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t + 1 (or more) players an later orretly reonstrut the seret, while subsetsof t (or fewer) players annot reonstrut it. This notion an be generalized byspeifying a family of authorized subsets of the n players, alled aess stru-tures. The dealer shares the seret in suh a way that only authorized subsetsof players an reonstrut the seret while the players in non-authorized subsetsannot.1.1 Why Computational Seret Sharing ?CSS shemes allow us to ahieve a better information rate than is possible withinformation theoreti shemes. The information rate of a seret sharing shemeis the maximum length of a (player's) share per unit size of the seret. Thismeasure is of interest when the size of the message to be shared is large. Forinstane, it is possible ([10℄) to t-share a seret, in the threshold model, withthe share of eah player being only 1t as long as the seret (whih is learlyoptimal). Indeed, Beguin and Cresti [1℄ have shown that it is possible to ahievethe optimal information rate for any aess struture provided that a �xed lengthseret an be shared on the same aess struture. The above shemes build onthe idea of information dispersal algorithms [13℄. CSS shemes whih make useof a bulletin board on whih an arbitrary amount of information an be publishedhave also been proposed ([5℄).Clearly, a seret sharing sheme an be alled eÆient only if the informationrate is polynomially bounded as a funtion of the number of players n. Further-more, we posit that the amount of information published on the bulletin boardbe polynomial in n. Note that the CSS of [1℄ is not appliable when there isno known eÆient seret sharing sheme for the orresponding aess struture.Similarly, the CSS sheme of [5℄ beomes ineÆient when the size of the aessstruture is not polynomial in n. Our interest in studying CSS is due to the fatthat there may exist aess strutures that have eÆient CSS shemes but donot permit any other (information theoreti) eÆient seret sharing sheme.Most of the results in extant literature on seret sharing shemes deal withinformation-theoreti seret sharing.We know that eÆient information-theoretiperfet linear seret sharing shemes exist only if the aess struture is in alge-brai NC2 \mono, the lass of monotone languages whih an be omputed byalgebrai iruits of logarithmi size and log-squared depth. Non-linear shemesappear to be more powerful [2℄. However, there remains a large gap betweenthe known upper bounds and lower bounds in the ase of information theoretiseret sharing.1.2 Boolean formulas and Boolean iruitsThe ontribution of the �rst part of this paper is the onstrution of eÆient CSSshemes for all aess strutures whih an be omputed by monotone Booleaniruits of polynomial size. This omplexity lass is known as mP , for monotoneP . Monotone Boolean iruits di�er from monotone Boolean formulas in that inthe former, the output of a node an serve as the input of more than one node.



We say that gates in a monotone Boolean iruit an have a fanout of more thanone. Another way of understanding the di�erene is that a monotone Booleaniruit is a direted ayli graph where eah node represents an AND gate or anOR gate whereas a monotone Boolean formula is a tree with the same property.This makes monotone Boolean iruits muh more powerful than formulas. Infat, it was believed that monotone Boolean iruits ould simulate any (deter-ministi) Turing mahine aepting a monotone set (thus making mP equivalentto P \mono, the lass of monotone languages in P ), but Razborov ([14℄) provedthat this is not the ase.1Benaloh and Leihter [3℄, in their landmark result on the existene of linearperfet seret sharing shemes for any monotone aess struture (as �rst de�nedin [8℄), showed how to ombine seret sharing shemes aross AND and ORgates (in other words, how to realize seret sharing shemes for the union andintersetion of two aess strutures) and reursively applied this result to theBoolean formula omputing the aess struture. Our onstrution is similar inspirit. We represent the Boolean iruit omputing the aess struture as agraph whose nodes are AND, OR, or FANOUT gates. (The FANOUT gatetakes a single input and produes multiple opies of the input. We do this inorder that the FANOUT is the only gate with more than one output.) Witheah edge of this graph, we assoiate a (virtual) seret, whih we all the shareof that edge. The shares of the input wires of the iruit form the shares of theplayers. The sharing sheme has the property that a subset S of players anompute the share of some edge E if the wire orresponding to E evaluates to 1when the iruit is given (the enoding of) S as input. We show how to assoiateshares with edges in suh a way that the above property is arried aross AND,OR and FANOUT gates.Our tehniques are similar in spirit to Yao's landmark garbled iruit on-strution ([15℄), but very di�erent in appliation sine in the ase of seret shar-ing, non-interativity is essential. Thus our result does not follow from Yao'ssine seret sharing protools annot be expressed as speial ase(s) of intera-tive seure funtion evaluation protools.1.3 Semi-trusted third partyOur seond result deals with seret sharing using a semi-trusted third party.The use of this onstrut is to introdue a limited amount of interativity intothe protool, and thus inrease its power. Just as the relaxation of the seurityrequirement from information theoreti to omputational seurity allows us togive protools for a broader lass of aess strutures, the relaxation of the non-interativity requirement results in a further broadening. We prove that, usinga semi-trusted third party, eÆient CSS shemes exist for any lass of aessstrutures in monotone NP (denoted mNP ). This is the lass of languagesaepted by monotone non-deterministi Turing mahines in polynomial time,1 Razborov showed superpolynomial lower bounds for the monotone iruit omplexityof the mathing funtion.



whih also turns out to be the lass of monotone languages in NP . Clearly, thisinludes all aess strutures that ould possibly be interesting in pratie.The notion of a semi-trusted third party has been made use of in protoolsfor fair exhange ([6℄). It allows two parties to exhange a seret in suh a waythat neither party an gain an unfair advantage by aborting the protool at anypoint. To the best of our knowledge, however, seret sharing with a semi-trustedthird party has not been onsidered.A semi-trusted third party may try to deviate from the protool, but itannot ollude with any of the players. It annot be trusted with any of theprivate information of the other players. Therefore, in the ase of seret sharing,we have the restrition that the semi-trusted third party should neither gainknowledge of the seret nor be able to identify the aess set of players that triesto determine the seret. We make these notions formal in the next setion.Semi-trusted third parties are worthy of study beause, unlike trusted thirdparties, they are readily realizable in pratie. Indeed, [6℄ have suggested thatin networks suh as the internet, a random player an be hosen as a semi-trusted third party. In suh a senario, the third party is both geographiallyand logially separated from the players, and thus the possibility of both thethird party and some of the other players oming under the ontrol of a ommonadversary is remote. Another pratial possibility is for a bank to play the roleof a semi-trusted third party.2 Preliminaries and De�nitionsTo begin with, we formally de�ne the onept of Computational Seret Sharingfor general aess strutures. A Seret Sharing sheme is a protool between theset of players P = fP1; P2; : : : ; Png and a dealer D, where we assume D =2 P . Anaess struture A � 2P onsists of sets of players quali�ed to reover the seret.It is natural to onsider only monotone aess strutures A, that is, if A 2 Aand A � A0 � P , then A0 2 A. The set �A = 2P � A is alled the adversarystruture. A set of players A 2 A is alled an aess set or a quali�ed subset.A set of players A =2 A is alled an adversary set or a non-quali�ed subset. Weassoiate a lass of aess strutures fAng with a languageLA = fx = x1x2 : : : xn : xi 2 f0; 1g; fPijxi = 1g 2 AngWe make statements suh as \the aess struture A is in monotone P",when we atually mean to say that LA 2 monotone P .The set of all possible serets is alled the seret domain (denoted by S) andthe set of all possible shares is alled the share domain (denoted by S0). Now,we formally de�ne a omputational seret sharing sheme.De�nition 1 (Computational Seret Sharing). A omputational seret shar-ing sheme is a protool � between D and P to share a seret S 2 S, respetiveto an aess struture A suh that



{ The dealer D transmits a share Si 2 S0 to the player Pi, for i = 1; 2; : : : ; n.D retires from the protool immediately afterwards.{ There is a polynomial-time algorithm �REC suh that �REC(Si1 ; Si2 ; : : : ; Sim)= S with probability 1 if fPi1 ; Pi2 ; : : : ; Pimg 2 A.{ For any set of players fPi1 ; Pi2 ; : : : ; Pimg =2 A and any (possibly randomized)polynomial-time algorithm �ADV , Prob[�ADV (Si1 ; Si2 ; : : : ; Sim) = S℄ � 1jSjfor all onstants  and suitably hosen jSj.In our seret-sharing shemes, the domains of the seret and of the sharesare the same, and this ommon domain is a �nite �eld, whih we denote by F .De�nition 2 (Seret sharing using a semi-trusted third party). A om-putational seret sharing sheme using a semi-trusted third party is a pair ofprotools � and � between a dealer D, the set of players P and a third party T ,to share a seret S 2 S, respetive to an aess struture A suh that{ In the sharing protool �, the dealer D transmits a share Si 2 S0 to theplayer Pi, for i = 1; 2; : : : ; n, and a share S0 to T . D retires from the protoolimmediately afterwards.{ The reonstrution protool � is an interative protool between T and somesubset A � P, represented by the virtual player P , at the end of whih:� T should not obtain any information about S or about A.� If A 2 A then P should be able to ompute the seret S with ertainty inpolynomial time.� If A =2 A, then the probability that P an ompute S in polynomial timeshould be negligible.Monotone Boolean iruit. A monotone Boolean iruit is a Boolean iruitonsisting of AND, OR and FANOUT gates onneted by wires. Both ANDand OR gates have two inputs and one output; FANOUT gates have one inputand two outputs. AND and OR gates perform Boolean multipliation and ad-dition respetively on their inputs, while the FANOUT gates propagate theirinput to both outputs. The iruit has n input wires (whih are not the outputof any gate) and one output wire (whih is not the input of any gate).There are two values assoiated with eah wireW of the iruit - the Booleanvalue of W obtained by the evaluation of the iruit on some input assign-ment and the share value assoiated with W during the sharing and reonstru-tion proess. The Boolean value of W orresponding to an input assignmentx1; x2; : : : ; xn is denoted by Eval(W;A) where (x1; x2; : : : xn) is the enoding ofA. We abuse notation and denote Eval(W;A) by Eval(W ) when it is lear whihset of players A we are referring to. Given a wire W in the iruit, we denote byV (W ) the share-value assoiated with W .De�nition 3 (Nondeterministi Boolean iruit). A nondeterministi ir-uit for a Boolean funtion f(x1; x2; : : : xn) is a iruit C with standard inputsx1; x2; : : : xn and auxiliary inputs y1; y2; : : : ym, where m = poly(n), suh thatif f(x1; x2; : : : xn) = 1, then there is a assignment for the inputs y suh thatC(x1; x2; : : : xn; y1; y2; : : : ym) = 1 and if f(x1; x2; : : : xn) = 0, then there is nosuh assignment.



We model suh a iruit as a direted ayli graph whose nodes are AND,OR, NOT , or FANOUT gates.De�nition 4 (Monotone nondeterministi Boolean iruit). A mono-tone nondeterministi Boolean iruit is a nondeterministi Boolean iruit inwhih a gate that (transitively) depends on a standard input2 annot be a NOTgate.Given an aess struture A inmNP , we assoiate with it the monotone non-deterministi Boolean iruit for the harateristi funtion of the language LA.Lemma 1 ([7℄). A language L is in mNP if and only if the monotone nonde-terministi Boolean iruit omputing L has polynomial size.De�nition 5 (Oblivious transfer). An oblivious transfer (or OT) protool isa protool between a sender S and a reeiver R in whih{ S's input is (s1; s2) whih are elements of the seret domain S.{ R's input is an index � 2 f0; 1g.{ At the end of the protool R must obtain s� but should not get any informa-tion about s1��.{ S should not obtain any information about �.The de�nition above refers to \1-out-of-2 OT", or OT21. There are moregeneral notions of oblivious transfer, but we will not require them.3 Our Computational Seret Sharing ShemeWe assume that the players are provided a monotone Boolean iruit C thataepts the aess struture A (the iruit an be individually given to all theplayers or published on a bulletin board). We onsider the iruit as omposed ofAND, OR and FANOUT gates. Eah wire of the iruit will be assoiated witha value during the sharing and reonstrution phases. In the sharing phase, theproblem is to ompute the values orresponding to the input wires (the sharesof the orresponding players) from the value of the output wire (the seret).We perform the reverse of this during reonstrution. Our omputational seretsharing sheme is as follows.Let ENCK : F ! F be a family of trapdoor one-way funtions3 on F withthe index K varying over F , and DECK : F ! F the orresponding inverses.Algorithm Share1. Let W be the output wire. Assign V (W ) = s, where s is the seret.2 In other words, there is a direted path from a standard input to that gate.3 We have used trapdoor funtions for larity of presentation, but the protool willwork with minor modi�ations even when ENC is a one-way funtion.



2. Choose a gate G whose output wire has been assigned a value.4{ G is an AND gate : Let W be the output wire of G and W1 andW2 be the input wires. Pik a random x in F . Assign: V (W1) = x �V (W ) and V (W2) = x.{ G is an OR gate : Let W be the output wire of G and W1 and W2 bethe input wires. Assign: V (W1) = V (W ) and V (W2) = V (W ).{ G is a FANOUT gate : Let W1;W2 be the outputs of G and W be theinput. Pik a random key K from F . Publish: ENCK(V (Wi)) for i =1; 2: Assign: V (W ) = K.3. Repeat step 2 until all gates are onsidered. The values at eah input wireform the shares of the orresponding players.Algorithm Reonstrut1. Let WP be the input wire orresponding to player P . Assign V (WP ) to theshare of player P . Choose a gate G whose input wires have been assignedvalues.{ G is an AND gate : Let W be the output wire of G and W1 and W2 bethe input wires. Assign V (W ) = V (W1)� V (W2).{ G is an OR gate : LetW be the output wire of G andW1 and W2 be theinput wires. Choose the input wireWi(i = 1; 2) suh that Eval(Wi) = 1.Assign V (W ) = V (Wi).{ G is a FANOUT gate : Let W be the input wire of G and W1;W2be the outputs. By applying DEC, ompute V (Wi) from V (W ) andENCV (W )(V (Wi)).2. Repeat step 1 until V (WO) for the output wire WO is onstruted. V (WO)is the seret.3.1 Corretness and seurityCorretness. It is easy to show that any aess set A an reover the seretwith probability 1. We prove the stronger statement that A an reover V (W )for any wireW with Eval(W;A) = 1. We show this by indution on the depth oftheW : it is learly true for the input wires. IfW is any other wire, it must be theoutput of an AND, OR or FANOUT gate G. In eah of these ases algorithmreonstrut shows how to obtain V (W ) from the V -values at those input wiresof G for whih Eval is 1 (the V -values at the input wires, whih have a smallerdepth than W , are assumed to be known by the indution hypothesis). utTheorem 1. The above omputational seret sharing sheme is seure, i.e, forany A =2 A, A annot reover the seret.Proof. We have shown that the aess set A an reover V (W ) for any wireW with Eval(W;A) = 1. The onverse of this assertion is not true: A maybe obtain V (W ) even when Eval(W;A) = 0. To see this onsider an OR gate4 If G is a FANOUT gate, both its outputs should have been assigned a value.



whose inputs W1 and W2 evaluate to 1 and 0 respetively. Then A an obtainV (W2) = V (W1). To get around this diÆulty, we introdue the onept of afanout-free region. It will turn out that the onverse statement indeed holds onthose wires that onnet fanout-free regions.A subiruit C 0 of a iruit C is a onneted subgraph of C indued by someof the nodes (gates). A fanout free region (FFR) of C is a maximal subiruit ofC having no FANOUT gates. Note that C an be onsidered to be a diretedayli graph of fanout free regions onneted by FANOUT gates. We all thisthe fanout graph of C. Also note that any FFR is a tree of AND and OR gates.With every FFR F , we assoiate a virtual adversary AF . AF is given asinput the iruit F , the share values of those input wires W of F for whihEval(W ) = 1, and nothing else. Our goal is to prove that the players' view ofthe FFR F is indistinguishable from the view of AF on F .Let �(W ) be the property that if Eval(W ) is 0 then V (W ) is omputationallyindistinguishable from the uniform distribution on F .We begin with a restatement of Benaloh and Leihter's result [3℄:Lemma 2. For the adversary AF , � holds on the output wire of F .The next lemma states that if the input share value of a FANOUT gate is notknown, then the publi value assoiated with that gate gives no new informationabout any of its output share values. In partiular this means that the property� is arried aross a FANOUT gate.Lemma 3. Let W be the input wire and W 0 an output wire of a FANOUT gate.If V (W ) is omputationally indistinguishable from the uniform distribution onF , then so is V (W 0).Proof: Sine DECK(:) is a family of pseudo-random permutations (from F toF , indexed by the key K), uniform distribution on the key spae, given theiphertext, implies that the distribution on the plaintext spae is omputation-ally indistinguishable from uniform distribution. If the distribution of V (W 0)is omputationally distinguishable from the uniform distribution, it means thatV (W ) is omputationally distinguishable from uniform distribution, whih is byassumption, false. utThe next lemma formalizes the notion that a FANOUT gate does not \leakany information" in the reverse diretion.Lemma 4. Let W be the input wire and W 0 be an output wire of a FANOUTgate. Then the distributions V (W ) and V (W )jV (W 0) are omputationally indis-tinguishable.We observe that the sharing algorithm �xes V (W ) randomly and independentlyof V (W 0). Therefore, if the lemma is false it would mean that the knowledge ofan arbitrary (plaintext; iphertext) pair gives information about the key, whihontradits the assumption that ENC is seure. utA simple generalization of the above lemma to any pair of wires with theproperty that any path onneting them must pass through a FANOUT gate is:



Lemma 5. In the fanout graph of C, let F be an FFR of depth d and F 0 anFFR of depth d0, d0 > d. Let W and W 0 be wires in F and F 0 respetively. ThenV (W ) and V (W )jV (W 0) are omputationally indistinguishable. utThe above lemma allows us to apply indution on the depth on the fanoutgraph, at every step ignoring all FFRs at a greater depth than the urrent FFR.Lemma 6. Let F be an FFR at depth d. Assume that � holds on the outputs ofall FFRs of depth < d. Then � holds on the output of F .Proof. By lemma 5, we an ignore the e�et of all FFRs of depth > d. Byassumption, � holds on all wires that feed any of the inputs of F . Applyinglemma 3 to eah FANOUT gate feeding F , we �nd that the players' view ofthe inputs of F is idential to that of AF . Therefore by lemma 2, � holds on theoutput of F . utThe rest of the proof is straightforward. By applying indution on the depthd of the FFRs, we �nd that � holds on the output of every FFR. In partiular,� holds on the output wire of the iruit. ut3.2 EÆienyTheorem 2. The above sheme is eÆient for all aess strutures A 2 mP .Proof. The total number of shares given to the players is O(n) sine eah playergets exatly one share, orresponding to one of the input wires in the iruit.The number of published share values is twie the number of FANOUT gates,whih is polynomial in n when the iruit is poly-size. Therefore, for all aessstrutures A having a polynomial-size iruit (i.e, A 2 mP ), this sheme iseÆient. utThe sheme is also omputationally eÆient for all A 2 mP sine the om-putational e�ort required by D is equivalent to that of evaluating the iruiton some input assignment and performing a polynomial number of enryptions.Reonstrution of the seret an be naturally parallelized and the parallel timeomplexity of reonstruting the seret by an aess set A 2 A is proportionalto the depth of the iruit.4 Seret sharing with semi-trusted third partyOur goal is to explore the limits on the aess strutures for whih we an giveseret sharing shemes by relaxing the requirements. Thus, even though seretsharing as suh is a non-interative protool, we wish to make it more powerfulby allowing a limited amount of interation. We do this by introduing a thirdparty T who is allowed to interat with the players. However, at the end of theprotool T should be no wiser about the inputs of the dealer and the playersthan before the beginning of the protool.The algorithms for sharing and reonstrution are similar to the �rst protool.The main di�erene is that the iruit onsists of NOT gates also. Therefore,



we need to assoiate two share values with eah wire: one orresponding to theevaluation of the wire being 1 and the other orresponding to the evaluation ofthe wire being 0. (We denote these by V (W; 1) and V (W; 0) respetively, andall them the 1-share and the 0-share respetively ofW .) Propagating the valuesaross AND, OR and FANOUT gates is done as in the previous protool. Inthe ase of NOT gates, the share value of the input wire with evaluation 0 isrelated to the share value of the output wire with evaluation 1, and vie versa.Role of the third party. In monotone iruits, Eval(W;A) � Eval(W;B)whenever A � B. Therefore, the dealer need not worry about a set of playersobtaining some share values by evaluating the iruit (i.e, invoking the reon-strution algorithm) with some input xi set to 0 even though is possible toevaluate the iruit with xi = 1. In the ase of a general iruit (whih inludesNOT gates), however, this is not true, and therefore it is possible that the play-ers might obtain both the 0-share and the 1-share of some wire. The role of thethird party is to ensure that this annot happen. It is enough to ensure that theplayers annot get both the 0-share and the 1-share of any auxiliary input wireof the iruit. This is done by exeuting an Oblivious Transfer protool [12℄ foreah auxiliary input wire of the iruit.Let A be an aess struture in mNP . By lemma 1, there exists a monotonenondeterministi Boolean iruit C of polynomial size that omputes A. Usingthis iruit we will onstrut a CSS sheme for A.4.1 ProtoolSharing The sharing algorithm is essentially the sharing algorithm of the pre-vious setion invoked twie, one for the 0-shares and one for the 1-shares.1. Let W be the output wire of C. Assign V (W; 1) = s, where s is the seret.2. Choose a gate G whose output wire has been assigned a 1-share.{ G is an AND gate : Let W be the output wire of G and W1 and W2be the input wires. Pik a random x in F . Assign: V (W1; 1) = x �V (W; 1) and V (W2; 1) = x.{ G is an OR gate : Let W be the output wire of G and W1 and W2 bethe input wires. Assign: V (W1; 1) = V (W; 1) and V (W2; 1) = V (W; 1).{ G is a NOT gate: Assign V (W 0; 0) = V (W; 1) where W is the outputwire and W 0 is the input wire of G.{ G is a FANOUT gate : Choose a random key K from F . Let W1;W2 bethe outputs of G andW be the input. Publish: ENCK(V (Wi; 1)) for i =1; 2: Assign: V (W; 1) = K.Choose a gate G whose output wire has been assigned a 0-share.{ G is an AND gate : Let W be the output wire of G and W1 and W2 bethe input wires. Assign: V (W1; 0) = V (W; 0) and V (W2; 0) = V (W; 0).{ G is an OR gate : Let W be the output wire of G and W1 and W2be the input wires. Pik a random x in F . Assign: V (W0; 0) = x �V (W; 0) and V (W2; 0) = x.



{ G is a NOT gate: Assign V (W 0; 1) = V (W; 0) where W is the outputwire and W 0 is the input wire of G.{ G is a FANOUT gate : Choose a random key K from F . Let W1;W2 bethe outputs of G andW be the input. Publish: ENCK(V (Wi; 0)) for i =1; 2: Assign: V (W; 0) = K.3. Repeat steps 2 and 3 until all gates are onsidered.4. For every (W; b) that has not been assigned a share, assign a random valueto V (W; b).5. The 1-shares of the input wires form the shares of the orresponding players.The 0-shares of the input wires are published.6. For every auxiliary input wire W , f(V (W; 0); V (W; 1)g is sent to the thirdparty.Reonstrution The reonstrution onsists of two stages: in the �rst stagethe players interat with the third party; in the seond the players perform someloal omputations to reover the seret (if they form an aess set).Stage 1. The players annot interat individually with the third partythrough separate hannels, beause of the requirement that the third partyshould not gain any information about the set of players involved in the re-onstrution proedure. Therefore we onsider all the players as onstitutingone virtual player P .Let A be the aess set of players partiipating in the reonstrution algo-rithm. For eah auxiliary input wire W :{ T and P exeute a OT 21 protool with V (W; 0) and V (W; 1) as T 's serets.Sine A is a quali�ed subset, there exists an assignment of values to theauxiliary inputs y suh that the iruit evaluates to 1. For eah wire W , Phooses the orresponding value of y as its index.Stage 2. The stage 2 is similar to the reonstrution phase of the �rst pro-tool. The goal is to ompute V (W;Eval(W;A)) for eah wire W . For the inputwires these values are already known from the share values and the publi infor-mation.1. Choose a gate G whose input wires have been assigned shares.{ G is an AND gate with output 1: Let W be the output wire of G andW1 and W2 be the input wires. Assign V (W; 1) = V (W1; 1)� V (W2; 1).{ G is an OR gate with output 1: Let W be the output wire of G and W1and W2 be the input wires. Choose the input wireWi(i = 1; 2) suh thatEval(Wi) = 1. Assign V (W; 1) = V (Wi; 1).{ G is an AND gate with output 0: Let W be the output wire of G andW1 and W2 be the input wires. Choose the input wire Wi(i = 1; 2) suhthat Eval(Wi) = 0. Assign V (W; 0) = V (Wi; 0).{ G is an OR gate with output 0: Let W be the output wire of G and W1and W2 be the input wires. Assign V (W; 0) = V (W1; 0)� V (W2; 0).{ G is a NOT gate: Let Let W be the output wire of G and W 0 the inputwire. Assign V (W; b) = V (W 0; 1� b) where b = Eval(W ).



{ G is a FANOUT gate : Let W be the input wire of G and W1;W2be the outputs. Apply DEC to ompute V (Wi; b) from V (W; b) andENCV (W;b)(V (Wi; b)), where b = Eval(W ).2. Repeat step 1 until V (WO ; 1) for the output wireWO is onstruted. V (WO ; 1)is the seret.4.2 Corretness and seurityTo prove the orretness we �rst note if A is a quali�ed subset then the iruitevaluates to 1 on the input (x1; x2; : : : xn; y1; y2; : : : yn) as hosen in the stage 1of the reonstrution protool. Next, we prove by indution that if the wire Wevaluates to b then the players an ompute V (W; b). Clearly this is true of theinput wires. If W is any other wire, it must be the output of an AND, OR,NOT , or FANOUT gate G. In eah of these ases, stage 2 of the reonstrutionalgorithm shows how the players an obtain the V (W; b) from the relevant V -values of the input wires of G.Seurity. Suppose A =2 A. Then for every Pi =2 A, P has no way of knowingthe 1-share of Pi's input wire. Therefore when P evaluates the iruit in stage2, the input xi must be 0. Hene from the de�nition of C there is no assignment(y1; y2; : : : yn) whih will make C evaluate to 1. Further, sine C omputes amonotone funtion, C will evaluate to zero even if some of the inputs xi withPi 2 A are set to zero.It remains to prove the orretness of stage 2, i.e, that P annot �nd the seretif C evaluates to 0. The proof of this is very similar to the proof of seurity ofthe reonstrution algorithm of the �rst protool, and is hene omitted.Seurity against the third party. In the sharing protool, the T gets noinformation about the 1-shares of the input wires. Further, from the de�nitionof OT, T gets no new information in stage 2 of the reonstrution protool.Therefore, T an only evaluate the iruit with all inputs 0, whih means thatT annot get the 1-share of the output wire.Again, sine T learns nothing at all during interation with the virtual player,T annot identify the aess set A.4.3 EÆienyAs with the previous protool, this one is also eÆient when the iruit is ofpolynomial size (i.e, A 2 mNP ) sine the total size of the shares is linear inn and the amount of published information is proportional to the number ofFANOUT gates. The question of omputational omplexity is somewhat triky.Stritly speaking, the protool is omputationally eÆient sine the sharing andreonstrution algorithms involve only a onstant amount of omputation foreah gate of the iruit. However, the players need to determine if the set Ais a quali�ed subset before they an start the reonstrution algorithm. Thisomputation is, by de�nition, a general problem in mNP . The impliations ofthis are disussed in the next setion.



The round omplexity of the interative protool between T and P is the sameas the round omplexity of the OT protool used, sine all the m + n OTs anbe invoked in parallel. If we use a sheme like the ones in [11℄, this omplexity is2. It might appear at �rst glane that if we use non-interative OT shemes like[4℄, then the need for a third party would disappear. However, non-interativeOT shemes are not appliable in this ontext sine the reeiver needs to hoosethe index after the start of the protool. Using non-interative OT would requirethe aess set of players to be known beforehand.5 Disussion and Future WorkTheorem 3 (A simple upper bound). EÆient CSS shemes annot existfor an aess struture A not in o-RP .Proof. To show this, we onstrut a deterministi algorithm to solve the prob-lem \Does A 2 A" using the algorithms share and reonstrut as orales. Thealgorithm hooses a random seret, shares it and uses reonstrut with the sharesorresponding to A as inputs to see if it gets bak the seret whih it hose. Ifit is the same it deides that A 2 A. Else, it deides that A =2 A. We note thatif indeed A 2 A, it deides orretly with probability 1, while if A =2 A, there isa small probability of error. Sine we deide LA with a deterministi algorithm,if share and reonstrut are poly-time then A must be in o-RP . utImpliations of Our Results{ It was not known whether it is possible to onstrut eÆient seret sharingshemes for aess strutures outside (algebrai NC2\ mono), though [2℄provided evidene that it is possible. Our result shows that omputationalseret sharing is possible over the entire lass mP whih ontains aessstrutures not in algebrai NC2.{ Combining our result with that of [1℄, it is possible to ahieve the optimalinformation rate (for large seret length) for every aess struture in mP .{ As we have remarked earlier, to arry out the reonstrution algorithm theplayers need to determine if they form an aess set, and this omputationould lie outside P in the third party ase. This does not mean, however, thatthe third party result is purely of theoretial signi�ane, for two reasons:when the players are probabilisti algorithms, the lass of aess struturesthat an be deided in poly-time is o-RP\ mono, as shown above, andthis lass is bigger than mP . Further, even for aess strutures admitting ofdeterministi poly-size iruits, it might be more eÆient to use a randomizedalgorithm, in whih ase the protool using nondeterministi Boolean iruitsmust be used.Our result must be understood more as an existene result for eÆient pro-tools, rather than as a method to onstrut suh protools. For instane, it islikely that using threshold gates as building bloks in addition to AND and ORwould give more eÆient protools. One diretion for future work in this area
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