of Regev’s
lattice-based cryptosystem (STOC 2005) whose time and space efficiency are improved by a
linear factor. In particular, the amortized runtime per message bit is only Õ(n) bit operations,
and the ciphertext expansion can be made as small as a constant.

∗Work performed while at SRI International.
†Supported by NSF CNS-0524252, CNS-0716199, and the US Army Research Office under the CyberTA Grant

No. W911NF-06-1-0316.

1

1 Introduction

Secure multi-party computation (MPC) [GMW87, BGW88] is one of the oldest and most important
concepts in cryptography. A secure MPC protocol allows a set of untrusted parties to compute any
function over their respective inputs, both privately and robustly. In principle, this can be used
to construct almost any type of on-line cryptographic application between mutually distrustful
parties.

Recently, there has been a renewed interest in bringing secure two-party computation into
practice. Malhki et al. created Fairplay [MNPS04], a software tool that compiles a program into a
protocol that two parties can run over the Internet, using Yao’s garbled circuit technique [Yao86].
However, Fairplay offers only very weak soundness guarantees in the presence of a malicious party.
More recently, Lindell and Pinkas [LP07] constructed an efficient two-party protocol that is secure
against malicious adversaries by replacing inefficient zero knowledge proofs with cut-and-choose
techniques and combinatorial analysis. These works demonstrate that the primary bottleneck for
constructing efficient two-party computation is in the underlying oblivious transfer (OT) protocol.

Oblivious transfer was first introduced by Rabin [Rab81] and has received considerable attention
from the research community; see, e.g., [Kil88, Cré87, NP01]. Oblivious transfer allows one party,
called the receiver, to get exactly one of two (or more) values from another other party, called the
sender. The receiver is oblivious to the other value(s), and the sender is oblivious to which value
was received. OT protocols that are secure against semi-honest adversaries can be constructed from
(enhanced) trapdoor permutations and made robust to malicious adversaries using zero knowledge
proofs [GMW87]; however, this general approach is very inefficient.

Naor and Pinkas [NP01] first constructed efficient OT protocols based on the decisional Diffie-
Hellman (DDH) assumption. Generalizing their approach, Tauman Kalai [Kal05] presented efficient
OT protocols based on a variety of concrete assumptions, building upon the projective hash frame-
work of Cramer and Shoup [CS02]. The primary drawback of these constructions is that their
security is only proven according to a “half-simulation” definition of security, where an ideal world
simulator is demonstrated only in the case of a cheating receiver. Protocols that are proven secure in
the half-simulation model will not necessarily be secure when integrated into a larger protocol, such
as a multi-party computation. Indeed, Naor and Pinkas [NP01] point out that a half-simulation
secure protocol may fall to selective-failure attacks, where the sender causes a failure that depends
upon the receiver’s selection.

Recently, Camenisch, Neven, and shelat [CNS07] proposed practical OT protocols that are
secure according to a full-simulation definition. They provided constructions that are based on
unique blind signatures in the random oracle model, and give standard model constructions using
bilinear groups. Subsequently, Green and Hohenberger [GH07] realized simulation-secure OT under
a weaker set of static assumptions on bilinear groups, and developed a framework for constructing
OT from blind IBE with efficient proofs of knowledge. One may securely plug these schemes into
an MPC protocol by using sequential OT invocations, but this results in a protocol with a large
number of rounds. Unfortunately, these schemes are not known to be secure when composed (say)
in parallel, due to their use of rewinding in the simulation.

In summary, the literature still lacks an oblivious transfer protocol enjoying all three of the
following desirable properties:

1. Secure and composable: Oblivious transfer protocols should be proven secure according
to a full simulation-based definition, and should securely compose (e.g., in parallel) with each

2

other and with other protocols such as MPC.

2. Efficient: OT protocols should be efficient in the local computations of the parties, the
communication complexity and number of rounds, and their usage of any external resources.

3. Generally realizable: It is important to have a general framework for oblivious transfer that
is realizeable under a variety of cryptographic assumptions. This justifies the generality of
the approach, and can also protect against future advances in cryptanalysis, such as improved
algorithms for specific problems or the development of a large-scale quantum computer.

1.1 Our Approach

We present a new framework for constructing efficient, secure, and generally realizable oblivious
transfer protocols. We work in Canetti’s universal composability (UC) model [Can01] with static
corruptions.

Our protocols are based on a new abstraction that we call a dual-mode cryptosystem. Such a
system starts with a setup phase that produces a common reference string (CRS), which is made
available to all parties (we discuss this assumption in more detail below). The CRS is created
acccording to one of two possible modes, called the extraction mode and the decryption mode.

The OT protocol is very simple, and works roughly as follows (in both modes): the receiver
uses its selection bit (and the CRS) to generate a “base” public key and secret key, and delivers the
public key to the sender. The sender uses this key, along with the CRS, to compute two “derived”
public keys. It encrypts each of its values under the respective key, and delivers the ciphertexts to
the receiver. Finally, the receiver uses its secret key to decrypt the appropriate value. Note that
the protocol consists of only two rounds (one message in each direction).

A dual-mode system has three main security properties. When the system is set up in extraction
mode, at least one of the sender’s values is statistically hidden by the encryption. Moreover, a
simulator that produces the CRS obtain a trapdoor that allows it to extract, from the receiver’s
message, which of the values will be hidden. This allows us to prove unconditional security against
even an unbounded cheating receiver.

When the system is in decryption mode, the honest receiver’s selection bit is instead statistically
hidden by the base key. On the other hand, both ciphertexts will contain full information about their
respective encrypted values; furthermore, the creator of the CRS can use a trapdoor to decrypt both
ciphertexts. This allows us to prove unconditional security against even an unbounded cheating
sender.

Finally, a dual-mode system has the property that no bounded adversary can distinguish be-
tween extraction mode and decryption mode (note that this is the only computational property
required of the system). The protocol can therefore provide unconditional security for either the
sender or the receiver, depending on the chosen mode. Computational security for the other
party follows directly from statistical security in the other mode, and the indistinguishability of
modes. (Groth et al. [GOS06] used a similar “parameter-switching” argument in the context of
non-interactive zero knowledge.)

Our dual-mode abstraction has a number of nice properties and consequences. First, the de-
finition is quite simple: for any candidate construction, we need only show three simple security
properties, only one of which depends on a computational assumption. Second, the symmetric na-
ture of our definition yields protocols that can provide unconditional security for either the sender

3

or receiver, simply by choosing the appropriate distribution of the CRS. Third, by working in the
UC framework, we automatically get security under arbitrary composition, e.g., in parallel and/or
with an MPC protocol. Fourth, we are able to efficiently realize our abstraction under any one of
several standard cryptographic assumptions, including the DDH assumption in cyclic groups, the
quadratic residuosity (QR) assumption, and even worst-case assumptions on lattices.

The advantage of secure composition deserves some additional discussion. In terms of efficiency,
the main nice consequence is that we can securely compose several invocations in parallel with each
other. Because our protocols are only two rounds, we immediately obtain (using standard tools and
techniques) round-optimal secure two-party computation in the UC model (cf. [HK07]). Another
benefit of composition in the UC model is that we actually prove our protocol secure with joint
state [CR03], i.e., every invocation of the protocol between the same two parties can use the same
CRS.

Of course, our entire system depends upon a trusted setup of the CRS. We believe that in
context, this assumption is reasonable (or even quite mild). First, it is known that secure oblivious
transfer in the plain UC model requires some type of setup assumption [CF01]. Second, our
protocols can use the same CRS for an unbounded number of OT invocations between two specific
parties, meaning that the CRS can be produced once and for all time. Third, several of our
instantiations require only a common random string, which may be obtainable without a trusted
party via, e.g., a natural process.

1.2 Techniques

In constructing dual-mode systems from various assumptions, we build upon several existing public
key cryptosystems that all have what we call message-lossy public keys. Their defining property is
that a ciphertext produced under such a key carries no information (even statistically) about the
encrypted message. More precisely, the distribution of an encryption of m0 under pk is statistically
close to that of an encryption of m1. Several cryptosystems, ranging from a non-IBE variant of
Cocks’ scheme [Coc01] to those based on lattices [AD97, Reg04, Reg05], use message-lossy keys as
a key component of their security proofs.

In our dual-mode constructions, message-lossy keys actually play a crucial role in the protocol
itself. In extraction mode, the CRS will be constructed to guarantee that at least one of the derived
keys is message-lossy; this ensures statistical security for the sender. In decryption mode, neither
of the public keys will be truly message-lossy, but the indistinguishability of modes will guarantee
that at least one value is computationally hidden from a bounded cheating receiver.

For our constructions based on DDH and QR, we obtain dual-mode systems via relatively
straightforward abstraction and modification of the Naor-Pinkas OT protocol [NP01] and Cocks’
identity-based cryptosystem [Coc01], respectively. For these systems, we have a precise characteri-
zation of message-lossy keys. For example, a public key that is a DDH tuple produces decryptable
ciphertexts, whereas a public key that is not a DDH tuple is message-lossy.

Our lattice-based constructions build off of a cryptosystem of Regev [Reg05], and are more
subtle. In particular, we do not have an explicit characterization of message-lossy keys for this
cryptosystem. However, we are able to choose the parameters so that all but an extremely small
fraction of keys are message-lossy. By a counting argument, we can then guarantee that for almost
all choices of the CRS (in extraction mode), the at least one of the derived keys is message-lossy.
See Section 7 for details.

As an additional contribution of independent interest, we give a multi-bit version of Regev’s

4

cryptosystem whose time and space efficiency is improved by a linear factor in the security para-
meter n. This yields a very efficient cryptosystem, in which the amortized runtime per message bit
is only Õ(n) bit operations, and the size of the ciphertext is only a constant factor larger than the
message. The public key size and underlying lattice assumptions remain essentially unchanged.

1.3 Organization

In Section 2 we give background that is relevant to the entire paper. In Section 3 we define our
new abstraction called dual-mode encryption. In Section 4 we present our OT protocol based on
dual-mode encryption and prove it secure in the UC framework. In Sections 5 and 6 we construct
dual-mode encryption based on the DDH and QR assumptions, respectively. In Section 7 we
describe our efficient lattice-based cryptosystem and construct a dual-mode cryptosystem from it.

2 Preliminaries

2.1 Notation

We let N denote the natural numbers. For n ∈ N, [n] denotes the set {1, . . . , n}. We use standard
O, Ω, o, and ω notation to classify the growth of functions. We say that f = Õ(g) if f = O(g logc n)
for some fixed constant c. We let poly(n) denote an unspecified function f(n) = O(nc) for some
constant c.

The security parameter will be denoted by n throughout the paper. We let negl(n) denote
some unspecified function f(n) such that f = o(n−c) for every fixed constant c, saying that such a
function is negligible (in n). We say that a probability is overwhelming if it is 1− negl(n).

2.2 The Universal Composability Framework (UC)

We work in the standard universal composability framework of Canetti [Can01] with static cor-
ruptions of parties. For consistency, we use the definition of computational indistinguishability,
denoted by

c
≈, from that work. The UC framework defines a probabilistic poly-time (PPT) en-

vironment machine Z that oversees the execution of a protocol in one of two worlds. The “ideal
world” execution involves “dummy parties” (some of whom may be corrupted by an ideal adversary
S) interacting with a functionality F . The “real world” execution involves PPT parties (some of
whom may be corrupted by a PPT real world adversary A) interacting only with each other in
some protocol π. We refer to [Can01] for a detailed description of the executions, and a definition
of the real world ensemble EXECπ,A,Z and the ideal world ensemble IDEALF ,S,Z . The notion of a
protocol π securely emulating a functionality F is as follows:

Definition 2.1. Let F be a functionality. A protocol π is said to UC-realize F if for any adversary
A, there exists a simulator S such that for all environments Z,

IDEALF ,S,Z
c
≈ EXECπ,A,Z .

The common reference string functionality FDCRS produces a string with a fixed distribution
that can be sampled by a PPT algorithm D. Its definition is given in Figure 1.

Oblivious Transfer (OT) is a two-party functionality, involving a sender S with input x0, x1

and a receiver R with an input σ ∈ {0, 1}. The receiver R learns xσ (and nothing else), and the

5

Functionality FDCRS

FDCRS runs with parties P1, . . . , Pn and is parametrized by an algorithm D.

• When receiving a message (sid, Pi, Pj) from Pi, let crs ← D(1n), send (sid, crs) to Pi and
send (crs, Pi, Pj) to the adversary. Next, when receiving (sid, Pi, Pj) from Pj (and only Pj),
send (sid, crs) to Pj and to the adversary, and halt.

Figure 1: The common reference string functionality FDCRS [CR03].

sender S learns nothing at all. These requirements are captured by the specification of the OT
functionality FOT from [CLOS02], given in Figure 2

Functionality FOT

FOT interacts with a sender S and a receiver R.

• Upon receiving a message (sid, sender, x0, x1) from S, where each xi ∈ {0, 1}`, store (x0, x1)
(The lengths of the strings ` is fixed and known to all parties).

• Upon receiving a message (sid, receiver, σ) from R, check if a (sid, sender, . . .) message was
previously sent. If yes, send (sid, xσ) to R and (sid) to the adversary S and halt. If not,
send nothing to R (but continue running).

Figure 2: The oblivious transfer functionality FOT [CLOS02].

Our OT protocols operate in the common reference string model, or, in the terminology
of [Can01], the FCRS-hybrid model. For efficiency, we would like to reuse the same common refer-
ence string for distinct invocations of oblivious transfer whenever possible. As described in [CR03],
this can be achieved by designing a protocol for the multi-session extension F̂OT of the OT func-
tionality FOT. Intuitively, F̂OT acts as a “wrapper” around any number of independent executions
of FOT, and coordinates their interactions with the parties via subsessions (specified by a parameter
ssid) of a single session (specified by sid).

The UC theorem with joint state (JUC theorem) [CR03] says that any protocol π operating
in the FOT-hybrid model can be securely emulated in the real world by appropriately composing
π with a single execution of a protocol ρ implementing F̂OT. This single instance of ρ might use
fewer resources (such as common reference strings) than several independent invocations of some
other protocol that only realizes FOT; in fact, the protocols ρ that we specify will do exactly this.

3 Dual-Mode Encryption

Here we describe our new abstraction, called a dual-mode cryptosystem. Such a cryptosystem
is initialized in a trusted setup phase, which produces a common string crs known to all parties
along with some auxiliary “trapdoor” information t (which is only used in the security proof). The
string crs may be either uniformly random or from a prescribed distribution, depending on the
concrete scheme. The cryptosystem can be set up in one of two possible modes: extraction mode

6

or decryption mode. The first crucial security property of a dual-mode cryptosystem is that no
(efficient) adversary can distinguish, given the crs, between the modes.

Once the system has been set up and the crs made available, the system operates much like
a standard public-key cryptosystem, but with an added notion that we call encryption branches.
When a party generates a public/secret key pair, it specifies to the key generation algorithm a
message-preserving branch σ ∈ {0, 1}; the resulting secret key sk will correspond to that branch of
the public key pk. When encrypting a message under pk, the encrypter similarly specifies a branch
b ∈ {0, 1} on which to encrypt the message. Essentially, ciphertexts produced on branch b = σ can
be decrypted using sk, while those on the other branch cannot. Precisely what this means depends
on the mode of the system.

In extraction mode, branch b 6= σ is what we call message-lossy. That is, encrypting on branch b
loses all information about the encrypted message — not only in the sense of semantic security, but
statistically. Moreover, the extraction mode trapdoor allows one to find a message-lossy branch of
any given public key — even a malformed one that could never be produced by the key generator.

In decryption mode, however, the trapdoor allows one to circumvent lossiness. Specifically,
given the trapdoor, one can generate a public key pk and corresponding secret keys sk0, sk1 that
enable decryption on both branches 0 and 1 (respectively). Moreover, the distribution of the key
pair (pk, skσ) is statistically close to that of an “honestly-generated” key pair with decryption
branch σ, for both values of σ ∈ {0, 1}.

We now proceed more formally. A dual-mode cryptosystem consists of a tuple of probabilistic
algorithms (Setup,KeyGen,Enc,Dec,FindLossy,TrapKeyGen) having the following interfaces:

• Setup(1n, µ), given security parameter n and mode µ ∈ {0, 1}, outputs (crs, t). The crs is a
common string for the remaining algorithms, and t is a trapdoor value that enables either
the FindLossy or TrapKeyGen algorithm, depending on the selected mode.

For notational convenience, we define a separate extraction mode setup algorithm SetupExt(·) :=
Setup(·, 0) and a decryption mode setup algorithm SetupDec(·) := Setup(·, 1).

All the remaining algorithms take crs as their first input, but for notational clarity, we often
omit it in their lists of arguments.

• KeyGen(σ), given a desired message-preserving branch value σ ∈ {0, 1}, outputs (pk, sk) where
pk is a public encryption key and sk is a corresponding secret decryption key for messages
encrypted on branch σ.

• Enc(pk, b,m), given a public key pk, a branch value b ∈ {0, 1}, and a message m ∈ {0, 1}`,
outputs a ciphertext c encrypted on branch b.

• Dec(sk, c), given a secret key sk and a ciphertext c, outputs a message m ∈ {0, 1}`.

• FindLossy(t, pk), given a trapdoor t and some (possibly even malformed) public key pk, out-
puts a branch value b ∈ {0, 1} corresponding to a message-lossy branch of pk.

• TrapKeyGen(t), given a trapdoor t, outputs (pk, sk0, sk1), where pk is a public encryption key
and sk0, sk1 are corresponding secret decryption keys for branches 0 and 1, respectively.

We now describe the required security properties.

Definition 3.1 (Dual-Mode Encryption). A dual-mode cryptosystem is a tuple of algorithms de-
scribed above that satisfy the following properties:

7

1. Completeness for message-preserving branch: For every µ ∈ {0, 1}, every (crs, t) ←
Setup(1n, µ), every σ ∈ {0, 1}, every (pk, sk)← KeyGen(σ), and every m ∈ {0, 1}`, decryption
is correct on the message-preserving branch σ, i.e., Dec(sk,Enc(pk, σ, m)) = m.

It is also suffices for decryption to be correct with overwhelming probability over the random-
ness of the entire experiment.

2. Indistinguishability of modes: the first outputs of SetupExt and SetupDec are computa-
tionally indistinguishable, i.e., SetupExt1(1n)

c
≈ SetupDec1(1n).

3. (Extraction mode) Trapdoor extraction of message-lossy branch: For every (crs, t)←
SetupExt(1n) and every (possibly malformed) pk, FindLossy(t, pk) outputs a branch value
b ∈ {0, 1} such that Enc(pk, b, ·) is message-lossy. Namely, for every m0,m1 ∈ {0, 1}`,
Enc(pk, b,m0)

s
≈ Enc(pk, b,m1).

4. (Decryption mode) Trapdoor generation of keys decryptable on both branches:
For every (crs, t) ← SetupDec(1n), TrapKeyGen(t) outputs (pk, sk0, sk1) such that for every
σ ∈ {0, 1}, (pk, skσ)

s
≈ KeyGen(σ).

It is straightforward to generalize these definitions to larger sets {0, 1}k of branches, for k > 1
(in this generalization, FindLossy would return 2k−1 different branches that are all message-lossy).
Such a dual-mode cryptosystem would yield a 1-out-of-2k oblivious transfer in an analogous way. All
of our constructions can be suitably modified to satisfy the generalized definition; for simplicity,
we will concentrate on the branch set {0, 1} throughout the paper, briefly noting inline how to
generalize each construction.

4 Oblivious Transfer Protocol

Here we construct a protocol dm that emulates the multi-session functionality F̂OT functionality
in the FCRS-hybrid model. Let (Setup,KeyGen,Enc,Dec,FindLossy,TrapKeyGen) be a dual-mode
cryptosystem. The dm protocol is given in Figure 3.

The protocol actually can operate in one of two modes, depending only on the distribution of the
CRS that is used. In the extraction mode, the receiver’s security is computational and the sender’s
security is statistical, i.e., security is guaranteed even against an unbounded cheating receiver. In
decryption mode, the security properties are reversed: the sender enjoys computational security,
while the receiver’s security is statistical (i.e., holds against an unbounded cheating sender).

To implement the two modes, we define two different instantiations of FDCRS that produce
common strings according to the appropriate setup algorithm: Fext

CRS uses D = SetupExt1, and
Fdec

CRS uses D = SetupDec1.

Theorem 4.1. Let mode ∈ {ext, dec}. Protocol dmmode securely realizes the functionality F̂OT in
the Fmode

CRS -hybrid model.
For mode = ext, the sender’s security is unconditional and the receiver’s security is computa-

tional; for mode = dec, the security properties are reversed.

Proof. Given all the properties of a dual-mode cryptosystem, the proof is conceptually quite
straightforward. There is a direct correspondence between completeness and the case that nei-
ther party is corrupted, between trapdoor extraction and statistical security for the sender, and

8

Protocol dmmode for Oblivious Transfer

The dmmode protocol is parameterized by mode ∈ {ext, dec} indicating the type of crs to be used.

Sender Input: (sid, ssid, x0, x1), where x0, x1 ∈ {0, 1}`.

Receiver Input: (sid, ssid, σ), where σ ∈ {0, 1}.

When activated with their inputs, the sender S queries Fmode
CRS with (sid,S,R) and gets back

(sid, crs). The receiver R then queries Fmode
CRS with (sid,S,R) and gets (sid, crs).

R computes (pk, sk)← KeyGen(crs, σ), sends (sid, ssid, pk) to S, and stores (sid, ssid, sk).

S gets (sid, ssid, pk) from R, computes yb ← Enc(pk, b, xb) for each b ∈ {0, 1}, and sends
(sid, ssid, y0, y1) to R.

R gets (sid, ssid, y0, y1) from S and outputs (sid, ssid,Dec(sk, yσ)), where (sid, ssid, sk) was stored
above.

Figure 3: The protocol for realizing F̂OT.

between trapdoor decryption and statistical security for the receiver. The indinstinguishability of
modes will establish computational security for the appropriate party in the protocol. We now
proceed more formally.

Let A be a static adversary that interacts with the parties S and R running the dmmode protocol.
We will construct an ideal world adversary (simulator) S interacting with the ideal functionality
F̂OT, such that no environment Z can distinguish an interaction with A in the above protocol from
an interaction with S in the ideal world. Recall that S interacts with both the ideal functionality
F̂OT and the environment Z.
S starts by invoking a copy of A and running a simulated interaction of A with Z and the

players S and R. More specifically, S works as follows:

Simulating the communication with Z: Every input value that S receives from Z is written
into the adversary A’s input tape (as if coming from A’s environment). Every output value written
by A on its output tape is copied to S’s own output tape (to be read by the environment Z).

Simulating the case when only the receiver R is corrupted: Regardless of the mode of
the protocol, S does the following. Run the extraction mode setup algorithm, letting (crs, t) ←
SetupExt(1n). When the parties query the ideal functionality Fmode

CRS , return (sid, crs) to them. (Note
that when mode = ext, the crs thus returned is identically distributed to the one returned by Fmode

CRS ,
whereas when mode = dec, the simulated crs has a different distribution from the one returned by
Fmode

CRS in the protocol).
When A produces a protocol message (sid, ssid, pk), S lets b ← FindLossy(crs, t, pk). S then

sends (sid, ssid, receiver, 1 − b) to the ideal functionality F̂OT, receives the output (sid, ssid, x1−b),
and stores it along with the value b.

When the dummy S is activated for subsession (sid, ssid), S looks up the corresponding b and
x1−b, computes y1−b ← Enc(pk, 1− b, x1−b) and yb ← Enc(pk, b, 0`) and sends the adversary A the

9

message (sid, ssid, y0, y1) as if it were from S.

Simulating the case when only the sender S is corrupted: Regardless of the mode of
the protocol, S does the following. Run the decryption mode setup algorithm, letting (crs, t) ←
SetupDec(1n). When the parties query the ideal functionality Fmode

CRS , return (sid, crs) to them.
When the dummy R is activated on (sid, ssid), S computes (pk, sk0, sk1)← TrapKeyGen(crs, t),

sends (sid, ssid, pk) to A as if from R, and stores (sid, ssid, pk, sk0, sk1). When A replies with a
message (sid, ssid, y0, y1), S looks up the corresponding (pk, sk0, sk1), computes xb ← Dec(skb, yb)
for each b ∈ {0, 1} and sends to F̂OT the message (sid, ssid, sender, x0, x1).

Simulating the remaining cases: When both parties are corrupted, the simulator S just runs
A internally (who itself generates the messages from both S and R).

When neither party is corrupted, S internally runs the honest R on input (sid, ssid, σ = 0)
and honest S on input (sid, ssid, x0 = 0`, x1 = 0`), activating the appropriate algorithm when the
corresponding dummy party is activated in the ideal execution, and delivering all messages between
its internal R and S to A.

The proof will be completed via the following claims, shown below:

1. (Claim 4.2, statistical security for S in extraction mode.) When A corrupts the receiver R,

IDEALF̂OT,S,Z
s
≈ EXECdmext,A,Z .

2. (Claim 4.3, statistical security for R in decryption mode.) When A corrupts the receiver S,

IDEALF̂OT,S,Z
s
≈ EXECdmdec,A,Z .

3. (Claim 4.4, parameter switching.) For any protocol πmode in the Fmode
CRS -hybrid model, any

adversary A and any environment Z,

EXECπext,A,Z
c
≈ EXECπdec,A,Z .

We now complete the proof as follows. Consider the protocol dmext. When A corrupts R, by
item 1 above we have statistical security for S (whether or not S is corrupted). When A corrupts
S, by items 2 and 3 above we have

IDEALF̂OT,S,Z
s
≈ EXECdmdec,A,Z

c
≈ EXECdmext,A,Z ,

which implies computational security for R.
It remains to show computational security when neither the sender nor the receiver is corrupted.

Let EXECdmext,A,Z(x0, x1, b) (resp, EXECdmdec,A,Z(x0, x1, b)) denote the output of an environment in
the protocol dmext (resp, dmdec) that sets the inputs of the sender S to be (x0, x1) and the input of
the receiver R to be the bit b. The following sequence of hybrids establishes what we want.

EXECdmext,A,Z(x0, x1, 1)
s
≈ EXECdmext,A,Z(0`, x1, 1)

c
≈

EXECdmext,A,Z(0`, x1, 0)
s
≈ EXECdmext,A,Z(0`, 0`, 0)

10

The first two and the last two experiments are statistically indistinguishable because of the
message-lossy property in the extraction mode, and the second and third experiments are com-
putationally indistinguishable because of the computational hiding of the receiver’s selection bit.
The first experiment corresponds to the real world execution, whereas the last experiment is what
the simulator runs. Furthermore, by the completeness of the dual-mode cryptosystem, the first
experiment is statistically indistinguishable from the ideal world exection with inputs (x0, x1, b).

The proof of security for protocol dmdec follows symmetrically, and we are done.

Claim 4.2. If the adversary A corrupts the receiver R in an execution of dmext, then we have

IDEALF̂OT,S,Z
s
≈ EXECdmext,A,Z .

Proof. The real world execution can be seen as a game that proceeds as follows, interacting with
the environment Z(z): first, crs← SetupExt1(1n). Then the environment arbitrarily schedules some
number of subsessions, where in each subsession, Z chooses an arbitrary pk and arbitrary inputs
(x0, x1) for the honest sender S, who sends yb ← Enc(crs, pk, b, xb) for each b ∈ {0, 1} to Z.

The ideal world execution proceeds similarly; however, first (crs, t)← SetupExt(1n) (but only crs
is visible to Z). Then the environment arbitrarily schedules subsessions, where in each subsession Z
produces an arbitrary pk and arbitrary inputs (x0, x1) for the dummy S. The simulator S runs b←
FindLossy(t, pk) and learns x1−b from the functionality F̂OT. It then sends yb ← Enc(crs, pk, b, 0`)
and y1−b = Enc(crs, pk, 1− b, x1−b) to Z.

The only difference between the two games is therefore in yb in each subsession. But by trap-
door extraction of a message-lossy branch, we have in the ideal game that Enc(crs, pk, b, 0`)

s
≈

Enc(crs, pk, b, xb). Therefore the two games are statistically indistinguishable.

Claim 4.3. If the adversary A corrupts the sender S in an execution of dmdec, then we have that

IDEALF̂OT,S,Z
s
≈ EXECdmdec,A,Z .

Proof. The real world execution can be seen as a game that proceeds as follows, interacting with the
environment Z(z): first, crs ← SetupDec1(1n). Then the environment arbitrarily schedules some
number of subsessions. In each subsession, Z chooses an input σ for the honest R, who generates
(pk, sk)← KeyGen(crs, σ) and sends pk to Z, then Z produces arbitrary (y0, y1) and the honest R
outputs Dec(crs, sk, yσ).

The ideal world execution proceeds similarly; however, first (crs, t)← SetupDec(1n) (but only crs
is visible to Z). Then the environment arbitrarily schedules subsessions, where in each subsession
Z produces arbitrary σ (not known to S), then S runs (pk, sk0, sk1)← TrapKeyGen(t) and gives pk
to Z, then S receives arbitrary (y0, y1) from Z. The dummy R outputs the value Dec(crs, skσ, yσ),
acquiring it from the functionality, which was provided the messages xb = Dec(crs, skb, yb) by S.

The only difference between the two games is therefore in the creation of the public and secret
keys. However, by trapdoor key generation, (pk, skσ)

s
≈ KeyGen(crs, σ) for any value of crs generated

by SetupDec. Therefore the two games are statistically indistinguishable.

Claim 4.4. For any protocol πmode in the Fmode
CRS -hybrid model, adversary A and environment Z,

EXECπext,A,Z
c
≈ EXECπdec,A,Z .

11

Proof. By the indistinguishability of modes in the dual-mode cryptosystem, the output of Fext
CRS

and Fdec
CRS are computationally indistinguishable. Environment Z running protocol πmode can be

seen as an efficient algorithm that receives a polynomial number of samples from either Fext
CRS or

Fdec
CRS. By a standard hybrid argument, the two executions are indistinguishable.

4.1 Application: Round-Optimal Two-Party Secure Computation

Using standard tools like (non-interactive) zero-knowledge and Yao’s garbled circuit method, we
can use our OT protocol to obtain round-optimal UC-secure two party computation for non-reactive
functionalities. The result gives two-round protocols when only one party receives output, or three-
round protocols when both parties receive output. We omit the details.

Theorem 4.5. There is a 2-round (respectively, 3-round) protocol that securely realizes any non-
reactive functionality F2PC for which only one party (resp., both parties) receives output, in the
FCRS-hybrid model.

5 Realization from DDH

5.1 Background

Let G be a an algorithm that takes as input a security parameter 1n and outputs a group description
G = (G, p, g), where G is a cyclic group of prime order p and g is a generator of G.

Our construction will make use of groups for which the DDH problem is believed to be hard.
The version of the DDH assumption we use is the following: for random generators g, h ∈ G
and for distinct but otherwise random a, b ∈ Zp, the tuples (g, h, ga, ha) and (g, h, ga, hb) are
computationally indistinguishable.1 This version of the DDH assumption is equivalent to another
common form, namely, that (g, ga, gb, gab)

c
≈ (g, ga, gb, gc) for independent a, b, c← Zp, because ga

is a generator and c 6= ab with overwhelming probability.

5.2 Cryptosystem Based on DDH

We start by presenting a cryptosystem based on the hardness of the Decisional Diffie-Hellman
problem, which slightly differs from the usual ElGamal cryptosystem in a few ways. The cryptosys-
tem depends on a randomization procedure that we describe below. We note that the algorithm
Randomize we describe below is implicit in the OT protocol of Naor and Pinkas [NP01].

Lemma 5.1 (Randomization). Let G be an arbitrary multiplicative group of prime order p. For
each x ∈ Zp, define dlogG(x) = {(g, gx) : g ∈ G}. There is a probabilistic algorithm Randomize
that takes generators g, h ∈ G and elements g′, h′ ∈ G, and outputs a pair (u, v) ∈ G2 such that:

• If (g, g′), (h, h′) ∈ dlogG(x) for some x, then (u, v) is uniformly random in dlogG(x).

• If (g, g′) ∈ dlogG(x) and (h, h′) ∈ dlogG(y) for some x 6= y, then (u, v) is uniformly random
in G2.

1To be completely formal, the respective ensembles of the two distributions, indexed by the security parameter n,
are indistinguishable.

12

Proof. Define Randomize(g, h, g′, h′) to do the following: Choose s, t ← Zp independently and let
u = gsht and v = (g′)s(h′)t. Output (u, v).

Since g and h are generators of G, we can write h = gr for some nonzero r ∈ Zp. First suppose
(g, g′) and (h, h′) belong to dlogG(x) for some x. Now, u = gsht = gs+rt is uniformly random in
G, since g is a generator of G and s is random in Zp. Furthermore, v = (g′)s(h′)t = (gsht)x = ux

and thus, (u, v) ∈ dlogG(x).
Now suppose (g, g′) ∈ dlogG(x) and (h, h′) ∈ dlogG(y) for some x 6= y. Then u = gsht = gs+rt

and v = gxs+ryt. Because r(x − y) 6= 0 ∈ Zp, the expressions s + rt and xs + ryt are linearly
independent combinations of s and t. Therefore, over the choice of s, t ∈ Zp, u and v are uniform
and independent in G.

We now describe the basic cryptosystem.

• DDHKeyGen(1n): Choose G = (G, p, g)← G(1n). The message space of the system is G.

Choose another generator h ← G and exponent x ← Zp. Let pk = (g, h, gx, hx) and sk = x.
Output (pk, sk).

• DDHEnc(pk, m): Parse pk as (g, h, g′, h′). Let (u, v) ← Randomize(g, h, g′, h′). Output the
ciphertext (u, v ·m).

• DDHDec(sk, c): Parse c as (c0, c1). Output c1/csk
0 .

Now consider a public key pk of the form (g, h, gx, hy) for distinct x, y ∈ Zp (and where g, h are
generators of G). It follows directly from Lemma 5.1 that DDHEnc(pk, ·) is message-lossy. Namely,
for every two messages m0,m1 ∈ Zp, DDHEnc(pk, m0)

s
≈ DDHEnc(pk, m1).

5.3 Dual-Mode Cryptosystem

We now construct a dual-mode encryption scheme based on the hardness of DDH.

• Both SetupExt and SetupDec start by choosing G = (G, p, g)← G(1n).

SetupExt(1n): Choose random generators g0, g1 ∈ G. Choose distinct nonzero exponents
x0, x1 ← Zp. Let hb = gxb

b for b ∈ {0, 1}. Let crs = (g0, h0, g1, h1) and t = (x0, x1). Output
(crs, t).

SetupDec(1n): Choose a random generator g0 ∈ G, a random nonzero y ∈ Zp, and let g1 = gy
0 .

Choose a random nonzero exponent x ∈ Zp. Let hb = gx
b for b ∈ {0, 1}, let crs = (g0, h0, g1, h1)

and t = y. Output (crs, t).

In the following, all algorithms are implicitly provided the crs and parse it as (g0, h0, g1, h1).

• KeyGen(σ): Choose r ← Zp. Let g = gr
σ, h = hr

σ and pk = (g, h). Let sk = r. Output
(pk, sk).

• Enc(pk, b,m): Parse pk as (g, h). Let pkb = (gb, hb, g, h). Output DDHEnc(pkb,m) as the
encryption of m on branch b.

• Dec(sk, c): Output DDHDec(sk, c).

13

• FindLossy(t, pk): Parse the extraction mode trapdoor t as (x0, x1) where x0 6= x1. Parse
the public key pk as (g, h). If h 6= gx0 , then output b = 0 as a (candidate) message-lossy
branch. Otherwise, we have h = gx0 6= gx1 because x0 6= x1, so output b = 1 as a (candidate)
message-lossy branch.

• TrapKeyGen(t): Parse the decryption mode trapdoor t as a nonzero y ∈ Zp. Pick a random
r ← Zp and compute pk = (gr

0, h
r
0) and output (pk, r, r/y).

We remark that SetupExt actually produces a crs that is statistically close to a common random
(not reference) string, because it consists of four generators that do not comprise a DDH tuple.

Theorem 5.2. The above scheme is a dual-mode cryptosystem, assuming that DDH is hard for G.
Proof. Completeness follows by inspection from the correctness of the basic DDH cryptosystem.

We now show indistinguishability of the two modes. In extraction mode, crs = (g0, h0 =
gx0
0 , g1, h1 = gx1

1), where g0, g1 are random generators of G and x0, x1 are distinct and nonzero in
Zp. Let a = logg0

g1, which is nonzero but otherwise uniform in Zp. Then b = logh0
(h1) = a ·x1/x0

is nonzero and distinct from a, but otherwise uniform. Therefore crs is statistically close to a
random DDH non-tuple (g0, h0, g

a
0 , hb

0), where a, b ← Zp are distinct but otherwise uniform. Now
in decryption mode, crs = (g0, h0 = gx

0 , g1, h1 = gx
1), where x is nonzero and random in Zp. Since

logh0
(h1) = logg0

(g1) = y is nonzero and random in Zp, crs is statistically close to a random DDH
tuple. Under the DDH assumption, the two modes are indistinguishable.

We now demonstrate extraction of a message-lossy branch. By inspection, FindLossy(t, pk)
computes a branch b for which (gb, hb, g, h) (the key used when encrypting under pk on branch b)
is not a DDH tuple. By Lemma 5.1, this b is therefore a message-lossy branch.

We conclude with trapdoor key generation. Let (crs, y)← SetupDec(1n). Note that crs is a DDH
tuple of the form (g0, h0 = gx

0 , g1 = gy
0 , h1 = gx

1), where x and y are nonzero. TrapKeyGen(crs, y) out-
puts (pk, sk0, sk1) = ((gr

0, h
r
0), r, r/y). The output of KeyGen(σ), on the other hand, is ((gr

σ, hr
σ), r).

We will now show that (pk, skσ) and KeyGen(σ) are identically distributed.
Indeed, (pk, sk0) = (gr

0, h
r
0, r) is identically distributed to KeyGen(0), by definition of KeyGen.

By a renaming of variables letting r = r′y, we have that (pk, sk1) = (gr
0, h

r
0, r/y) is identical to

(gr′y
0 , hr′y

0 , r′) = (gr′
1 , hr′

1 , r′), which is distributed identically to KeyGen(1), since r′ = r/y ∈ Zp is
uniformly distributed.

Larger branch sets. We briefly outline how the dual-mode cryptosystem is modified for larger
branch sets {0, 1}k. Essentially, the scheme involves k parallel and independent copies of the one
above, but all using the same group G. The encryption algorithm Enc computes a k-wise secret
sharing of the message, and encrypts each share under the corresponding copy of the scheme. This
ensures that decryption succeeds only for the one specific branch selected to be message-preserving.
The FindLossy algorithm includes a branch b ∈ {0, 1}k in its output list of lossy branches if any
branch bi is message-lossy for its corresponding scheme.

6 Realization from QR

6.1 Cryptosystem Based on QR

We start by describing a (non-identity-based) variant of Cocks’ cryptosystem [Coc01], which is
based on the conjectured hardness of the Quadratic Residuosity problem.

14

For N ∈ N, let JN denote the set of all x ∈ Z∗N with Jacobi symbol 1. Let QRN ⊂ JN denote
the set of all quadratic residues (squares) in Z∗N . The message space is {±1}. Let

(
t
N

)
denote the

Jacobi symbol of t in Z∗N .

• CKeyGen(1n): Choose two random n-bit safe primes2 p and q and let N = pq. Choose r ← Z∗N
and let y ← r2. Let pk = (N, y), and sk = r. Output (pk, sk).

• CEnc(pk, m): Parse pk as (N, y). Choose s← Z∗N at random such that
(

s
N

)
= m, and output

c = s + y/s.

• CDec(sk, c): Output the Jacobi symbol of c + 2 · sk.

The following lemma is implicit in the security proof of the Cocks cryptosystem.

Lemma 6.1 (Message-Lossy Characterization). Let N be a product of two random n-bit safe primes
p and q, let y ∈ Z∗N and let pk = (N, y). If y 6∈ QRN , then CEnc(pk, b, ·) is message-lossy. Namely,

CEnc(pk, b,+1)
s
≈ CEnc(pk, b,−1).

Proof. If y 6∈ QRN , then at least one of α1 =
(y

p

)
or α2 =

(y
q

)
is −1. Consider the equation

c = s + y/s mod N , and say s0 is one of the solutions. Then we have c = s0 + y/s0 mod p and
c = s0 + y/s0 mod q. The other solutions are s1, s2, and s3, where

s1 = s0 mod p s2 = y/s0 mod p s3 = y/s0 mod p

s1 = y/s0 mod q s2 = s0 mod q s3 = y/s0 mod q.

Then
(

s1
N

)
= α2

(
s0
N

)
,
(

s2
N

)
= α1

(
s0
N

)
and

(
s3
N

)
= α1α2

(
s0
N

)
. Thus, two of these are +1 and the other

two are −1. It follows that c hides
(

s
N

)
perfectly.

6.2 Dual-Mode Cryptosystem

We now describe a dual-mode cryptosystem that is based on the Cocks cryptosystem.

• SetupExt(1n): Choose two random n-bit safe primes p and q and let N = pq. Choose y ←
JN \QRN . Let crs = (N, y), and t = (p, q). Output (crs, t).

SetupDec(1n): Let N = pq for random n-bit safe primes as above. Choose s ← Z∗N , and let
y = s2 mod N . Let crs = (N, y), amd t = s. Output (crs, t).

In the following, all algorithms are implicitly provided the crs and parse it as (N, y), and all
operations are performed in Z∗N .

• KeyGen(σ): Choose r ← Z∗N , and let pk = r2/yσ. Let sk = r. Output (pk, sk).

• Enc(pk, b,m): Let pkb = (N, pk · yb). Output CEnc(pkb,m).

• Dec(sk, c): Output CDec(sk, c).

• FindLossy(t, pk): Parse the extraction trapdoor t as (p, q) where N = pq. If pk ∈ QRN (this
can be checked efficiently using p and q), then output b = 1 as the (candidate) message-lossy
branch; otherwise, output b = 0.

2Safe primes are primes p such that p−1
2

is also prime.

15

• TrapKeyGen(t): Choose a random r ← Z∗N and let pk = r2 and skb = r · tb for each b ∈ {0, 1}.
Output (pk, sk0, sk1).

Theorem 6.2. The above scheme is a dual-mode cryptosystem, assuming the hardness of the
quadratic residuosity problem.

Proof. We first show completeness. Say (pk, sk) ← KeyGen(σ). Thus, pk = r2y−σ for some
r. Enc(pk, σ, m) runs CEnc(pk · yσ,m) = CEnc(r2,m). Thus, the public key used in the Cocks
encryption algorithm is a quadratic residue. By the completeness of the Cocks cryptosystem, the
decryption algorithm recovers m.

We now show indistinguishability of the two modes. In extraction mode, crs = (N, y), where y
is a uniform element in JN \QRN . In decryption mode, crs = (N, y), where y is a uniform element
in QRN . By the QR assumption, these are indistinguishable.

We now demonstrate extraction of a message-lossy branch. Let pk be the (possibly malformed)
public key. Since y 6∈ QRN , either pk or pk · y is not a quadratic residue. Lemma 6.1 implies that
one of the branches of pk is message-lossy; it can be found using the factorization t = (p, q) of N .

We conclude with trapdoor key generation. Let y = t2. TrapKeyGen(crs, t) outputs (r2, r, r · t).
The output of KeyGen(σ), on the other hand, is (r2y−σ, r). Now, (pk, sk0) = (r2, r) is distributed
identically to KeyGen(0), by definition of KeyGen. By a renaming of variables letting r = r′/t, we
have (pk, sk1) = ((r′)2/t2, r′) = ((r′)2/y, r′), which is distributed identically to KeyGen(1), since
r′ = r/t ∈ Z∗N is uniformly distributed.

For larger branch sets {0, 1}k, the scheme is modified in a manner similar to the one from
Section 5.2, where all k parallel copies of the scheme use the same modulus N .

7 Realization from Lattices

Here we construct a dual-mode cryptosystem based on the hardness of the learning with error (LWE)
problem, which is implied by the (quantum) hardness of standard worst-case lattice problems, as
shown by Regev [Reg05]. We stress that although the underlying lattice assumption relates to
quantum algorithms, our cryptosystems are entirely classical.

As an independent contribution and a building block for our efficient OT protocol, we present
a much more efficient version of Regev’s CPA-secure cryptosystem [Reg05] based on LWE. Our
cryptosystem encrypts an n-bit message at essentially the same cost (in both space and time) as
a single-bit message in the system from [Reg05]. Specifically, our ciphertexts can be made only
a constant factor larger than the message, as opposed to an Õ(n) factor. Our encryption and
decryption algorithms require only Õ(n) bit operations per encrypted bit, as opposed to Õ(n2).
Our overall public key size remains asymptotically the same at Õ(n2) bits; however, in the CRS
model, an optimization from [Reg05] allows the user-specific part of the public key to made only
Õ(n) bits, while ours remains Õ(n2) bits.

7.1 Background

We start by introducing the notation and computational problems that are relevant to this section,
for the most part following [Reg05].

16

For any x, y ∈ R with y > 0 we define x mod y to be x − bx/ycy. For x ∈ R, bxe = bx + 1/2c
denotes the nearest integer to x (with ties broken upward). We define T = R/Z, i.e., the group of
reals [0, 1) with modulo 1 addition.

Probability distributions. The normal distribution with mean 0 and variance σ2 (or standard
deviation σ) is the distribution on R having density function 1

σ·
√

2π
exp(−x2/2σ2). It is a standard

fact that the sum of two independent normal variables with mean 0 and variances σ2
1 and σ2

2

(respectively) is a normal variable with mean 0 and variance σ2
1 +σ2

2. We will also need a standard
tail inequality: a normal variable with variance σ2 is within distance t·σ (i.e., t standard deviations)
of its mean, except with probability at most 1

t ·exp(−t2/2). Finally, it is possible to efficiently sample
from a normal variable to any desired level of accuracy.

For α ∈ R+ we define Ψα to be the distribution on T of a normal variable with mean 0 and
standard deviation α/

√
2π, reduced modulo 1. For any probability distribution φ : T → R+ and

an integer q ∈ Z+ (often implicit) we define its discretization φ̄ : Zq → R+ to be the discrete
distribution over Zq of the random variable bq ·Xφe mod q, where Xφ has distribution φ.

For an integer q ≥ 2 and some probability distribution χ : Zq → R+, an integer dimension
n ∈ Z+ and a vector s ∈ Zn

q , define As,χ as the distribution on Zn
q ×Zq of the variable (a, 〈a, s〉+ e)

where a← Zn
q is uniform and e← χ are independent, and all operations are performed in Zq.

Learning with error (LWE). For an integer q = q(n) and a distribution χ on Zq, the goal of the
(average-case) learning with error problem LWEq,χ is to distinguish (with nonnegligible probability)
between an oracle that returns independent samples from As,χ for some uniform s ← Zn

q , and an
oracle that returns independent samples from the uniform distribution on Zn

q × Zq.
The conjectured hardness of LWE is parameterized chiefly by the dimension n. Therefore we let

all other parameters (e.g., q, χ, and others) be functions of n, often omitting the explicit dependence
for notational clarity.

Regev [Reg05] demonstrated that for certain moduli q and error distributions χ, LWEq,χ is as
hard as solving several standard worst-case lattice problems using a quantum algorithm. We state
a version of his result here:

Proposition 7.1 ([Reg05]). Let α = α(n) ∈ (0, 1) and let q = q(n) be a prime such that α·q > 2
√

n.
If there exists an efficient (possibly quantum) algorithm that solves LWEq,Ψ̄α

, then there exists an
efficient quantum algorithm for solving the following worst-case lattice problems in the `2 norm:

• SIVP: In any lattice Λ of dimension n, find a set of n linearly independent lattice vectors of
length within at most Õ(n/α) of optimal.

• GapSVP: In any lattice Λ of dimension n, approximate the length of a shortest nonzero lattice
vector to within a Õ(n/α) factor.

Peikert [Pei07] extended this result to hold for lattice problems in any `p norm, p ≥ 2, for the
same Õ(n/α) approximation factors.

We will define our cryptosystems purely in relation to the LWE problem, without explicitly
taking into account the connection to lattices (or their parameter restrictions). We will then
instantiate the parameters appropriately, invoking Proposition 7.1 to ensure security assuming the
(quantum) hardness of lattice problems.

17

7.2 Efficient Cryptosystem Based on LWE

Our efficient cryptosystem closely resembles Regev’s [Reg05]. In Regev’s scheme, public keys consist
of an m × (n + 1) matrix (A|b). The m rows (ai, bi) of the matrix are samples from the LWE
distribution As,χ, where s is the uniform secret key. A ciphertext encrypting a single bit is of
the form (rA, 〈r,b〉 + c) for a suitable random 1 ×m row vector r and a value c determined by
the message bit. The bulk of the public key and the ciphertext, as well as the encryption and
decryption time, is therefore devoted to the large matrix A. Our main new idea is that both the A
component of the public key and the encryption randomness r can be securely amortized (reused)
over as many as ` = O(n) independent secrets si, without increasing the asymptotic complexity of
the scheme. This yields an asymptotic improvement by a factor of n in nearly all aspects of the
system. We now proceed more formally.

We first describe the various parameters of the scheme and their roles, but defer giving concrete
values for them until later. The message space is Z`

p for some integers p = poly(n) ≥ 2 and ` =
poly(n) ≥ 1. Let q = poly(n) > p be a prime, so that Zq is a field; our public keys and ciphertexts
will consist of matrices/vectors over Zq. For every v ∈ Zp (i.e., one coordinate of a message), define
the “offset” for v to be c(v) = bv · q

pe ∈ Zq. Let χ denote an efficiently sampleable error distribution
over Zq. Let R ≤ q be an integer, and define a set of row vectors R = [0, R− 1]1×m ⊆ Z1×m

q .
Before describing the cryptosystem in detail, we give some intuition about how the parameters

affect the correctness, security, and efficiency. The moduli p and q will give a trade-off between
the ciphertext expansion and the underlying concrete lattice assumption. The amortization factor
` will affect the overall message space and efficiency of the system. The error distribution χ will
be chosen to ensure correctness of decryption, and will determine the concrete underlying lattice
assumption. Finally, the dimension m and the bound R on the entries of r ∈ R will determine the
density of message-lossy public keys; larger values of R and m will yield a larger density of lossy
keys. This density will play an especially important role in our OT application.

We now describe the cryptosystem more formally. All operations are performed over Zq.

• LWEKeyGen(1n): Choose a matrix S← Zn×`
q uniformly at random; S is the secret key.

To create the public key, choose a matrix A← Zm×n
q uniformly at random. Choose a matrix

E ∈ Zm×`
q where each entry ei,j ← χ is chosen independently from the error distribution χ.

The public key is the pair (A,B = AS + E) ∈ Zm×n
q × Zm×`

q .

Note that the (i, j)th entry of B is bi,j = 〈ai, sj〉+ ei,j , where ai is the (uniform and public)
ith row of A and sj is the (uniform and secret) jth column of S. That is, (ai, bi,j) is a sample
from the LWE distribution Asj ,χ.

• LWEEnc(pk = (A,B),v): To encrypt a message written as a row vector v ∈ Z1×`
p , let the row

vector c = c(v) ∈ Z1×`
q be the “offset” for v, where c(·) is applied coordinate-wise. Choose a

row vector r← R ⊂ Z1×m
q .

The encryption of v under public key (A,B) is the pair (t1, t2) = (rA, rB+c) ∈ Z1×n
q ×Z1×`

q .

• LWEDec(sk = S, (t1, t2)): Compute d = t2 − t1S ∈ Z1×`
q . Output the plaintext v ∈ Z1×`

p ,
where each vi is such that di − c(vi) ∈ Zq is closest to 0 mod q.

18

7.2.1 Some Supporting Lemmas

We now prove a few lemmas that will help establish correctness and security (for appropriate
choices of parameters), both for the above system and for our dual-mode cryptosystem later on.
At first, the reader may wish to just read the statements of the lemmas and then skip directly to
Section 7.2.2, where we instantiate the parameters, analyze the efficiency, and prove security.

Lemma 7.2 (Completeness). Let q ≥ 4R · p ·m, let α ≤ 1/(R · p ·
√

m · g) for some g = ω(
√

log n),
and let χ = Ψ̄α. Then LWEDec decrypts correctly with overwhelming probability (over the random
choice of E by LWEKeyGen).

Proof. The proof uses a standard tail bound on the sum of (rounded-off) Gaussians.
Consider some secret key S and associated public key (A,B = AS + E) where A and S

are arbitary, and E is random according to the prescribed distribution. Now take a ciphertext
(t1, t2) = (rA, rB+ c) generated by LWEEnc using some r ∈ R, where c = c(v) is the offset vector
for the message v. The decryption algorithm LWEDec computes the row vector

d = t2 − t1S = r(AS + E) + c− rAS = rE + c ∈ Z1×`
q .

Now consider any coordinate j ∈ [`]. The distance from dj to cj (modulo q) is given by (rE)j =
〈r, ej〉, where ej is the jth column of E. Therefore it suffices to show that for every j, 〈r, ej〉 is at
distance at most q/4p from 0 (modulo q) with overwhelming probability, because this guarantees
that dj is closest to c(vj).

Now by definition of χ = Ψ̄α, ei,j = bq · yi,je mod q, where yi,j are independent normal variables
with mean 0 and variance α2. Then by the triangle inequality, (rE)j is at most Rm/2 ≤ q/8p away
from q(〈r,yj〉 mod 1), where yj is the jth column of Y = (yi,j). Therefore it suffices to show that
|〈r,yj〉| ≤ 1/8p with overwhelming probability.

Because the yi,j are independent, 〈r,yj〉 is distributed as a normal variable with mean 0 and
standard deviation ‖r‖ · α ≤ R

√
m · α ≤ 1/(p · g). Therefore by the tail inequality on normal

variables,
Pr
yj

[|〈r,yj〉| > 1/8p] ≤ 8
g · exp(−g2/128).

Because g = ω(
√

log n), this probability is negligible, and we are done.

Lemma 7.3 (Pseudorandom public keys). The distribution of the public key pk = (A,B) generated
by LWEKeyGen is computationally indistinguishable from uniform over Zm×n

q × Zm×`
q , assuming

LWEq,χ is hard.

Proof. The proof is virtually identical to the one from [PW07]. Consider hybrid distributions
H0, . . . ,H` for the pair (A,B): in distribution Hk, the entire matrix A and the first k columns of
B are all uniform, while the remaining columns of B are chosen exactly according to LWEKeyGen,
using independent secrets sj and error terms ei,j for all j > k and all i ∈ [m]. Then H0 is the
distribution generated by LWEKeyGen, and H` is completely uniform.

We now show that distributions Hk−1 and Hk are computationally indistinguishable (assuming
LWEq,χ is hard), from which the lemma follows. Consider a simulator S ·, which is given an oracle
O that returns samples either from As,χ (for some secret s← Zn

q) or from the uniform distribution
over Zn

q × Zq. First, S makes m queries to O, yielding samples (ai, bi) for i ∈ [m]. Then for all
j > k and i ∈ [m], S chooses independent sj ← Zn

q and error terms ei,j ← χ. S outputs the pair

19

(A,B) constructed in the following way: the ith row of A is the vector ai, the first k − 1 columns
of B are uniform, the kth column of B consists of the entries bi,k = bi, and the remaining entries
of B are bi,j = 〈ai, sj〉+ ei,j for i ∈ [m] and j > k.

One may verify that if O samples from As,χ, then S’s output is distributed according to Hk−1,
whereas if O samples from the uniform distribution, S’s output is distributed according to Hk. It
follows that Hk−1 and Hk are indistinguishable, and we are done.

For an arbitrary fixed public key pk = (A,B) ∈ Zm×n
q ×Zm×`

q , define δ(pk) to be the statistical
distance between the distribution of (rA, rB) ∈ Z1×n

q × Z1×`
q , where r ← R, and the uniform

distribution over Z1×n
q ×Z1×`

q . Then if δ(pk) is negligible, pk is a message-lossy public key; i.e., for

any two messages v0,v1 ∈ Z1×`
q , LWEEnc(pk,v0)

s
≈ LWEEnc(pk,v1), because both distributions are

statistically close to uniform. (Of course, the correctness of LWEDec implies that the public keys
pk generated by LWEKeyGen have large δ(pk).)

In contrast to our DDH- and QR-based cryptosystems in Sections 5.2 and 6.1, we do not
have an explicit characterization of the message-lossy public keys. Instead, we can show that, for
appropriate choices of parameters, an overwhelming fraction of all keys are message-lossy. This is
sufficient for proving security of the basic cryptosystem, and will also play a crucial role in proving
the correctness of FindLossy in our dual-mode cryptosystem of Section 7.3.

Lemma 7.4 (Density of message-lossy keys). Let ε =
√

1/qn+` = negl(n). Then the fraction of
public keys pk = (A,B) ∈ Zm×n

q × Zm×`
q such that δ(pk) > ε is at most qn+`/Rm. In other words,

all but an (at most) qn+`/Rm fraction of public keys are message-lossy.

Proof. We use techniques from [IZ89]. Let G = Zn+`
q . For any distribution D over G, define its

collision probability to be
∑

g∈G D2(g) = ‖D‖22, where ‖·‖2 denotes the `2 norm of the distribution.
For any distribution D, we have ‖D‖22 ≥ 1/ |G|. Further, by the relationship between `1 and `2

norm, (twice) the statistical distance between D and uniform is

∑
g∈G

|D(g)− 1/ |G|| ≤
√
|G| ·

(∑
g∈G

(D(g)− 1/ |G|)2
)1/2

=
√
|G| ·

(
‖D‖22 − 1/ |G|

)
.

Therefore it will suffice to focus our attention on the quantity ‖D‖22 − 1/ |G|.
For each public key pk = (A,B), let Dpk be the distribution of (rA, rB) ∈ G where r ← R.

The collision probability of Dpk is∑
g∈G

D2
pk(g) = Pr

r,r′←R

[
(rA, rB) = (r′A, r′B)

]
≤ 1

Rm
+ Pr

r,r′

[
(rA, rB) = (r′A, r′B) | r 6= r′

]
.

Now because q is prime, Zq is a field, and we get that for any fixed r 6= r′,

Pr
pk=(A,B)

[(
(r− r′)A, (r− r′)B

)
= 0 ∈ G

]
= 1/ |G| .

20

Taking an expectation over uniform pk, we get

E
pk

[
‖Dpk‖22 − 1/ |G|

]
= E

pk

[∑
g

D2
pk(g)

]
− 1/ |G| ≤ 1/Rm.

Therefore by Markov’s inequality, we have

Pr
pk

[(
‖Dpk‖22 − 1/ |G|

)
> 1/ |G|

]
≤ |G| /Rm.

In other words, an at most qn+`/Rm fraction of public keys pk have δ(pk) >
√

1/qn+` = ε.

7.2.2 Instantiation and Efficiency

We now instantiate all the parameters of our LWE cryptosystem to ensure correctness and security.
Other instantiations are also possible, yielding slight gains in efficiency at the expense of stronger
underlying lattice assumptions. It is also possible to slightly improve the constant factors.

Recall that Zp is the message space. Let p = nc for some positive c that is bounded above by a
constant (e.g., c may itself be a constant, or a decreasing function of n, such as c(n) = 1/ lg n). Let
the amortization factor ` = n (we could let ` be any O(n) without affecting the asymptotics). Let
R = 2, and let m = (4+2c)(n+`) lg n = O(n lg n). Let q be a prime in [10, 20] ·p ·m lg n = Õ(nc+1).
Finally, let the error distribution χ = Ψ̄α for α = 1/(R · p ·

√
m · lg n) = 1/Õ(nc+1/2).

We now analyze the efficiency of the system. For concreteness, say that c > 0 is a constant.
Then with the parameters above, a public key contains m(n + `) elements of Zq, for a total size of
Õ(n2) bits. The message space is Z`

p. Then to encrypt ` lg p = Θ(n lg n) bits requires O(m(n + `))
operations in Zq, costing O(n2 lg2 n) bit operations in total, or O(n lg n) bit operations per message
bit. The ciphertext contains (n + `) elements of Zq, so its size is only an O(1) factor larger than
the message.

Theorem 7.5. For the parameters described above, our LWE cryptosystem is secure under chosen
plaintext attack, assuming that either of the lattice problems described in Proposition 7.1 are hard
for any efficient quantum algorithm to approximate to within some Õ(nc+3/2) factor.

Proof. We first show completeness. By Lemma 7.2, LWEDec decrypts correctly (with overwhelming
probability) for our choice of α, as long as q ≥ 4R · p ·m. Indeed, 4R · p ·m = 8pm < 10pm lg n ≤ q.

We now calculate the density of message-lossy keys. Observe that, for all sufficiently large n,

2(n + `) lg q ≤ 2(n + `) lg(nc+2) = (4 + 2c)(n + `) lg n ≤ m.

Therefore, we have
Rm ≥ 22(n+`) lg q = q2(n+`).

Lemma 7.4 thus implies that an all but 1/qn+` = negl(n) fraction of public keys are message-lossy.
Additionally, Lemma 7.3 says that as long as LWEq,χ is hard (which we show below), a public key
generated by LWEKeyGen is indistinguishable from uniform.

The last two facts together imply security of the cryptosystem: because a uniform public key is
message-lossy with overwhelming probability, no adversary (even an unbounded one) has more than
a negligible advantage in a chosen plaintext attack when the public key is selected uniformly. Then

21

because the public keys generated by LWEKeyGen are indistinguishable from uniform, it follows
that any bounded adversary also has negligible advantage when attacking the real system.

We conclude by justifying the hardness of LWEq,χ. Using the fact that q ≥ 4R · p ·m · lg n, we
have (as required by Proposition 7.1),

q · α ≥ 4R · p ·m · lg n

R · p ·
√

m · lg n
= 4
√

m > 2
√

n.

Therefore we may apply Proposition 7.1, which for our choice of α means that hardness of LWEq,χ

is implied by quantum hardness of lattice problems to within some factor Õ(n/α) = Õ(nc+3/2).

7.3 Dual-Mode Cryptosystem

Here we construct a dual-mode cryptosystem based on the hardness of LWE. We do not know how
to construct a scheme that exactly satisfies the requirements of Definition 3.1; however, we can
construct one that satisfies a slightly relaxed definition, and which suffices for composing a bounded
number of efficient oblivious transfers using a single common string.

We will relax the notion of trapdoor key generation (in decryption mode) in two ways. The
first difference is that the public/secret keypairs generated by TrapKeyGen are only computationally
indistinguishable from those generated by KeyGen. The second is that indistinguishability applies
to the outputs of a predetermined number of calls to TrapKeyGen, together with the common string.

More formally, let ` = poly(n) be some fixed polynomial in the security parameter n. We add
an additional parameter i ∈ [`] to the inputs of all the algorithms (except Setup), which is used to
specify their ith executions. We then relax Property 4 of Definition 3.1 to the following:

4′. Let (crs, t) ← SetupDec(1n) and (pk(i), sk
(i)
0 , sk

(i)
1) ← TrapKeyGen(t, i) for each i ∈ [`]. Then

for every σi ∈ {0, 1}, we have

(crs, (pk(1), sk(1)
σ1

), . . . , (pk(`), sk(`)
σ`

))
c
≈ (SetupDec1(1

n),KeyGen(σ1, 1), . . . ,KeyGen(σ`, `)).

Our dm protocol for emulating the multi-session OT functionality F̂OT and its proof of security
from Section 4 can be easily modified to use this relaxed definition. The protocol simply limits
itself to ` separate uses of a single crs; it then uses a new crs by invoking another copy of the FCRS

functionality. The proof of security follows similarly, though it provides only computational security
for both the sender and receiver when using a crs generated according to SetupDec1. Therefore it
is strictly preferable to use a crs generated according to SetupExt, which in our instantiation will
also have the advantage of being a uniform random (not reference) string.

To efficiently implement FindLossy in extraction mode, our scheme also depends on a concurrent
work by Peikert and Vaikuntanathan [PV07] on sampling a random lattice together with a trapdoor
for distinguishing points close to the lattice from those far from the lattice. In particular, the
trapdoor allows one to detect that a given public key for the LWE cryptosystem is message-lossy,
as long as it meets certain conditions (which will be guaranteed by our dual-mode system). We
direct the reader to [PV07] for details.

We now give our construction of a dual-mode cryptosystem. For clarity, we present the con-
struction for ` = 1 and omit the extra parameter i ∈ [`], noting the changes required for the general
case. We retain all the notation from Section 7.2. However, we note that the dual-mode cryptosys-
tem always has message space Zp, even when ` > 1. (The amortization is over ` individual OT
executions, which each transfer a message in Zp.)

22

• SetupExt(1n): choose a matrix A← Zm×n
q uniformly, together with a trapdoor t as described

in [PV07]. For b ∈ {0, 1}, choose column vector ub ← Zm×1
q uniformly and indepedently. Let

crs = (A,u0,u1), and output (crs, t).

SetupDec(1n): choose a matrix A ← Zm×n
q uniformly. Choose a column vector w ← Zm×1

q

uniformly. For b ∈ {0, 1}, choose secret column vector sb ← Zn×1
q uniformly and error column

vector eb ← χm×1 (i.e., the m entries are chosen independently from error distribution χ).
Let ub = Asb + eb −w. Let crs = (A,u0,u1), let t = (w, s0, s1), and output (crs, t).

In the following, all algorithms are implicitly provided the crs and parse it as (A,u0,u1).

• KeyGen(σ): choose a secret column vector s ← Zn×1
q uniformly and error column vector

e← χm×1. Let pk = As + e− uσ, let sk = s, and output (pk, sk).

• Enc(pk, b,m): output c← LWEEnc((A, pk + ub),m).3

• Dec(sk, c): output m← LWEDec(sk, c).

• FindLossy(t, pk): As described in [PV07], use the extraction trapdoor t to find a b ∈ {0, 1}
such that (A, pk+ub) is a message-lossy public key for LWEEnc, i.e., such that δ(A, pk+ub) is
negligible. (Lemma 7.7 shows that at least one of the two public keys is indeed message-lossy.)

Alternately, we may let FindLossy be an exponential-time algorithm that computes δ(A, pk +
ub) by brute-force enumeration for each b ∈ {0, 1}. In the OT protocol, this translates to an
exponential-time statistically-close simulation for a cheating receiver. While not sufficient for
UC security, this is good enough for (say) concurrent composition of many OT executions
(and no other protocols) between the same sender and receiver.

• TrapKeyGen(t): Parse the trapdoor t as (w, s0, s1), and output (pk, sk0, sk1) = (w, s0, s1).

For general `, we make the following simple modifications: the setup algorithms independently
choose u(i)

b (in the case of SetupExt) or w(i), s(i)
b (in the case of SetupDec) for each i ∈ [`] and

b ∈ {0, 1} as above, placing the appropriate values in crs and t. On their ith executions, the
algorithms use w(i) instead of w, etc., but use the same matrix A throughout. We stress that
the algorithms and resulting OT protocol only reuse A, and not the randomness of LWEEnc (as is
done in the basic LWE cryptosystem). The reason is that we do not know how to prove security
when reusing randomness in the context of an OT protocol, because a cheating receiver controls the
public keys that are used for encryption. This may allow it to introduce correlations between the
ciphertexts from different executions. Using fresh randomness in every execution preserves security.

We can also generalize the above system to a larger branch set {0, 1}k for a 1-out-of-2k OT
protocol, by including vectors ub for every b ∈ {0, 1}k in the crs, chosen in an analogous way. The
only difference in the proof of security is in Lemma 7.7, where the probability of the “bad” event
increases by a polynomial factor (but remains negligible), due to a union bound over all pairs of
branches.

3Technically, in order to guarantee that FindLossy works properly, we need to use a slight variant of LWEEnc
from [PV07], whose essential properties are nonetheless the same as those of our system from Section 7.2.

23

7.3.1 Proof of Security

The proof that the above system comprises a dual-mode cryptosystem (according to our relaxed
definition) is somewhat involved. Therefore we break it into separate lemmas relating to the indis-
tinguishability of the two modes (Lemma 7.6), the guaranteed existence of message-lossy branches
in extraction mode (Lemma 7.7), and trapdoor generation of keys in decryption mode (Lemma 7.8).

Lemma 7.6. In the above system, the extraction and decryption modes are indistinguishable, i.e.,
SetupExt1(1n)

c
≈ SetupDec1(1n), assuming LWEq,χ is hard.

Proof. Consider the output of SetupDec1, which is of the form (A, (As0 +e0)−w, (As1 +e1)−w).
Now by the hardness of LWEq,χ, the pairs (A,As1 + e1) and (A,w′), where w′ ← Zm×1

q is uniform
and independent, are computationally indistinguishable. Therefore the output of SetupDec1 is
indistinguishable from a tuple (A, (As0 + e0)−w,w′ −w). This tuple is totally uniform, because
w and w′ are uniform and independent. Because SetupExt1 produces a uniformly random output,
the claim follows.

Lemma 7.7. Let R ≥ 2
√

q and let m ≥ 2(n + 1) lg q. Let ε =
√

1/qn+1. Then with all but 2ε
probability over the uniform choice of (A,u0,u1) by SetupExt, every pk ∈ Zm×1

q has a message-lossy
branch. Specifically, for every pk, δ(A, pk + ub) ≤ ε for some branch b ∈ {0, 1}.

Proof. We will first show that, for any fixed pk, the probability that pk lacks a message-lossy branch
is extremely small. The claim will follow by inverting the quantifiers using a union bound.

First, say that a matrix A ∈ Zm×n
q is “good” if the fraction of b ∈ Zm×1

q such that δ(A,b) > ε

is at most q3(n+1)/2/Rm. Then by Lemma 7.4 (where ` = 1) and Markov’s inequality, all but an
ε-fraction of A’s are good. From now on, we assume that A is good, which happens with all but ε
probability over the randomness of SetupExt.

Now consider some fixed pk ∈ Zm×1
q . Because u0,u1 are uniform and independent, pk +u0 and

pk +u1 are uniform and independent over Zm×1
q . Then by the assumption that A is good, we have

Pr
u0,u1

[δ(A, pk + u0) > ε and δ(A, pk + u1) > ε] =
(

Pr
b←Zm×1

q

[δ(A,b) > ε]
)2

≤ q3(n+1)

R2m
.

Now by a union bound over all pk ∈ Zm×1
q , we have

Pr
u0,u1

[∃ pk : δ(A, pk + u0) > ε and δ(A, pk + u1) > ε] ≤ qm · q3(n+1)

R2m
. (1)

By assumption on R and m, we have

R2m ≥ (2
√

q)2m = qm · 22m > qm · q4(n+1).

Therefore the probability in (1) is at most 1/qn+1 < ε, and we are done.

Lemma 7.8. The above system satisfies our relaxed Property 4′, assuming LWEq,χ is hard.

Proof. For simplicity, we will prove the lemma for ` = 1; the general case follows by a hybrid
argument over the ` independent sets of variables in the crs and the ` calls to KeyGen/TrapKeyGen

24

that use these variables. We also prove the lemma just for the case σ = 0; the other case follows
symmetrically.

Our goal is to prove

(SetupDec1(1
n),KeyGen(0))

c
≈ (crs, (pk, sk0)), (2)

where in the right-hand side (crs, t) ← SetupDec(1n) and (pk, sk0, sk1) ← TrapKeyGen(t). We do
so via a sequence of games.

First consider a hybrid game that produces (SetupExt1(1n),KeyGen(0)); this is indistinguishable
from the left-hand side of (2) by indistinguishability of modes (which we prove below in Theorem 7.9
for our specific construction). The output of this game decomposes as

(A, u0, u1, As + e− u0, s),

where A, u0, u1, and s are uniform (in their respective domains) and e← χm×1.
Now rename variables in the above game, defining w = As + e− u0 and renaming s and e as

s0 and e0 (respectively). The above game is therefore equivalent to one that outputs

(A, As0 + e0 −w, u1, w, s0),

where w is uniform. Now because u1 is uniform and independent of the other variables, the
preceding game is equivalent to one that outputs

(A, As0 + e0 −w, u1 −w, w, s0).

Finally, the hardness of LWEq,χ implies that (A,u1) is indistinguishable from (A,As1 + e1), where
s1 ← Zm×1

q and e1 ← χm×1. Therefore the prior game is indistinguishable from one that outputs

(A, As0 + e0 −w, As1 + e1 −w, w, s0).

This game is, by definition, equivalent to the right-hand side of (2), and we are done.

7.3.2 Putting Everything Together

We now instantiate all the parameters of the dual-mode cryptosystem to satisfy the various con-
straints that have accumulated, and connect LWE to the (quantum) hardness of lattice problems.

First we instantiate the parameters (though we have made no effort to optimize the various
constant or polylog(n) factors). Recall that Zp is the message space. Let p = nc for some positive
c = c(n) bounded above by a constant. Let m = (4c + 6)(n + 1) lg n = O(n lg n). Let q be a prime
in [200, 400] · p2 ·m2 · lg2 n = Õ(n2c+2), and let R = 40p ·m · lg n = Õ(nc+1). Finally, let the error
distribution χ = Ψ̄α for α = 1/(R · p ·

√
m · lg n) = 1/Õ(n2c+3/2).

Theorem 7.9. The above system is a dual-mode cryptosystem (according to the relaxed definition),
assuming that either of the lattice problems described in Proposition 7.1 are hard for any efficient
quantum algorithm to approximate to within some Õ(n2c+5/2) factor.

Proof. As long as LWEq,χ is hard (which we show below), indistinguishability of modes follows
directly from Lemma 7.6, and trapdoor key generation follows directly from Lemma 7.8.

25

We now show completeness of our dual-mode cryptosystem, which will follow directly from the
correctness of LWEDec. By Lemma 7.2, LWEDec decrypts correctly (with overwhelming probability)
for our choice of α, as long as q ≥ 4R · p ·m. Indeed, 4R · p ·m = 160p2m2 lg n < 200p2m2 lg2 n ≤ q.

Now we show extraction of a message-lossy branch. As required by Lemma 7.7, we have R =
40pm lg n = 2 ·

√
400p2m2 lg2 n ≥ 2

√
q. Also as required by Lemma 7.7, we have (for all sufficiently

large n)

2(n + 1) lg q ≤ 2(n + 1) · lg(n2c+3)
≤ (4c + 6) · (n + 1) lg n = m.

Therefore, with overwhelming probability over SetupExt’s uniform choice of crs = (A,u0,u1), every
(possibly malformed) public key pk has some message-lossy branch b. Efficiently finding such a
branch follows from [PV07].

We conclude by justifying the hardness of LWEq,χ. Using the fact that q ≥ 4R · p ·m · lg n, we
have (as required by Proposition 7.1),

q · α ≥ 4R · p ·m · lg n

R · p ·
√

m · lg n
= 4
√

m > 2
√

n.

Therefore we may apply Proposition 7.1, which for our choice of α means that hardness of LWEq,χ is
implied by quantum hardness of lattice problems to within some factor Õ(n/α) = Õ(n2c+5/2).

8 Acknowledgments

We thank Oded Regev for suggesting a cleaner and tighter proof of Lemma 7.4.

References

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-
case equivalence. In STOC, pages 284–293, 1997.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC,
pages 1–10, 1988.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145, 2001.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO,
pages 19–40, 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In STOC, pages 494–503, 2002.

[CNS07] Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable adaptive oblivious trans-
fer. In EUROCRYPT, pages 573–590, 2007.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
IMA Int. Conf., pages 360–363, 2001.

26

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO, pages
265–281, 2003.

[Cré87] Claude Crépeau. Equivalence between two flavours of oblivious transfers. In CRYPTO,
pages 350–354, 1987.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[GH07] Matthew Green and Susan Hohenberger. Blind identity-based encryption and simu-
latable oblivious transfer. Cryptology ePrint Archive, Report 2007/235, 2007. http:
//eprint.iacr.org/.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for np. In EUROCRYPT, pages 339–358, 2006.

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party computation in
two rounds. In CRYPTO, 2007.

[IZ89] Russell Impagliazzo and David Zuckerman. How to recycle random bits. In FOCS,
pages 248–253, 1989.

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In
EUROCRYPT, pages 78–95, 2005.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. In EUROCRYPT, pages 52–78, 2007.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure two-party
computation system. In USENIX Security Symposium, pages 287–302, 2004.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA, pages
448–457, 2001.

[Pei07] Chris Peikert. Limits on the hardness of lattice problems in `p norms. In IEEE Con-
ference on Computational Complexity, pages 333–346, 2007.

[PV07] Chris Peikert and Vinod Vaikuntanathan. Manuscript., 2007.

[PW07] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. Cryp-
tology ePrint Archive, Report 2007/279, 2007. http://eprint.iacr.org/.

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical report,
Harvard University, 1981.

27

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[Reg04] Oded Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899–942,
2004.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84–93, 2005.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

28

	Introduction
	Our Approach
	Techniques
	Organization

	Preliminaries
	Notation
	The Universal Composability Framework (UC)

	Dual-Mode Encryption
	Oblivious Transfer Protocol
	Application: Round-Optimal Two-Party Secure Computation

	Realization from DDH
	Background
	Cryptosystem Based on DDH
	Dual-Mode Cryptosystem

	Realization from QR
	Cryptosystem Based on QR
	Dual-Mode Cryptosystem

	Realization from Lattices
	Background
	Efficient Cryptosystem Based on LWE
	Some Supporting Lemmas
	Instantiation and Efficiency

	Dual-Mode Cryptosystem
	Proof of Security
	Putting Everything Together

	Acknowledgments

