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Abstract. Verifiable random functions (VRFs), introduced by Micali,
Rabin and Vadhan, are pseudorandom functions in which the owner of
the seed produces a public-key that constitutes a commitment to all val-
ues of the function and can then produce, for any input x, a proof that
the function has been evaluated correctly on x, preserving pseudoran-
domness for all other inputs. No public-key (even a falsely generated
one) should allow for proving more than one value per input.

VRFs are both a natural and a useful primitive, and previous works
have suggested a variety of constructions and applications. Still, there
are many open questions in the study of VRFs, especially their relation
to more widely studied cryptographic primitives and constructing them
from a wide variety of cryptographic assumptions.

In this work we define a natural relaxation of VRFs that we call weak
verifiable random functions, where pseudorandomness is required to hold
only for randomly selected inputs. We conduct a study of weak VRFs,
focusing on applications, constructions, and their relationship to other
cryptographic primitives. We show:

– Constructions. We present constructions of weak VRFs based on
a variety of assumptions, including general assumptions such as (en-
hanced) trapdoor permutations, as well as constructions based on
specific number-theoretic assumptions such as the Diffie-Hellman as-
sumption in bilinear groups.

– Separations. Verifiable random functions (both weak and stan-
dard) cannot be constructed from one-way permutations in a black-
box manner. This constitutes the first result separating (standard)
VRFs from any cryptographic primitive.

– Applications. Weak VRFs capture the essence of constructing non-
interactive zero-knowledge proofs for all NP languages.
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1 Introduction

Verifiable random functions (VRFs) were introduced by Micali, Rabin and Vad-
han [1]. A VRF is a pseudorandom function (see Goldreich, Goldwasser and
Micali [2]), that also enables a verifier to verify, given input x, output y and
a proof, that the function has been computed correctly on x. The VRF’s seed
(or secret key) SK is associated with a public key PK. As usual, SK can be
used to compute the function’s output y = FSK(x) on input x, but it is also
used to generate a proof of correctness π = ΠSK(x). This proof can be used in
conjunction with PK to convince a verifier that y is indeed the correct output
on input x with respect to the public-key PK. Further, it is guaranteed that
the verifier cannot accept two different values for an input x, even if PK is gen-
erated dishonestly. In other words, any string interpreted as a public-key of a
VRF constitutes a commitment to at most one output per input.

VRFs are a natural primitive that combines the properties of pseudoran-
domness and verifiability; however, constructions of VRFs have been few and
far between (see related work). In particular, unlike many central and natural
cryptographic primitives, there are no known constructions of VRFs based on
more general assumptions, such as the existence of a one-way function, or even
the strong assumption of trapdoor permutations.

1.1 This Work

We propose a relaxation of VRFs, which we call weak verifiable random func-
tions (or WVRF). Informally, a weak VRF is similar to a VRF, except that
while VRFs require the output to be pseudo-random for adversarially chosen in-
puts, weak VRFs only require pseudorandomness to hold for random inputs (see
Section 2 for the formal definition). Thus, weak VRFs are a natural relaxation
of VRFs, analogous to the relaxation of weak pseudorandom functions (without
verifiability), proposed by Naor and Reingold [3].

This work is a study of the power of weak VRFs. We present applications
to building non-interactive zero-knowledge proofs by showing that the existence
of non-interactive zero-knowledge proofs for all of NP in the common random
string model is essentially equivalent to the existence of weak verifiable ran-
dom functions in the standard model (i.e. without setup assumptions). Thus,
we provide a new and conceptually simpler methodology for constructing and
analyzing non-interactive zero-knowledge proof systems. We proceed by showing
constructions of weak verifiable random functions from a variety of cryptographic
assumptions (ones that are not known to imply standard VRFs). Finally, we
present a black-box separation from other widely-studied cryptographic primi-
tives (namely one-way permutations). These separations are also the first known
separations of standard VRFs from any other cryptographic primitive. We pro-
ceed with an overview of each of these contributions.

Weak VRFs and NIZK. We begin by showing an intimate connection between
weak VRFs and the study of non-interactive zero-knowledge proofs (NIZKs) for



all NP languages (with an efficient-prover and in the common random string
model). In one direction, we show that a weak VRF can be used to construct
a NIZK for any NP language. This construction is based on the methodology
of Feige, Lapidot and Shamir [4], and shows that weak VRFs can be used to
implement their hidden-bits model. In a nutshell, to implement the hidden-
bits model, we need a method for a prover (with a secret key) and a verifier
(with a public key) to interpret a common random string as a sequence of bit
commitments. Towards this end, we give the verifier a public key that guarantees
that the commitments are binding, and the prover a secret key that allows non-
interactive de-commitment. Weak VRFs are a natural solution to this problem.
Modulo the technical details, we can implement the hidden-bits model by taking
a random bit sequence x to be a commitment to the output of the weak VRF on
input x. The verifier, given the weak VRF’s public key, is guaranteed binding, and
the pseudo-randomness (even though it only holds for random inputs) guarantees
hiding. There is a subtle technical problem with the above construction, where
the prover may choose a particularly badly formed public key, this is resolved
using a certification technique due to Bellare and Yung [5].

Lemma 1. If there is a family of weak verifiable random functions, then there
are efficient-prover non-interactive zero-knowledge proofs in the common random
string model for all of NP.

In the other direction, we show that given a construction of (efficient-prover)
NIZKs for all NP languages, and given also an injective one-way function, we
can construct a weak VRF.4 First recall that the existence of injective OWFs
implies the existence of (ordinary) pseudorandom functions (PRFs) and non-
interactive perfectly binding commitment schemes. The WVRF is as follows:
the generator produces a seed for a PRF and uses it as secret key. The public
key is a commitment to that seed. For a random input we use a part of the
input as an input to the PRF. The weak VRF’s output will be the output of the
PRF on this input. The second part of the input is used as a CRS for a NIZK
proof. The novelty of this construction is observing that since pseudorandomness
should only hold when the adversary sees randomly distributed samples, the
input can be used as an “honest” source of randomness (CRS in this case).
Weak pseudorandomness follows, therefore, from the zero-knowledge property.

Lemma 2. If there exist injective one-way functions and efficient-prover non-
interactive zero-knowledge proofs in the common random string model for all of
NP, then there is a family of weak verifiable random functions.

Thus, weak VRFs and efficient prover NIZK proof systems are essentially
equivalent. We hope that weak VRFs, being a “clean” and natural primitive,
will prove to be a useful tool or abstraction leading to new constructions of
NIZK proof systems. See Section 3 for all details of the above relationship.
4 In fact, we can replace the injective one-way function with a standard one-way

function by either (a) allowing the prover and verifier to be non-uniform or (b) using
derandomization assumptions (see Barak, Ong and Vadhan [6]).



Constructing Weak VRFs. We show efficient constructions of weak VRFs based
on a variety of assumptions. We consider both general assumptions, such as
the existence of enhanced trapdoor permutations, and specific number-theoretic
assumptions such as the bilinear decisional Diffie-Hellman (BDDH) assumption.
We note that none of the assumptions we use to construct weak VRFs are known
to imply the existence of (strong) VRFs.

The first construction is a black-box construction using any (enhanced) trap-
door permutation, obtaining WVRFs with arbitrary long (polynomial) output
length.5 The second construction (with a single output bit) is based on the bilin-
ear Diffie-Hellman assumption. In contrast, all known constructions of (strong)
VRFs from bilinear maps make substantially stronger assumptions.

We note that these constructions are implicit in known constructions of non-
interactive zero-knowledge proofs from trapdoor permutations in [4] and based
on bilinear maps on elliptic curves in [7]. This is not surprising in light of the
equivalence to NIZK proof systems, and in fact further reinforces our belief that
weak VRFs are a natural primitive to focus on when constructing non-interactive
zero-knowledge proofs.

See Section 4 for the full details of all the above constructions.

Black-Box Separations. Finally, we initiate a study of the relationship between
weak VRFs and more extensively studied cryptographic primitives. We show that
there are no black-box constructions of weak VRFs from one-way permutations
(OWPs). We note that, given that both pseudorandom functions and signature
schemes can be (black-box) constructed even from one-way functions [2, 8–10],
one might have hoped that it is possible to combine both the pseudorandomness
and the verifiability properties and to construct weak VRFs (or even standard,
strong VRFs) from one-way functions. However, while in signature schemes ver-
ifiability is guaranteed if the public-key has been selected properly, in VRFs we
require verifiability even for adversarial ones. Indeed, our result shows that this
cannot be done. We note that this is also the first separation result for (strong)
VRFs, and thus sheds light on their complexity as well.

Formally, we show a black-box separation (see related work) between weak
VRFs and OWPs. In fact we show this even for weak verifiable unpredictable
functions, where pseudo-randomness is replaced with unpredictability.

Theorem 1 (informal). There is no black-box construction of weak VRFs from
OWPs.

We prove this theorem by showing that any black-box construction of weak
VRF fails with respect to some oracle implementing a OWP. From this result it
follows immediately that VRFs also cannot be black-box reduced to OWPs.

This result differs from previous work on black-box separations (see related
work below) in several ways. Unlike the seminal result of Impagliazzo and Rudich
separating one-way permutations and key agreement protocols [11], we do not

5 Note that we can always increase the output length of weak VRFs by concatenating
multiple instances, but here this is done without increasing the key lengths.



show a relativizing separation. That is, we do not prove that there exists a oracle
relative to which OWPs exist but weak VRFs do not. Moreover, our method is
also different from the one introduced by Gertner, Malkin and Reingold [12] for
proving a separation between trapdoor predicates and trapdoor functions. There,
each construction is tailored with an oracle relative to which it is proved insecure.
Informally speaking, we show that there exists an oracle O (that implements a
OWP and encodes an NP-hard oracle) such that any construction that is correct
(namely, both complete and sound) with respect to all one-way permutation
oracles, fails to be pseudorandom with respect to O (see the proof intuition
below for more details).

We remark that since we show that (enhanced) trapdoor permutations im-
ply weak VRFs, it also follows from our separation that there is no black-box
construction of such trapdoor permutations from one-way permutations. While
this was already known as a corollary from [11], our proof is simpler (albeit
somewhat more restricted).

Proof Intuition. Our adversary works by “reverse engineering” the oracle queries
made by the secret and public key generator of the weak VRF. Essentially, what
we want to do, is use the oracle (that can solve NP-hard problems) to find a
“fake” secret-key corresponding to the given public key. This fake secret key
will later be used (by the adversary) to predict the outputs of the weak VRF.
The intuition is that these predictions (by the fake secret key) should be correct
because they match the same public key as the one used with the “real” secret
key. Note that this holds because we are assuming here strong “completeness”
of the key generation algorithm: namely, it always (with probability 1) generates
a valid secret-public key pair, and so even the fake secret key that we found
“should” generate correct outputs. We need this completeness property (which
all our constructions possess) to prove our separation result.

The problem we face is that the key-generator is itself an oracle circuit, and
thus we cannot simply find a fake secret key that corresponds to the given public
key and the given OWP oracle. We can, however, use our ability to solve NP-
hard problems (via the given oracle) to find a fake secret key that matches the
given public key and a (slightly) different oracle, by changing the oracle’s answers
on queries made by the key generator. Consider an oracle query that was made
by the generator, and consider the case of changing the answer for this query in
a way that does not affect the public key. This change may affect some values
of the function, and so we are no longer guaranteed that the function’s output
on the real and fake secret key are the same. Note, however, that the function’s
output can only change when the verification algorithm makes an oracle query to
a value whose output has changed. This follows from the weak VRF’s soundness:
the verification algorithm must make such an oracle query in order to tell the two
cases apart. Therefore, if we take enough random samples, run the verification
algorithm and “collect” its OWP oracle queries, we’d have a bank of “common”
queries that holds all queries that affect a large portion of the values of the
function. Then we can find, using the NP-hardness of the oracle, a secret key
and simulated values to all other queries made by the generator (answers to



the “common” queries are unchanged) that yield the same public-key. Changing
these “uncommon” values, however, would not affect the value of the function
almost anywhere, and thus we can use the fake secret key we found to predict
the value of the function on a random point.

1.2 Related Work

Verifiable Random Functions. Bellare and Goldwasser [13] present a signature
scheme based on combining a PRF and a NIZK proof system. While their scheme
implies a PRF with verifiability properties, a falsely generated verification-key
may enable the prover to make the verifier accept more than one output per
input. Thus this construction falls short of the soundness requirement for a
VRF.

Known constructions of VRFs are due to [1] based on strong RSA, Lysyan-
skaya [14] based on a strong version of the Diffie-Hellman assumption in bi-
linear groups, Dodis [15] based on the sum-free generalized DDH assumption,
and Dodis and Yampolskiy [16] based on the bilinear Diffie-Hellman inversion
assumption.6

Variants of VRFs have also been proposed and used for various applica-
tions, for instance the notion of of simulatable VRFs, introduced by Chase and
Lysyanskaya [17], which were used to compile any single-theorem non-interactive
zero-knowledge proof for a language L into a many-theorem non-interactive zero-
knowledge proof for the same L. We stress that simulatable VRFs are defined
in the public-parameters model and are incomparable to standard VRFs.

Non-Interactive Zero-Knowledge and Related Primitives. Non-interactive zero-
knowledge proofs (NIZK)7, introduced by Blum, Feldman and Micali [18], are
proof systems where the prover P sends a single message to the verifier V to con-
vince V of an (NP) statement, while conveying no more knowledge to the verifier
except that the statement is true. NIZK proof systems have been immensely use-
ful, including in the construction of non-malleable and chosen-ciphertext secure
encryption schemes [19–25], signature schemes [13] and more. There have been
a handful of constructions of NIZK proof systems from the time they were in-
troduced, based on specific number theoretic assumptions and based on general
assumptions (see below).

Specific number-theoretic assumptions that imply NIZKs include quadratic
residuosity [18], the computational Diffie-Hellman assumption on (prime-order)
bilinear groups due to Canetti, Halevi and Katz [7], and constructions due to
Groth, Ostrovsky and Sahai based on the subgroup-decisional assumption on

6 We note that both [1] and [16] construct VRFs with polynomial-size domains and
later extend it to arbitrary domains via a tree-based construction, which impacts
their efficiency.

7 We stress that here we are dealing with computational NIZK proofs, as opposed to
statistical NIZK arguments. In the latter, the soundness property holds only against
cheating provers that are computationally bounded.



composite-order bilinear groups [26], and on the decisional linear assumption on
(prime-order) bilinear groups [27].

Many works have investigated constructions of NIZK proofs based on general
assumptions – these include the construction of [4] based on (enhanced) trapdoor
permutations (improved by Kilian and Petrank [28] for better efficiency), and
more recently, the construction of [7] based on what they call verifiable trapdoor
predicates. Both these constructions use primitives that have an explicit trapdoor
structure which may not be inherent. Dwork and Naor [29] showed that NIZK
proof systems can be constructed using a (strong) VRF (Dodis and Puniya [30]
show an alternative construction by going through their notion of a verifiable
random permutation). Our construction is from a weak VRF and is much more
direct.

Goldwasser and Ostrovsky [31] proposed a new primitive called invariant
signature schemes and showed that in the CRS model they are equivalent to non-
interactive zero-knowledge proofs for all of NP. In [29], verifiable pseudorandom
generators (VPRGs) are presented and shown to be equivalent to NIZK proofs in
the CRS model. A VPRG is essentially a pseudorandom generator, such that the
owner of the seed can post proofs of correctness for subsets of the generated bits,
while maintaining hiding of the rest of them. It is shown that the existence of
VPRGs in the CRS model is equivalent to the existence of NIZK in that model.
Approximate VPRG is a variant of this notion, where the soundness requirement
of the proof is relaxed. Approximate VPRGs in the standard model exist if and
only if NIZK exists in the CRS model.

Black-Box Separations. A black-box reduction from primitive A to primitive B
is essentially a construction of A that uses an oracle to B, such that the security
of B implies the security of A. Most known reductions between cryptographic
primitives are black-box. In [11], it was shown for the first time that it is possible
to rule out the existence of black-box reductions between some primitives.8 Such
proofs of impossibility are referred to as black-box separations. Their result has
been followed by many others, showing impossibility of various classes of black-
box reductions between various cryptographic primitives and protocols. For a
classification of black-box reductions (and separations), we refer the reader to
the work of Reingold, Trevisan and Vadhan [32].

2 Preliminaries and Definitions

Verifiable Random Functions. We use the definition of verifiable random func-
tions from Micali, Rabin and Vadhan [1]. A key feature of VRFs is their sound-
ness property: soundness requires that no two distinct values can be proven to be
FSK(x), for any PK, and any x, even ones that are adversarially chosen. This
8 Specifically, [11] show that there is no relativizing reduction from secure key-

agreement protocols to one-way permutations, thus ruling out black-box reductions
where the proof of correctness is also black box. This has been improved by [32] to
also rule out cases where the proof of correctness has “some” non-black-boxness.



is a crucial difference between VRFs and other cryptographic primitives such as
encryption and digital signatures, where the public/secret-keys are assumed to
be chosen correctly. For a formal definition of VRFs, we refer the reader to [1].

Weak Verifiable Random Functions. Weak verifiable random functions maintain
the key feature of VRFs, namely that even if the public-key PK is adversarially
chosen, it is impossible for the adversary (even one who knows SK) to prove
that y = FSK(x) and y′ = FSK(x) for two different y and y′. However, in the
case of weak VRFs, we relax this condition slightly by saying that for every
PK, the completeness and soundness conditions hold for most inputs x (and
not necessarily all the inputs, as in the case of standard VRFs). We stress that
there are no public-keys PK for which the completeness and/or the soundness
conditions fail on a large fraction of inputs.

The other major difference between the definitions of weak VRFs and stan-
dard VRFs is in the pseudorandomness condition: whereas in the case of VRFs,
pseudorandomness holds against an adversary that can adaptively choose inputs
x and obtain evaluations FSK(x), the weak VRF adversary gets evaluations of
FSK(x) on random values x. This is in the spirit of weak PRFs presented in [3].

Definition 1 (Weak Verifiable Random Function). A family of functions
F = {fs : {0, 1}n(k) → {0, 1}m(k)}s∈{0,1}k is a family of weak verifiable random
functions with security parameter k if there exist algorithms (G,F,Π, V ) such
that: the key-generation algorithm G(1k) is a PPT algorithm that outputs a pair
of keys (PK,SK); the function-evaluator FSK(x) is a deterministic algorithm
that outputs fSK(x); the Prover ΠSK(x) is a deterministic algorithm that outputs
a proof of correctness π and the Verifier V (PK, x, y, π) is a PPT algorithm that
either accepts or rejects a purported proof π of the statement “y = FSK(x)”.

We require the following:

1. (Relaxed) Completeness: for all (PK,SK) ← G(1k) and for all but a 2−k

fraction of x’s, if y = FSK(x) and π = ΠSK(x), then Pr[V (PK, x, y, π) =
accept] ≥ 1− 2−k. The probability here is taken over the random coins of V .

2. (Relaxed) Soundness: for all PK and for all but a 2−k fraction of x’s, and
for all y1, y2, π1, π2 such that y1 6= y2, Pr[V (PK, x, yi, πi) = accept] ≤ 2−k

for at least one i ∈ {1, 2}.
3. Weak Randomness: let A be a PPT algorithm, and let p(k) be any polynomial.

Then, the probability that A succeeds in the following experiment is at most
1
2 + negl(k):

(PK,SK)← G(1k)
Choose x1, x2, . . . , xp(k)

R← {0, 1}n(k), x∗ R← {0, 1}n(k) and b R← {0, 1}.
If b = 0, set y∗ = FSK(x∗), otherwise set y∗ R← {0, 1}m(k)

b′ ← A(1k, PK, {xi, FSK(xi), ΠSK(xi)}p(k)i=1 , x
∗, y∗)

A succeeds if b′ = b.

Weak verifiable unpredictable functions (VUF) are the same as the above,
except that the weak randomness requirement is replaced by the weak unpre-
dictability requirement below.



3′. Weak Unpredictability: Consider the following experiment with the adversary
A, and let p(k) be any polynomial.

(PK,SK)← G(1k)
Choose x1, x2, . . . , xp(k) ← {0, 1}n(k), x∗ ← {0, 1}n(k).
y∗ ← A(1k, PK, {xi, FSK(xi), ΠSK(xi)}p(k)i=1 , x

∗)
A succeeds if y∗ = FSK(x∗). We require that the probability that A succeeds
is at most negl(k).

3 Weak Verifiable Random Functions and NIZK Proofs

In this section, we show that weak verifiable random functions and non-interactive
zero-knowledge proofs are essentially equivalent. First, in Lemma 2, we construct
a weak VRF given a non-interactive zero-knowledge (NIZK) proof system for all
of NP (with an efficient prover, in the common random string model) and an
injective one-way function. Secondly, in Lemma 1, we construct NIZK proof
systems for every NP language, given any weak VRF.

Lemma 2 (restated). If there exist injective one-way functions and efficient-
prover non-interactive zero-knowledge proofs in the common random string model
for all of NP , then there is a family of weak verifiable random functions.

Proof. The construction is very similar to the construction of a signature scheme
from (enhanced) trapdoor permutations, due to [13]: the difference is that in [13],
the common random string for the NIZK proof system is part of the public-key
of the resulting signature scheme, whereas in our case, it is part of the input.
Informally speaking, the reason for this difference is that in a signature scheme,
the public-key is completely trusted, whereas this is not the case for (both strong
and weak) VRFs.

The key-generation algorithm picks s and s′, two independent seeds for a
pseudorandom function. The public-key PK for the WVRF is the commitment
of the seed s, using randomness ρ. The secret-key SK is (s, ρ, s′). Namely, PK =
com(s; ρ) and SK = (s, ρ, s′). The function FSK(r||x) parses its input as r and
x and outputs fs(x). The proof generator Π does the following: define the NP
language

L = {(PK, x, y) | ∃s, ρ such that PK = com(s; ρ) AND y = fs(x)}

Π runs the prover algorithm for the NIZK proof system for the language L using
r as the common random string. The randomness of the prover is fs′(x), and the
output of the prover is the proof π. It is easy to see that given SK and x, the
proof-generator Π is deterministic. The verifier V , given PK, x, y and π, runs
the NIZK verifier on input the statement (PK, x, y) and the proof π and accepts
if and only if the NIZK verifier accepts.

This construction assumes a pseudorandom function (which can be con-
structed from any one-way function [2, 8]) and a non-interactive commitment



scheme (which can be constructed from any injective one-way function, see Blum
and Micali [33]).

Completeness of the WVRF follows from the perfect completeness of the
NIZK proof system. Pseudorandomness follows via a standard hybrid argument,
which we omit for lack of space.

Relaxed soundness follows from the perfect binding of the commitment scheme
and the soundness of the NIZK proof system. Slightly more precisely, given any
PK, there is at most one s such that PK ∈ com(s; ·) (where com(s; ·) denotes
the set of all commitments of the string s). Thus, for all y′ 6= fs(x), it follows
that (PK, x, y′) /∈ L. By the soundness of the NIZK proof system, this means
that with high probability over the input (that is, over r) the verifier will not
accept any purported proof of the statement (PK, x, y′) with high probability
over its coin-tosses. ut

Next, we show how to construct NIZK proofs for all of NP from any weak
VRF. We do this by implementing the hidden-bit model of [4] using any weak
VRF.

Lemma 1 (restated). If there is a family of weak verifiable random functions,
then there are efficient-prover non-interactive zero-knowledge proofs in the com-
mon random string model for all of NP.

Informally, the idea for implementing the hidden-bits proof system is to let
the prover P choose a pair of keys (PK,SK) for the weak verifiable random
function, and let the hidden bits (b1, . . . , bm) (for some m = poly(n)) be defined
as bi = FSK(ri), where (r1, . . . , rm) is the first part of the common random
string. The prover can reveal any subset of the bits, simply by giving the verifier
the proof ΠSK(ri) for the corresponding bits.

One potential problem is that the prover can select (PK,SK) depending on
the common random string and potentially violate soundness. This is solved in
the standard way of [4] by reducing the soundness error of the NIZK proof in
the hidden-bit model.

A more subtle problem is that the prover may select (PK,SK) such that
FSK(·) is heavily unbalanced, thus introducing a bias into the distribution of the
hidden bits. We handle this in a way that is similar to a certification procedure
developed in [5].

We refer the reader to the full version [34] for a complete proof of this lemma.

4 Constructions of Weak Verifiable Random Functions

In this section, we show two efficient constructions of weak verifiable random
functions (WVRF), as outlined in the introduction.

Construction from Trapdoor Permutations. For simplicity, we describe the con-
struction from any (enhanced) certified trapdoor permutation, namely given a
function f , it is possible in polynomial time to check that f indeed defines a



one-to-one and onto function. This construction can be made to work with any
(enhanced) trapdoor permutation, using a certification procedure of Bellare and
Yung [5].

Let (f, f−1) be an enhanced certified trapdoor permutation. Then, the con-
struction of a WVRF (G,F,Π, V ) is as follows: The key-generation algorithm
G, on input 1k, outputs PK = f , and SK = f−1, where (f, f−1) is a random
trapdoor permutation together with its trapdoor. Let f−i(x) denote the result
of f−1 applied i times to the input x. FSK parses its input as (x, r), and outputs
(b1, . . . , b`) where bi = 〈f−i(x), r〉. ΠSK(x, r) outputs f−(`+1)(x). The verifica-
tion algorithm V , given PK, (x, r) and y, accepts if and only if 〈f i(π), r〉 = b`−i+1

for all 1 ≤ i ≤ ` and f `+1(π) = x.
To sketch the proof of this construction, observe that perfect completeness is

immediate. Soundness follows from the fact that f is a (certified) permutation.
Pseudorandomness follows from the one-wayness of f , as well as the fact that
we use the Goldreich-Levin hardcore bit.

Construction from the Computational Diffie-Hellman Assumption in Gap-DDH
groups. Let G and G′ be groups of prime order q, with a bilinear map e : G×G→
G′. Let g be a generator of G. The WVRF (G,F,Π, V ) is defined as follows: the
key-generation algorithm G(1k) outputs PK = ga and SK = a, where a is a
random element in Zq. FSK(r) uses r to sample a random element R in G, 9

and outputs a hardcore bit of Ra (for example, the most significant bit of Ra).
ΠSK(r) simply outputs Ra. The verification algorithm, on input PK, x, y and
π, accepts if e(PK, x) = e(g, π) and y is the hardcore bit of π.

The fact that this is a weak VRF follows from the Diffie-Hellman assumption.
The formal proof is omitted from this extended abstract.

5 Separations

In this section, we show a black-box separation between weak verifiable unpre-
dictable functions (weak VUFs) and one-way permutations. Recall that both
weak and standard VRFs are in particular also weak VUFs, and that weak
VRFs can be constructed in a fully black-box manner from (enhanced) trapdoor
permutations (eTDPs, see Section 4). This result, therefore, implies a separation
between weak VRFs, standard VRFs and eTDPs and one-way permutations.

Technically, we show that there is no semi black-box reduction (a notion
defined in [32], included below) from a weak VUF to a one-way permutation. In
other words, we show that for every construction of a weak VUF from a one-way
permutation, there is an oracle (which possibly depends on the construction)
such that the construction fails with respect to the oracle.10

9 In the case where G is a subgroup of an elliptic curve group, the sampling can be
done efficiently. See the full version [34] for details.

10 We note that our reduction does not preclude a relativizing reduction. Ruling out
a relativizing reduction involves constructing an oracle relative to which no secure
weak VUF exists. For more details on the different types of black-box reductions,
see [32].



Definition 2 ([32]). A tuple of oracle algorithms (G,F,Π, V ) is a Semi-BB
reduction from weak verifiable unpredictable functions to one-way permutations:

– Correctness. For every permutation O, (GO, FO, ΠO, V O) has (relaxed)
completeness and soundness as in Definition 1.

– Security. For every permutation O, if there exists a PPT oracle machine
A such that AO predicts (GO, FO, ΠO, V O) in the sense of Definition 1,
then there exists a PPT oracle machine S such that SO inverts O with
non-negligible probability.

Using the definition above, we can formally state our claim. We show that
the following holds.

Theorem 1 (formally stated). There is no semi black-box reduction from a
weak VUF to a one-way permutation. Namely, for every construction (G,F,Π, V )
of a weak VUF, there is an oracle O such that (GO, FO, ΠO, V O) is, in the terms
of Definition 2, either incorrect or insecure.

In the remaining of this section, we provide a sketch of the proof of Theorem 1
(Section 5.1, for the full proof, see the full version of this paper) and conclude
with some remarks on limits and extensions of the proof (Section 5.2).

5.1 Proof Sketch of Theorem 1

The proof proceeds by contradiction. Fix (towards contradiction) some semi
black-box reduction (see Definition 2) (G,F,Π, V ). For any oracle O that im-
plements a one-way permutation, (GO, FO, ΠO, V O) is a weak VUF. For any
such reduction, we show an oracle O and an adversary AO that breaks the weak
unpredictability of the defined weak VUF (w.r.t O). Throughout the proof, let
tG (resp. tV ) denote the (polynomial in k) running times of GO (resp. V O). For
simplicity, we will assume that the verifier V O is deterministic, throughout the
rest of this proof.11

The oracle O is similar to the one presented in [32].12 Roughly speaking, O
both implements a one-way permutation (that is, no adversary with oracle access
to O can compute x given O(x), for a random x ∈ {0, 1}n), and is NP-hard
(namely, with oracle access to O, it is possible to decide every language in NP).
A formal statement follows.

Proposition 1 (implicit in [32]). There exists an oracle O which is (i) A
length preserving permutation; (ii) One-way: there exists no PPT oracle ma-
chine A s.t. AO inverts O; and (iii) NP-hard: for any NP relation R, there
exists a polynomial-time oracle machine B that for any x where ∃y.(x, y) ∈ R,
BO finds such a y, namely: (x,BO(x)) ∈ R.
11 However, see remark on handling probabilistic verifiers in Section 5.2.
12 In [11], two oracles are used: a random oracle and a PSPACE-complete oracle. [32]

show how this can be simplified into one oracle that is both a one-way permutation
and is PSPACE-hard (the same argument holds for NP-hardness as well).



We want to use the power of O to construct an adversary that predicts the
weak VUF. Given a public-key PK, this can be done by finding a secret-key
SK ′ such that (PK,SK ′) is a possible output of GO(1k) (this follows from
completeness and soundness of the weak VUF). However, this requires finding a
witness for an NPO relation, a task beyond the powers of our oracle. We thus
relax the requirement. We present an NP relation that enables finding a secret-
key SK ′ and an oracle O′ such that (PK,SK ′) is a possible output of GO

′
(1k).

Furthermore, O′ is only a slight modification of O: O′ and O agree on almost all
inputs, and particularly on a set of “significant” inputs. We then show that such
SK ′,O′ can be used to predict the weak VUF. A detailed description follows.

We define an NP-relation R that will enable us to find SK ′ and a transcript
of oracle query/answers (which will define O′) that are consistent with PK
and with a predefined query bank (a set of queries and answers from O). The
query bank will formally be represented by a set of queries Q ⊆ {0, 1}∗ and a
function fQ : Q→ {0, 1}∗ mapping them to answers. The input of R, therefore,
is formally denoted z = (1k, PK,Q, fQ) (where 1k is the security parameter).
The corresponding witness consists of the new secret key SK ′, along with the
rest of the information that enables simulating the generation of (PK,SK ′): the
randomness r that G uses, and the queries not in Q that G made, along with
their respective answers. These are represented by D ⊆ {0, 1}∗, fD : D → {0, 1}∗
(the same way as Q). We require that |r| , |D| ≤ tG(k). Formally, the witness
for relation R is denoted w = (r, SK ′, D, fD) and (z, w) ∈ R if (PK,SK ′) are
produced by an execution of G with security parameter 1k and randomness r,
which makes oracle queries in Q∪D, and gets answers according to fQ, fD. The
verification procedure VerR(z, w) for R simply simulates G for at most tG(k)
steps and checks that (z, w) are consistent with the above.

Using an NP-hard oracle, we can compute a witness of R for any input,
if such exists. We further note that if fQ is consistent with O, and if PK was
in fact generated by GO(1k), then there always exists at least one witness for
that input: the one that contains the actual random tape, secret key and oracle
query/answers that were used in the generation of PK.

We are now ready to describe the adversary algorithm AO (recall that A has
oracle access to O). For the remainder of the proof, fix the (PK,SK) generated
by G(1k) for the unpredictability challenge.

The Adversary Algorithm The adversary A operates in two stages. In the
first stage, the “exploration stage”, the adversary receives a public-key PK for
the weak VUF, as well as polynomially many evaluations of FOSK , Π

O
SK on ran-

dom inputs xi. The adversary tries to learn the random-oracle queries that are
“significant” in computing the function, and outputs a bank of oracle queries
and answers. In the second stage, the “conquering stage”, the adversary (using
the bank of queries) constructs a secret-key SK ′ and an (implicit) oracle O′ for
the same PK such that FO

′

SK′ and FOSK coincide on most inputs. This enables the
adversary to predict the value of FOSK on most inputs, in turn. The description
of A follows.



The exploration stage of the adversary A.
input: 1k, PK and {xi, yi, πi}k

2tG(k)
i=1 , where (PK,SK)← GO(1k), yi = FOSK(xi)

and πi = ΠOSK(xi).
output: A bank of queries consisting of a set of queries Q and a mapping
fQ : Q→ {0, 1}∗ matching answer fQ(q) = O(q) to every answer q.

algorithm:
1. Initialize the bank of queries Q, fQ = ∅.
2. For i = 1, . . . , k2 ·tG(k) run V O(PK, xi, yi, πi). Save all the query-answer

pairs made by V to the oracle O into the query bank (Q, fQ). Output
(Q, fQ).

The conquering stage of the adversary A.
input: PK, query bank (Q, fQ) and a challenge x∗ R← {0, 1}n(k).
output: y∗ ∈ {0, 1}m(k).
algorithm:

1. Let z = (1k, PK,Q, fQ) be an input for NP relation R described above,
we can useO (which is NP-hard) to compute a witness w = (r, SK ′, D, fD)
such that (z, w) ∈ R (as we mentioned, such witness must exist).

2. For all q ∈ {0, 1}∗, define

O′(q) =
{
fD(q), q ∈ D,
O(q), otherwise.

Note that O′(q) can be computed in polynomial time given access to
O, D, fD. Using SK ′ and O′, return y∗ = FO

′

SK′(x∗).13

Analysis of the Adversary Recall that we fixed PK,SK. We first define a
notion of “frequent oracle queries” of the verification algorithm (with respect
to PK and SK) and show that the bank of queries (Q, fQ) that the adversary
outputs in the exploration stage contains all the frequent oracle queries of the
verification algorithm, with high probability.

We define the frequency freq(q) of a query q to the oracle O (with respect to
PK and SK) to be the fraction of x’s for which the verification algorithm, on
input PK, x, FSK(x) and ΠSK(x), makes the query q to the oracle O during
its execution. More precisely,

freq(q) = Pr
x∈{0,1}n(k)

[
V O(PK, x, FOSK(x), ΠOSK(x)) makes query q to O

]
A query q is called α-frequent if freq(q) ≥ 1/α. Let Fα(k) be the set of all

α(k)-frequent queries. That is, Fα(k) = {q : freq(q) ≥ 1/α(k)}. The following
lemma states that the exploration stage succeeds in finding all frequent queries
with very high probability.

13 We remark that O′ as defined is not necessarily a permutation, so FO
′

SK′(x∗) may
not be well defined. In the full version [34] we show how this is fixed by defining a
permutation O′ s.t. |{q : O(q) 6= O′(q)}| ≤ 2 |D|. For the remaining of the analysis,
we assume that O′ is a permutation.



Lemma 3 (exploration stage). Let α(k) = k · tG(k). With probability at least
1− poly(k) · e−k, at the end of the exploration stage of A, Q ⊇ Fα(k).

Proof. Consider an α(k)-frequent query q ∈ Fα(k). By definition, freq(q) ≥
1/α(k). That is, for at least 1/α(k) fraction of x’s, V O(PK, x, fSK(x), ΠSK(x))
makes the query q to the oracle O. Since the bank of queries Q contains all the
oracle queries made by V on kα(k) random inputs xi, the probability that q is
not in the bank of queries is exponentially small. More precisely,

Pr[q 6∈ Q] ≤ (1− 1/α(k))kα(k) ≤ e−k

Union bounding over all queries in Fα(k) shows that with probability all but∣∣Fα(k)

∣∣ · e−k, Q contains FktG(k) (where the probability is over the randomness
of xi). Now,

∣∣Fα(k)

∣∣ ≤ α(k) · tV (k) = k · tG(k) · tV (k) by simple counting. This
completes the proof. ut

The next lemma states that assuming the exploration stage completed prop-
erly, in the conquering stage A breaks the weak unpredictability of the VUF. We
note that O′ is one-way because it only differs from O on polynomially many
inputs.

Lemma 4 (conquering stage). Let Q, fQ be an output of the exploration stage
of A s.t. Q ⊇ FktG(k). Then the conquering stage runs in poly(k) time and
predicts FOSK(x∗) with probability at least 1− 1/k.

Proof. We define an input x ∈ {0, 1}n(k) to be indifferent (with respect to PK
and SK) if the execution of the verification algorithm (with oracle access to O),
on input (PK, x, FOSK(x), ΠOSK(x)) makes no oracle query q ∈ D (recall that D
is the set of queries computed in step 1 of the conquering stage). In other words,
this execution of the verification algorithm is indifferent to whether it is given
oracle access to O or O′.

The following claims establish that all but a 1/k fraction of the inputs x
are indifferent; and that for every indifferent input x, FOSK(x) = FO

′

SK′(x). In
other words, if x∗ is an indifferent input, then the adversary (which outputs
FO

′

SK′(x∗)) succeeds in predicting FOSK(x∗). It follows that the adversary succeeds
with probability 1− 1

k .

Claim. Let I denote the set of indifferent inputs (with respect to O, PK and
SK). Then, Prx∈{0,1}n(k) [x ∈ I] ≥ 1− 1/k.

Proof: By definition of our NP relation R, Q ∩ D = ∅. Thus, if Q ⊇ FktG(k)

then FktG(k) ∩D = ∅. If we fix some query q ∈ D, then q 6∈ FktG(k), meaning

freq(q) = Pr
x∈{0,1}n(k)

[
V O(PK, x, FOSK(x), ΠOSK(x)) makes query q

]
≤ 1/(ktG(k)) .

Applying the union bound over all |D| ≤ tG(k) queries in D yields

Pr
x∈{0,1}n(k)

[
V O(PK, x, FOSK(x), ΠOSK(x)) makes any query q ∈ D

]
≤ |D|
ktG(k)

≤ 1
k
,

and the claim follows. �



Claim. For all x∗ ∈ I, FOSK(x∗) = FO
′

SK′(x∗).

Proof: For simplicity, assume that for every one-way permutation O, the con-
struction (GO, FO, ΠO, V O) is correct for every input x.14

By the completeness of the weak VUF with respect to O, we have that
V O(PK, x∗, FOSK(x∗), ΠOSK(x∗)) accepts. Since no queries in D are made during
this computation, then clearly it would run in the exact same way with oracle
access to O′ rather than to O. Thus,

V O
′
(PK, x∗, FOSK(x∗), ΠOSK(x∗)) = V O(PK, x∗, FOSK(x∗), ΠOSK(x∗)) = accept .

Since O′ is a OWP, (GO
′
, FO

′
, ΠO

′
, V O

′
) is a weak VUF, which in partic-

ular, means that it satisfies the completeness and soundness properties. By its
completeness, we get that V O

′
(PK, x∗, FO

′

SK′(x∗), ΠO
′

SK′(x∗)) accepts. Soundness
with respect to O′ guarantees, therefore, that FOSK(x∗) = FO

′

SK′(x∗). � ut

Combining Lemmas 3, 4 (using the union bound) yields that A succeeds in
predicting FOSK(x∗) with probability at least 1−1/k−poly(k)·e−k, contradictory
to the alleged security of the reduction. Theorem 1 follows. ut

5.2 Additional Remarks

– Handling Probabilistic Verifiers. The analysis above disregarded the
fact that the verifier V may not return the correct answer, with some small
probability. Essentially, we handle this issue by using amplification by apply-
ing sequential repetition and then using a single random tape for all inputs.
For details, we refer the reader to the full version [34].

– On Requiring Perfect Completeness. In the definition of VRF and weak
VRF, we required that completeness holds for any (PK,SK) generated by
G. When allowing relaxed completeness in Definition 1, the relaxation was
over the inputs and not the keys. While this definition is frequently used,
in some cases (e.g. [1]) the definition is so that the generator is allowed to
output “bad” keys (ones that have no completeness for almost any input)
with very small probability.
While our proof does not cover such constructions, we notice that all known
constructions (including that of [1]), can be presented as having perfect com-
pleteness in a ZPP sense. That is, where the generator is allowed to run for
expected polynomial time rather than worst-case. Our construction can be
slightly altered to work for such constructions as well.

– Separating Trapdoor Permutations from OWPs. As mentioned above,
since there is a black-box reduction from weak VRFs to eTDPs, our sepa-
ration also implies a Semi-BB separation of eTDPs from OWPs. The work
of [11] implies a result that is stronger in two aspects: their separation (ap-
pended with a modification due to [32]) implies a ∀∃Semi-BB separation

14 This is as opposed to relaxed completeness and soundness as in Definition 1 which
hold for almost all inputs.



(see definition in [32]), and they show a separation from key-agreement. Our
result, on the other hand, seems simpler and does not use heavy probability-
theoretic machinery.

– Other Types of Black-box Separations. Our result as presented does
not rule out a relativizing reduction. To rule out a relativizing reduction,
we must exhibit an oracle O relative to which no weak VUF exists. We
show, essentially, that for every construction, there is an oracle that makes
the construction fail as a weak VUF. Our adversary, however, works by
generating a slightly different OWP, which is efficiently computable from
the old one, and plugging it into the same construction. To get a separation,
we require correctness (but not necessarily security) for the modified oracle.
Therefore, while our separation only rules out Semi-BB reductions in the
general case, it can also be interpreted as ruling out ∀∃Semi-BB reductions
if correctness holds for any OWP.

– Inefficient Proof Generators. We notice that while the adversary uses the
code of oracle algorithms G,F, V , its use of Π is black-box only. Therefore,
we additionally obtain that a semi-BB reduction is impossible even when
the proof generator Π is allowed to be inefficient. 15
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