Fault-Tolerant Distributed Computing in Full-Information Networks

Shafi Goldwasseér Elan Pavlov Vinod Vaikuntanathah
CSAIL, MIT MIT CSAIL, MIT
Cambridge MA, USA Cambridge MA, USA Cambridge MA, USA

December 15, 2006

Abstract

In this paper, we use random-selection protocols in the full-information model to solve classical
problems in distributed computing. Our main results are the following:
e An O(logn)-round randomized Byzantine Agreement (BA) protocol in a synchronous full-information
nerork tolgrating < 3% faulty players (for any constaat> 0). As such, our protocol is asymp-
totically optimal in terms of fault-tolerance.

e An O(1)-round randomized BA protocol in a synchronous full-information network toleratiag
O(W) faulty players.

e A compiler that converts any randomized protadg| designed to toleratefail-stopfaults, where the
source of randomness bif,, is an SV-sourcento a protocoll,,. that toleratesnin(t, %) Byzantine
faults. If the round-complexity dff;, is r, that of I, is O(r log™ n).

Central to our results is the development of a new tool, “audited protocols”. Informally “auditing” is a
transformation that conver&yprotocol that assumes built-in broadcast channels into one that achieves
a slightly weaker guarantewjthout assuming broadcast channels

We regard this as a tool of independent interest, which could potentially find applications in the
design of simple and modular randomized distributed algorithms.

*Supported by NSF grants CNS-0430450 and CCF0514167.

1 Introduction

The problem of hownh players, some of who may be faulty, can make a common random selection in a
set, has received much attention. The challenge is that the faulty players may form a coalition and deviate
arbitrarily from the prescribed protocol. Despite this malicious behavior of some of the players, we want to
select an element of a set “as randomly as possible”. This problem was studied in various network models:
the private channelsnodel where players can communicate via perfectly private pairwise communication
channels; theomputational modelvhere the faulty players are assumed to be computationally bounded
and cryptographic primitives are assumed to exist; anduhenformationmodel where no assumptions are
made on the existence of private channels nor are the faulty players computationally restricted.

When achievable, random selection is not only an end in itself, but is a useful building block in solving
other distributed tasks. Generally speaking, the paradigm of design is to first construct by random selection
protocols a source of randomness and then prove correctness and security of protocols under the assumption
that all players use this source. The most striking example of this paradigm is the progression of works by
Ben-Or, Rabin, Bracha, Dwork-Shmoys-Stockmeyer, and Feldman-Micali [2, 26, 8, 13, 15] on the Byzantine
agreement problem in the computational and the private channels model. Ultimately, [15] achieved expected
constant-roundandomized protocols for Byzantine agreement, by first constructing global common coins
in a constant number of rounds, and then applying the round preserving reduction by [26, 13] of Byzantine
agreement to constructing global common coins. This paradigm was also used in the context of secure
computation [6, 19, 18, 3].

The focus of our work will be, in contrast, tHall information model. We will show how to use a
variety of random selection protocols, to address classical questions in fault tolerant distributed computing
in the full information model.

We remark that achieving results in the full information model is important, as these results hold un-
conditionally. Currently, all results in the computational model hold only under intractability assumptions
such as the existence of one-way functions. The results in the private channels model are conditioned on the
availability of private physical communication channels between pair of players. This elegant abstraction
is implemented by resorting to secure encryption, the existence of which is again based on intractability
assumptions.

There is an extensive body of work [17, 20, 14, 27, 6] on efficient random selection protocols in the full
information model, which we could potentially take advantage of. The challenge, however, in using these
protocols, is that irall of these works, an additional assumption is ma@diable broadcast channels exist
for free. Namely, when an honest player receives a message that is 'broadcast’, he is guaranteed that all
other honest players received the same message even if it was sent by a faulty player. Thus, no part of the
protocol needs to be dedicated to ambiguity. Indeed, both the correctness and efficiency (including the round
complexity) of [17, 20, 14, 27, 4] hold only under the additional assumption that broadcast is an atomic
unit-cost operation.

In our work, we do not assume that broadcast channels exist. In fact, one of our main results will be a
protocols to achieve broadcast (i.e, Byzantine Agreement) in the full information model.

We focus on the case of a point-to-point synchronous network. Messages are sent at the end of a round
and are delivered at the beginning of the next round. Delivery of messages igustiiregmodel. Namely,

a player may possibly see all messages sent in reundother players, before he sends his own round
messages.

The fault model we address is a coalitiontdhulty (corrupted) players, whose identity is decided by
an adversary before the protocol begins. The adversary carBgeaatine t-adversaryn which case he
decideswhichmessages will be sent by thdaulty players in every round, deviating from the protocol in

the worst possible manner. The adversary can fad-atop t-adversaryin which case every faulty player

follows the protocol, until the adversary instructs it to stop sending messages all together. This may happen

anytime, including in the middle of a round, after a faulty player has sent messages to a subset of the players.
We consider a computationally unbounded adversary who makes his decisions based on the information

about the state of all players (faulty and honest) including their coin tosses up to and including the current

round, and the entire history of communications between them. Such adversary wamtralgieby Chor

and Dwork [10]. An intrusive adversary was also assumed in [2, 9, 5].

Main Results

e The Byzantine agreement problem is hoawlayers, each of whom has a single bit input, can agree on
a common output bit, such that if all non-faulty players start with the same tnplien the output i
as well. We show

(1) An O(log n)-round randomized Byzantine Agreement (BA) protocol in a synchronous full-information
network toleratingg < 57 faulty players (for any constamt> 0). This achievesisymptotically op-

timal fault toleranceas Pease, Shostak and Lamport [25] and Karlin and Yao [22] show that BA is not
possible ifn < 3t. Our protocol improves on the fault-tolerance of the protocol of Ben-Or, Pavlov and

Vaikuntanathan [5] who show ai(log n) round Byzantine agreement for< ;.

(2) An O(1)-round randomized BA protocol toIeratir@(bgl%) faulty players. The best round com-
plexity known for this value of wasO(logn) [5].

o A fail-stop adversary models a benign fault whereas a Byzantine adversary models a much more severe
fault. We show a compiler that takes any randomized protbigpldesigned to tolerate a Fail Stop
adversary, where thsource of randomness of all playerslih, is an SV-sourc28],? into a protocol
Io: that tolerates a Byzantinein(t, 5)-adversary. If the round-complexity oF;, is r, that ofIl,,: is
O(rlog* n). Previously, Hadzilacos, Neiger-Toueg, and Bracha [21, 24, 7] constructed such a compiler
for deterministic protocols, and [7] raised as an open question, whether such a compiler exists for
randomized protocols.

e The results above are derived via new leader election protocols in the full-information model that do not
assuming broadcast channels. Egf 3%6 faults, we achieve leader election@i(log n) rounds.

1.1 A New Tool — Audited Protocols: How to Remove Broadcast Assumption

Given any distributed protocdl that possibly assumes broadcast channels, we would like to eXécate
well as possible” when no reliable broadcast channels are given.

Of course, one could simulate any protocol assuming broadcast channels, by replacing each broadcast
instruction of the protocol with the execution of a sub-protocol for implementing reliable broadcast.

Note that reliable broadcast is trivially solved given any protocol for BA, simply by setting the inputs
of all non-faulty players in the Byzantine agreement protocol to be the message to be reliably broadcast.
This naive approach, however, runs into trouble, as it may increase the round-complexity of the simulated
protocol prohibitively. Moreover, even if one were to design a Byzantine agreement protocol with expected
round-complexityk = o(logn), it would not merely imply arO(k) factor slow-down in the number of

We remark that even within the full-information setting, an intrusive adversary is especially powerful. Conceivably, one
can get more efficient protocols in the full-information model by taking advantage of weaker adversaries, such as one who is
computationally unbounded and can see all messages exchanged between non-faulty playersnmithdwesaccess to their
private inputs and coin tosses.

2Namely, given all coins tossed by all players thus far, the probability that the next coin is “heads” is bounded Between
andl + ~ for somey > 0.

rounds. As already observed by Chor and Rabin [12], the probability that all executions of a probabilistic
protocol halt within the expected number of rounds proved for a single execution can be exponentially small
in the number of executions.

Thus, we introduce a new protocol transformation calledit. This tool applies tany protocol de-
signed with the simplifying assumption that automatic broadcast is available and ishatttef all of our
work

Audit allows us to take any protocdl designed assuming reliable automatic broadcast, and produce a
protocolAudit(C, 3, IT) whichdoes not assume automatic broadcasteauditingcommitteeC', is a subset
of then players ands > 0. We say thatC is good when the fraction of corrupted playergins smaller
thang. WhenC'is a good auditing committee the output distribution of non-faulty playefsittit(C, 3, IT)
will be as inII. WhenevelC is not a good committee, the output of the non-faulty playefsidit(C, 3, 1)
will be as inII excepthat some non-faulty players may output The round-complexity ofudit(C, 3, IT)
is |C| times that off.

Informally, the role of the committe€' is to “audit” the execution oAudit(C, 3, II) and ensure that in
each roundall honest players get the same messages, thus simulating the reliable broadcast functionality.
If the auditing committee contains a sufficient fraction of honest players this will be ensured. Otherwise
the worst that may happen is that some honest player will recelven@ssage instead of what was sent by
honest players.

An interesting special case of ‘Audit’ used to derive the results in sections 0.5 and 0.6, is when the
auditing committee consists of a single player. In this case, the round-complexity of the audited protocol
is essentially the same as that of the original protocol. Recently, in independent work, Katz and Koo [23]
introduced the notion of moderated Verifiable Secret Sharing (VSS). The idea of a moderator is very remi-
niscent of the idea of an auditing committee which consists of a single auditor. In contrast with our work,
[23] obtain their results in the private channels model. We remark, that although our primary interest in
this paper is the full information model, thaudit transformation introduced here will apply to the private
channels model as well. Another interesting usage of ‘Audit’ is when the execution of a protocol is audited
not by a single committee, but by a collection of committees. Namely, the same execution is in parallel
audited by different committees (See Section 0.4 for details).

We proceed to outline the ideas behind our results.

1.2 O(logn)-Round Byzantine Agreement in Full Information Network

Since its introduction in [25], the problem of Byzantine Agreement (BA) has been the source of enormous
attention. The BA protocol of [25] had a round complexitytef 1 rounds, which was shown to be optimal
for deterministic protocols by Fischer and Lynch [16].

Researchers quickly resorted to randomization as one of the ways to overcome this limitation. Ben-
Or, Rabin and Bracha [2, 26, 8] started this line of work, putting forth the ideacoinamon coiras the
correct notion of randomization to achieve BA. In particular, Rabin [26] followed by Dwork, Shmoys and
Stockmeyer [13] distilled the notion of a common coin and showed that if thereris@md common-coin
protocol, then there is an expect@dr)-round Byzantine Agreement protocol.

In the private channels model (and the computational model under intractability assumptions), Feldman
and Micali [15] showed how to construct a common coin irfi(il) rounds tolerating < 7 faulty players.
Consequently, they achieved BA in expected) rounds.

Feige [14] and Russell and Zuckerman [27] construct a common-coin in the full-information model with
a round-complexity ofog*n + O(1) rounds, but this bound is proved under the assumptionréiable
broadcast channels exist

The precise notion of a coin necessary to make the Rabin reduction go through is thateo)an
common coin [13]. An(e, §)-common coin is a coin with biaSwhich all players agree on with probability
e. Thus, the protocols of [14, 27] construct @in §)-common coin for somé > 0. In other words, at the
end of the coin-flipping protocol, all the players output the same semi-randowitbiprobability 1. In
this work, we will construct arge, §)-common-coin protocol for somed > 0, without assuming broadcast
channels We then show,

Main Theorem 1. For any constant > 0, there exists a BA protoc@8A. in a synchronous full-information

network tolerating < (3 — €)n Byzantine faults, and runs for expect@dlofg") rounds.

Prior to our work, in the full information model, the best known BA protocol was due to Ben-Or, Pavlov,
and Vaikuntanathan [5] who construct &flog n)-round protocol that tolerates< (% — ¢)n faults, with
guasi-polynomial communication complexity.

Whereas the basic paradigm outlining the result of [5] was to use (in a complex fashion) the leader
election protocol of Feige [14], the basic building block outlining our new protocol is the random selection
protocol of Russell and Zuckerman (RZ) [27]. Informally, we will use the committees defined by the RZ
protocol as auditors for an execution of the RZ protocol itself. This is possible, since in the RZ protocol, the
committees are defined in advance. This idea is not (at least directly) applicable to Feige’s protocol since it
constructs the committees on-the-fly.

1.3 Transforming Fail-Stop Fault Resilient Protocols into Byzantine Faults Resilient Protocols

Designing distributed algorithms that tolerate Byzantine failures is a complex task. The task of the protocol-
designer would be simpler, were there@mpilerthat takes as input a distributed prototbthat tolerates
benign failuresand outputs a robust distributed prototbBlthat tolerates the moseveredailures.

The problem of designing a compiler that automatically convertslatgrministiqorotocol that tolerates
fail-stop faults to one that tolerates Byzantine faults was considered by Hadzilacos[21] and Neiger and Toueg
[24]. They provide a procedure that converts any deterministic proiigahat tolerate fail-stop faults into
II,.t whose output in the presence of Byzantine faults, is identical to the outpllf,dh the presence
of fail-stop faults. We remark that their transformation explicitly assumes thdt,itthe inputs of honest
players is sent to all other players in the first round, however when the adversary is intrusive this restriction
iS unnecessary.

Bracha [7] explicitly raised the question, which we partially address here, whether such a transformation
is possible for randomized protocols as well. The additional challenge over the deterministic case is that a
fail-stop fault in a randomized protocol will flip coins fairly as prescribed by the protocol, but a Byzantine
failure could potentially use any biased coins it likes (or none at all, in particular).

Our main result of this section is:

Main Theorem 2. 3 Suppose there is an.-round (1,v) common-coin protocol (possibly using reliable
broadcast channels). Then there is a compiler that convertsraawpund protocolIl in which the ran-
domness source is &SV-source and which tolerates a fail-sto@dversary, to arp/-round protocolIl’
that uses a uniformly random source and tolerates a Byzantiaelversary where’ = min(t, %), and
rir = O(Tecrm)-

3For a non-intrusive adversary, the theorem statement would hold for those prdiboishich all players send their inputs
in the first round, and in which all coins tossed by players are public-coin, i.e in each round the honest players send the outcome
of their coins along with their messages. All random selection protocols we know of are of this type. Indeed, within this work,
we only apply the above theorem to random selection protocols in full information model which have no initial inputs and which
use public coins. It is an interesting question whether one can design better (with less rounds and/or better bias) random selection
protocols in which the players use private-coins.

It is an interesting question whether the condition on in the above theorem on the coins of the players in
the input protocol can be removed.

1.4 O(1)-Round BA Against O(;——) Faults

n
log
Ben-Or et al [5] construct an expectél1)-round Byzantine Agreement protocol that toIeractlz(qog”Tn)
Byzantine faults, using thene-roundcollective coin-flipping protocol of Ajtai and Linial [1]. This is the
best fault-tolerance for which we know how to construct an expe@{éd-round BA protocol. In particular,
the best known BA protocol that tolerates- w(log#n) faults has a round-complexity 6(logn) [5]. We
show the following theorem.

Main Theorem 3. There exists a®(1)-round BA protocol in a synchronous full-information network:of
players tolerating = O(log1+58n) malicious faults.

This O(1)-round BA protocol works in two steps. First, we construct a new common-coin protocol in
the full _information model with broadc_ast channe!s with b@(%) tolerating.t = O(logl%gn) fgults.
Interestingly, one cannot use [14, 27] directly for this task, as they do not achieve such small bias even when
the number of faults is small. Then, we use the compiler from the previous section, applied to a very simple
one-round Byzantine Agreement protocol designed to tolerate fail-stop adversary due to Chor, Merritt and
Shmoys [11]. Itis an easy calculation to show that the [11] protocol works even when the randomness source
is ay-SV-source withy = O(@). In fact, we prove a more general theorem than above (See Section 0.6
for details).

2 Technical Preliminaries

Notation. For a vectorw = (z1, 9, ...,z,) and a predicat@ (i) on indices, :E’\izp(i) denotes the vector
consisting of all;’s such thatP (i) is true.

2.1 Formal Model of a Synchronous Distributed System

We will let n» denote the number of players, aRd= { P, P», ..., P,} the set of players. The communica-
tion network consists of reliable communication channels between every pair of playeds. Mieassume
the existence of built-in broadcast channels.

Protocols. Adistributed protocoﬁ is specified by an-tuple of interacting randomized prograiis$;, Ilo, . .., I1,,),
where we think oflI; as the program executed by play@r In each round, each progrdm receives mes-
sages from the other progranigsses coinssends messages to the other programs and changes state.

Randomness. We model the randomness used by the components in a distributed protocol by a random
sourceR that generates a sequence of bits according to some distribution. Whenever one of the programs
II; requests a random bit (“tosses a coin”), the next bit from the source is returned. We consider two specific
sourcesR in this paper. The first one, which is traditionally assumed by randomized distributed protocols,
is a perfectly random source (that is, whRnis just a sequence of unbiased and independent bits). The
second one is @-SV-source [28]. Ay-SV-source (wheré < v < %) is a sequence of bitg b, . . . such that
foranyi, & — 8 < Pribiy1 =0 by,.... 0] < 3 +6.

Adversaries. We consider static adversaries in this paper. A static adversary corrupts phefers
the protocol execution begins, as opposed to a dynamic (or adaptive) adversary which can corrupt play-
ers throughout the execution of the protocol.

An t-adversary corrupts at mosplayers, by replacing the prograihof each corrupted player with a
programﬁ. The adversaries we consider are of three types — Byzantine, omission and fail-stop. In the case

of aByzantine (malicious}adversaryﬁ is an arbitrary program. In the case of an omiseﬂmzlversaryﬁ
is the same aH except that in every round] canomit to send or receivan arbitrary subset of the outgoing
messages. In the case of a fail-stop adverddrg the same a8l except that it caralt, possibly in the
middle of a round and send an arbitrary subset of the messages it is supposed to send.

In each round, the adversary can decide what the corrupted players send in a round (resp. decide when
the corrupted players haléifter seeing the messages sent by the honest playeheisame roungdin ad-
dition to the messages from the previous rounds. Such an adversary is calisireg adversary. Note
that the adversary can obsenléthe messages exchanged in the network, even the ones that honest players
exchange amongst themselves. In other words, no communication is assumed to be secret and no computa-
tional restrictions are imposed on the adversary (this models the “full-information” aspect of the network).
In addition, the adversary has access to the state of all the players, including their past (but not future)
random coins (this stronger model has been called an “intrusive advefsary”)

We let Oi(ﬁ,f, R, A) denote the output distribution of the playBr in the execution of the protocol
il against the adversary, when the input vector of the playersasand the randomness is taken from a
source (with distributionR. We will let O(ﬁ, Z, R, A) denote the joint distribution of the outputsaif the
players.

Definition 1 (Simulation of a Protocol IT by a Protocol IT). Protocol IT" with randomness sourc®’ is
said toperfectly simulatdI with randomness sourcR if, for every adversary!’, there exists an adversary
A such that for every input vectat, the output distribution ofI’ under the influence of’ is identical to
the output distribution ofl underA. Thatis,VA’,3A such thatO(IT', , R', A’) = O(I1, #, R, A). In such
a case, we writél’ ~ II.

If the output distribution ofI’ is identical to that oflI except that some players outpuf we say that
IT' 1-simulatedI. We writeIl’ ~ | II.

2.2 Byzantine Agreement and Reliable Broadcast
In its most basic form, the problem of Byzantine Agreement [25] is as defined below.

Definition 2 (Byzantine Agreement)LetIT be a protocol among players, in which each playdp; starts
with an input bitb;, and P; outputs a bitc; at the end of the protocoll is a Byzantine Agreement protocol,
if the following conditions hold: (LAgreement: For any two non-faulty player#; and P;, ¢; = c¢;. (2)
Validity: If all the non-faulty players start with the same input bitthen the output of every non-faulty
player isb. (3) Termination: Protocolll terminates with probability.

Note that, ifTI is randomized, the Agreement, Validity and Termination conditions are required to hold
with probability 1 over the coin-tosses of the processors. The principal complexity measure of interest is the
expectedunning time of the protocol.

We also define reliable broadcast, which is easily seen to be equivalent to Byzantine Agreement problem.

Definition 3 (Reliable Broadcast)Let II be a protocol among: players, in which a designated player
D e P starts with inputb and every playelP; outputs a bitc;. II is a reliable broadcast protocol, if the
following conditions hold: (LAgreement: For any two non-faulty players; and P}, ¢; = c;. (2) Validity:

If D is honest, then the output of every non-faulty playér ¥8) Termination: ProtocolIl terminates with
probability 1.

“4Since we show positive results in this paper, it is only better to work against a stronger adversary

2.3 Graded Broadcast

An appropriate formalization of a semi-reliable broadcast channel is the following notion of graded broad-
cast (introduced and implemented by Feldman and Micali [15]).

A protocolP is said to be achieve graded broadcast if, at the beginning of the protocol, one of the players
(the dealeD) holds a valuey, and at the end of the protocol, every playgoutputs a paifv;, conf;) such
that the following properties hold:v¢, conf; € {0, 1,2}) (1) If the dealerD is honest, ther; = v and
conf; = 2 for every honest playeP;. (2) For any two honest player®; and P;, |conf; — conf;| < 1. (3)
For any two honest playei; and P;, if conf; > 0 andconf; > 0, thenv; = v;. The following lemma is
proven in [15].

Lemma 1 (Feldman-Micali [15]) There exists a protocdllry amongn players which achieves graded
broadcast as long as< 7 players are corrupted by a Byzantine adversdiy runs inO(1) rounds.

2.4 Common Coin

The precise notion of a “common-coin” necessary for the Ben-Or and Rabin reduction from Byzantine
Agreement to coin-flipping was distilled by Dwork, Shmoys and Stockmeyer [13] and is as given below.

Definition 4 (Common-coin) A protocolll is said to be ge, §)-common-coin protocol if, at the end of the
protocol, each playeP; outputs a bith;, and there exist constantésé > 0 such that the following hold:

(1) Commonality: With probability at least, all the players output the same bitThat is,Pr[3b such that Vi, b; =
b] > e.

(2) Randomness Given that all the players output the same bijtthe bias ofb is at mosté. That is,

21— 6 <Pr[b=0|3bsuchthat Vi,b; =b] < 3 + 4.

2.5 Combinatorial Tools

Construction of Committees. LetC C {C; | C; C [n] such thatC;| = n’} be a collection ofn subsets
of then players, each subset of size Each such subset is referred to ammmittee Thus,C is a collection
of m committees.

Assuming thain of then players are corrupt, a natural property to desire on the part of the collection
of committees is thawjery fewof the committees have much more thaw bad players. More formally, a
committeeC' is said to be:-bad with respect to a sé C [n] if |[BN C| > (1 + €)8n’. The collection of
committee<’ is good if,for any B C [n], the number of bad committees@with respect taB is at most
3n.

The following lemma shows that such committees with appropriate parameters exist.

Lemma 2. Letn denote the number of players ahdenote the number of bad players. Then, there exists a
good collection ofn committee€ such thatn = n? andn’ = O('%5™).

Hitting Sets. To define the notion of a hitting set for combinatorial rectangles, we first need a few defini-
tions.

Fix ana > 0. A combinatorial rectangle? C [a]™ is defined to beR = Ry x Ry x ... x R, where
eachR; C [a], and|R;| = a — 1. The volume ofR in [a]" is vol(R) = & [T, |Ril.

AsetD C [a]"is called an(a, n, m)-hitting set if (1)| D| = m, and (2) for every combinatorial rectangle
R C [a]",|DNR]| > 0. The following lemma shows that hitting sets exist for a certain choice of parameters.

Lemma 3. There exists afia, n, m)-hitting setD for everyn, m = n* anda = lfg”n.

2.6 Other Tools

Lemma 4 ([4]). There exists a one-round, ﬁ)—common—coin protocol among players tolerating a
Byzantinet-adversary.

Lemma 5 ([9]). There exists a randomized BA protocol in the synchronous full-information model that
tolerates a Byzantineadversary for any < % and runs in expecte@ (L) rounds.

logn
3 Audited Protocols

Given any distributed protocdl that possibly assumes broadcast channels, we would like exdclas
well as possible” when no reliable broadcast channels are given. For any distributed pfotacdlfor
any playerP (the “auditor”), we define an “audited” protoctll = Audit(P,II). Informally, Audit(P,II)
provides the following guarantees: If the audi®ris honest]II’ works exactly likell. In particular, the
outputs of the honest playerslH are distributed exactly as they arelin Even if the auditor is dishonest,
he can do only minimal damage — the worst he can do is set the outputs of some of the playeigh
players that do get a legal output (an output different frojget one that is distributed accordinglio
More generally, we could have a set (a “committee”) of playéisather than a single playét) be the
auditor. We definél’ to be arAudit(C, 8, 11) if, II’ behaves exactly likel whenevelC' is a good committee
—that is, when the number of bad player€iis smaller thar. Even wherC is bad (that is, the fraction of
bad players irC is larger than3), the worst that” can do is to set the outputs of some of the honest players
to L; the honest players that do get some legal output get a correctly distributed one. More formally,

Definition 5 (Audit(C, 5,11)). Define a committe€ C P to be good if the number of bad playersdh
is at most3|C|. Given any protocoll amongn players, and a designated commiti€eC P, a protocol
Il = Audit(C, 3,11) is called a(C, 3)-auditedII if,
e WhenC is good, the output vector of the playerslihis identically distributed as ifil. Thus,IT ~ IT'.
e Even wherC is bad, the honest players get a correctly distributed output, of hus,IT’ ~ | II.

Note that auditing by a single player is a special case of auditing by committees. In parfiadiafP, IT)
is exactlyAudit({ P}, 0, II).

Transforming Any Protocol into an Audited Protocol

We provide a transformation that converts any protd€ohat assumes broadcast t¢@, (3)-auditedII, as
defined above (See Tablg We get aP-auditedlI as a corollary of this transformation.

Theorem 6. There exists a transformatiofudit that takes any distributed protocél, the description of
a committeeC' and a numbe) < G < % and outputs a protocdll’ = Audit(C, 8,1I) such thatIl’
is a (C, 3)-auditedII (as in Definition 5) If the fault-tolerance df is ¢, that of II" is min(¢,). If the
round-complexity ofl is 7, the round-complexity dfi” is at mos{C'|ryy.

Proof. (Sketch.) We will show that the protocHl = Audit(C, 3, II) (given in Tablel) satisfies Definition
4. The proof will proceed in two parts: first, we show tiiEtis an audited version dfl, wheneverC| = 1.
Thatis, when the auditor is a single player. Secondly, we will show that a committee “behaves like” a player,
in a sense to be made precise below.

First of all, assume thaC'| = 1 (Notice that this considerably simplifies Steps 2(b) and 2(c)). If all the
honest players sétil; = 1 at the end ofI’, then all of them output, and there is nothing to prove. Our
goal will be to show that if some honest play@r setsfail; = 0 (that is, his output is nat.) then for every

Input: Protocolll.
Output: Protocolll’ = Audit(C, 3,1I)
Each Round of Protocdl is simulated as follows.
(1) If IT instructsP; to send a message 1), IT' instructs the same.
(2) If IT instructsP; to broadcast a messageto all the players, the following subroutine is invoked.
(a) (Player P;)) Gradecastn to all the players.
(b) (The Auditor C) LetC' = {Q1,Q2, ..., Q|| }- Letm) denote the message ti@j received as
aresult ofP;’s gradecast, in Step 2(a). The player€inun a deterministic Byzantine Agreement
among themselves, witf;’s input to the BA beingn;. Each playeQ, € C gradecasts the
outputm; of the BA to all the players.
(c) (Every player P;) Receive|C| pairs(mj, confy) from each playef);, € C. If there aremore
than @ pairs of the form(u,2), then setmc = p andconfeo = 2. Else, if there arenore

than@ pairs of the form(y,, > 1), then setnc = p, andconfo = 1. Else, setnc = L and
confc = 0.

(d) (Every player P;) Let (m;, conf;) and (mc, confc) denote the outputs df; from the grade-
cast in step (a) and the computation in step (c), respectivglyill take mc as the messag
broadcast byP; in the underlying execution df.

(e) (Every player P;) Set a bitfail = 1 if either (1)m¢c # m; andconf; = 2, or (2) confo # 2.

Finally, each playeP; gets an outpuD, from the underlying execution @f. P; outputsQ; if fail = 0,
and | otherwise.

¢

Table 1: The transformatiofudit

time a broadcast instruction in the protocol is simulated by Step (2udft, all the honest players in fact
receive the same message (and thus, the functionality of broadcast is achieved).

Suppose some honest play@r setsfail; = 0. This means that, in all steps of the simulation (that is,
every time a playeP; broadcasts a messagg, in the view of P;, both (1)confc = 2, and (2) m¢ = m;
or conf; # 2. This follows from Ste@(e) of Audit. Sinceconf = 2, every other honest player receives
the same message from the committeéewith confidence at leagt Thus, it follows that all the players
receive the same value for the broadcast of player Moreover, if P; is good, thenconf; = 2. Then,
by condition (ii) abovemme = m;. This means that, i; is good, all players accept the message at
“broadcast” (regardless of whether the committee is good or not). Thus, we showed that every player gets
the same message as a resulPgé broadcasand moreover ifP; is good, they accept the messdgesent.
This simulates the functionality of reliable broadcast perfectly, in each round.

To finish the proof, we show that a committee “behaves like” a player in the following sense: Suppose
a committee gradecasts a messagé.e, all the honest players in the committee gradeeastand two
honest players’ and P; receive the committee’s gradecast with confidenees conf;) and (m;, conf;)
(as in Step 2(c) of the transformation). Then, if the committee is good (i.e, has moré tinaction of
honest players)n; = m; = m andconf; = conf; = 2. Even if the committee is bagtonf; — conf;| < 1
and ifconf; andconf; > 1, thenm; = m;. This follows by inspection of Steps 2(b) and 2(c), a formal proof
is omitted. The claim about the fault-tolerancefafdit(C, 3, IT) and round complexity are easy to check
and are omitted. O

4 O(logn)-round Byzantine Agreement

Theorem 7(Main Theorem 1, Restatedlor any constant > 0, there exists a protoc®A, that achieves
Byzantine Agreement in a synchronous full-information networkpméyers tolerating < (% — ¢)n faults.
The round complexity BA, is O(1%&™).

€

Our BA protocol uses as a key tool thadit transformation from Section 0.3, applied to the committee-
selection protocol of Russell and Zuckerman [27].

4.1 Committee Selection Protocol

The goal of a committee-selection protocol is to select, from amoptayers, a set of committees, each
consisting ofn’ players, such that with probability at ledst- % all the selected committees are good

Russell and Zuckerman use the tools developed in Subsection 0.2.5 (committee construction and hitting
sets) to build a committee selection prototiyz. In particular, they prove the following theorem.

Theorem 8(Russell-Zuckerman [27])Letn be the number of players arde the number of bad players.
Then, there exists a protocblrz which outputs a set &f > 1 committee<”;, where each committee has
size™%6™ 'such that with probability at least— 1, all the committees thdlgrz outputs are good.

Proof Sketch: The protocolllgz proceeds as follows. The proof of correctness is as in [27] and is
omitted for lack of space. The public setup for the protocol consists of (1) a collection of committees
C ={C1,Cy,...,Cyn}, (2) Ahitting setD C [a]™ with | D| = m and (3) A bijection: : C — D.

(1) Each PlayerP; chooses'; € [a], andbroadcasts; to all the players.
(2) Locally compute and output a vectér = (ej,ea,...,ey,) Wheree; = 1 if and only if for some
1 <j <n, h(C)|; =r;. CommitteeC; is said to be eliminated #; = 1. O

4.2 Overview of the Proof of Theorem 7

The classical paradigm for designing randomized BA protocols, pioneered by Ben-Or and Rabin [2, 26],
reduces the problem of BA to the problem of constructing a common-coin. A common-coin is\aHiih
has a constant bias, and is seen by all the players with a constant probability. Rabin shows that if there is an
r-round common-coin protocol, then there is an expe€éd)-round Byzantine Agreement protocol. For
the precise definition of a “common-coin protocol”, see Subsection 0.2.4.

Suppose we could select a “good committee” (i.e, a committee with more2ffsafraction of honest
players) of sizeO(logn) without using broadcast channelthen we will immediately get a®(logn)-
round Byzantine Agreement protocol by the following strategy: We first choose the committee, and then
run anO(log™ n)-roundcoin-flipping protocolwithin the selected committee. These coin-flipping protocols
themselves require reliable broadcast channels among the players in the committee. However, since the
number of players in the committee is small, we can simulate the reliable broadcast channels by the Chor-
Coan protocol (Lemma 5), resulting inoélog n) rounds coin-flipping. After the players in the committee
agree on a coin, thewill sendthe value of the coin to all the players. Each player, in turn, computes the
majority of all the coins he receives from the committee members. Since the committee is good, the majority
will indeed be the coin-flip of the honest players.

It remains to specify how we could select a good committee of Gideg n) without broadcast chan-
nels. The committee-selection protodbtz, described above, assumes the existence of reliable broadcast
channels, over which the players can announce their choice of which committees to eliminat€. tdake
be the set ofn committees defined before the beginning of the committee sampling prdiiggol We

construct arauditedcommittee-selection protocol, whettee same executioof I1gz is audited by all the
committeesC' € C. Thus, a committee acts both as a committeéljyy as well as an auditor follrz.

As opposed to auditing by a single committee, this structure will allow us to eliminate the use of broadcast
channels iflrz. For details, see the formal proof below.

4.3 Auditing by a Set of Committees

We make precise the notion of a set of committees auditing the same execution of a protocol (alluded to in
the overview above). We defirfeudit(C, %, IT) (refer to Tablel) to be the protocol obtained by applying
the Audit transformation to protocdll, except for the following changes: Stepsand2(a) of the Audit
transformation remain exactly the same. Steps 2(b)-2(e) are executed by each co@imaitteseparately.
The output of each player is a vectorrafvaluesO = (01,04, ...,0,,), corresponding to the: auditing
committees.

In the following, we focus oudit(C, %, IT) for a specific, simple protocdl, namely that of a player
@ broadcasting a messagdo all the players. Call this functionalitgCast(Q,). We show the following

lemma about the output of the playersAndit[C, 1, BCast(Q, 1)].

Lemma 9. Let P and P’ be any two honest players. Let the outpufoih Audit [C, %, Broadcast(Q, M)]
be the vectofO1, O, . .., O,,) and that ofP’ be (O}, 0}, ..., 0).).

(1) If C; is a good auditor, the®; = O..

(2) If the broadcaster) is honest, then for every good auditof, O; = u. Even ifQ is dishonest, there is
auniquemessage/’ such that for every good auditar;, O; € {y/, L}.

Proof Sketch: Part (1) follows from Theorem 6 and the fact tligtis a good auditor. Part (2) essentially
follows by the property of gradecast. Observe that aflegradecasts his message, each player gets either
the same message or 1. Thus, each good auditor will send eitheror L in Step 2(b) of theAudit
transformation. i) is honest, each player geisas a result of)’s gradecast, and thus each good auditor
will send . O

4.4 Formal Proof of Theorem 7.

For the full description of the protocol, see TabBleBy Lemma 10 belowl I .: Selects a good committee
with probability 1 —% and all the honest players know the identity of the chosen committee. By the argument
in the overview, once we have a good committee, Byzantine Agreement follows (by running a coin-flipping
protocol within the committee, and using Rabin’s reduction from BA to coin-flipping). The claims about
fault-tolerance and round-complexity follow from the corresponding claims in Lemma 10. O

Lemma 10(Committee-selection without Broadcast Channel®y everye > 0, there is anO(1)-roundn-
player protocolllg e to Select a committe€ C [n], consisting o% players, such that with probability
1-— % all honest players output the same committeél,. ... does not assume reliable broadcast channels.

Proof Sketch: The protocolll.: iS given in Table2. Lemma 12 shows that all the honest playagsece

on the list of committees that have not been eliminated. Lemma 11 shows that at thel&pgd.gfall the

bad committees are eliminated and Lemma 13 shows that at least one committee is not eliminated. Thus the
committeeC; output at the end offs.e.; IS good, and all the honest players agree on which committee is
chosen. O

First, we will show that at the end &f...t, all the bad committees are eliminated.

PROTOCOL IIgject
Public Setup.As in Theorem 8

1. (Each Player P)) Choosey randomly from[a]. RunAudit[C, §, BCast(P;,r;)]. The output of

player P from Audit[C, 3, BCast(P;, ;)] is avector(rf], 7L, ..., 71).

2. (Each Player P, locally) Construct anm x n matrix RY = [r{;}, where each row corresponds

to an auditor and each column corresponds to a player.jheolumn of R” is the output of

Audit[C, 1, BCast(P;, r;)] from Step (1).

3. (Each Player P, locally) From R”, construct ann x m matrix D = [d}], whered}, = 1 iff

there exists g such thati(Cy)|; = r/.

4. (Each CommitteeC;) Run a deterministic BA among the player<if where a playeP’s input
is the matrixD? from Step (3). Let the resulting matrix (after the BA) of playeibe denoted
DPF. Ifthe it" column of D contains more than 1's, thenP sends a message, “Eliminaig”
to all the players.

5. (Each Player P, locally) Construct a vecto#” such thag?” = 1 if and only if either, (1) the®"
column of D¥ contains more than 1's, or (2) P received “DisqualifyC;” messages from more
than half the members &f;. C; is said to besliminatedif ¢ = 1. Output the lexicographically
smallest’; that isnot eliminated

Table 2: Committee-Selection Without Broadcast

Lemma 11. With probability 1 — % over the coin-tosses of the honest players, all bad committees are
eIiminated after Step (5) dl. .. More precisely, for every bad committé€g and every honest playér,
ek = 1.

Proof. With probability at least — % every bad committee is eliminated at the endllgy (See Theorem 8).
That s, for every bad committ&e,, there is an honest play&y (who broadcasts;) such that.(Cy)|; = ;.
Because of the property @N‘udut[c, ;, BCast(P;,r)] (Lemma 9, Part (2)), thg* column of Rp contains
n? — 3n r;'s (one for each good auditing committee). This means that, by the constructiop,ahe k"
column of Dp containsn? — 3n 1's. Sincen? — 3n > 4n + 1, C} is eliminated by playeP. Since the
above argument holds for every honest plaiee;, = 1 for every bad committe€’;, and honespP. O
The next lemma shows that if an honest plajethinks thatC'; has been eliminated, then every other

honest playe€) will think that C'; has been eliminated too.

Lemma 12. Leté” and é¥ be the vectors constructed by honest playBrand Q in Step (5) oflTsject.
Then,e’’ = &9.

Proof Sketch: It is sufficient to show that for everysuch thatEZP =1, éZQ = 1too. First of all, for every
bad committee’;, ¢’ = e’? = 1 (be Lemma 11). In the rest of the proof, we (&tbe a good committee. If
e*f is 1, then it is because of one of the following reasons (See Step (5) of Zable

(1) P received “DisqualifyC’;” messages from more than half the member€'ofin this case, sincé€’; runs
a BA protocol before sending the “Disqualify,” messages and sin€g is good, all honest players if;
send “DisqualifyC;” messages too. This means that every other honest playeceives a “Disqualify’;”
message from more than half the member€'pfThis results inefi2 =1

(2) Theit" column of D contains more tha#n 1's: Consider the:*” row in R” corresponding to a good
auditorCy,. By Part (1) of Lemma 9, the!” row of R will be the same. Thus, thé” rows of D and D%
are the same too, by construction. Of thel’s in the:*" column of D', at mostn belong to bad auditors.
Thus, there are more thanl’s in thei*” column of D?. Since this is true for every honest play@r in
Step 4 0flLeiect, the matrixD? will contain more tham 1’s. Thus all the honest players @ will send a
“Disqualify C;” message to all the players. This malés: 1. O

Finally, we show that at least one committee is not eliminated.
Lemma 13. There exists ansuch thatéf = 0 for every honest playeP.

Proof Sketch: Fix the collection of messages sent by all the players (including the faulty ones). By
Theorem 8, there is at least one committ&esuch thath(C;)|; # r; for any j. This means that the
it" column of D has at most 1's, for any honest playeP. P will sete? = 0, and thusC; is not
eliminated. O]

logn

Corollary 14. For everye > 0, there exists a leader election protocol amaenglayers that runs i (<%")
rounds tolerating < 5 faulty players and does not assume reliable broadcast channels.

5 Transformation from Fail-stop to Byzantine

In this section, we will construct a compiler that takes as input any full-information prolﬂ)}@'@f’ that
tolerates a fail-stop-adversary and usesyaSV-source as the source of randomness, and outputs a protocol
IIgy, that realizes the same functionality H%S'SV, tolerates a Byzantinmin(t, 5)-adversary and uses a
uniformly random source.

To understand our compiler, we first focus on the difference between a fail-stop adversary and a Byzan-
tine one. Informally, a Byzantine fault is more malicious than a fail-stop fault in two aspects: (1) a Byzantine
player can use arbitrary coins as the source of randomness, whereas a fail-stop player uses the prescribed
source of randomness, (2) a Byzantine player can send arbitrary messages to players in every round, whereas
a fail-stop player follows the prescribed protocol, and can only halt (possibly in the middle of a round).

Thus, to transform a protocol tolerating fail-stop faults to one tolerating Byzantine faults, we should (1)
force the Byzantine player to flip “good coins” and (2) restrict her to follow the prescribed protocol. The
compiler we construct reflects the above intuition.

Overview of the Compiler. The compiler proceeds in three steps.
Step1. Convert the input protocdily. > to a protocolll)>Y that toleratemmissionfaults, where in both

H?S'SV andII?">Y all the players use &SV source as the source of randomness.

omit ’
Step2. ConvertHZr'nSi:/ to a protocolll,mi;, which toleratemissionfaults, and uses a uniformly random

source, but allows the faulty players to flip their own coins. Recall Eaf\ worked only against adver-
saries that used the prescribed source of randomness (which is an SV-source).
Step3. Convertll,m;; to Iy, that tolerates Byzantine faults.

Stepsl and3 exactly follow the compiler constructed by Neiger and Toueg [24]. The proof of correct-
ness, however, is slightly more complex than [24], since we deal with randomized protocols.

The main novelty is in Stef, which we proceed to describe. Observe that since the adversary is
intrusive, we can without loss of generality assume that all the playdik,ifi send their coin-tosses in
every round. Steg will proceed by running &1, v)-common-coin subroutinB. for player P, whenever
the underlying protoco]IZr'nsi:/ asksP to sample a coin from the-SV random source. In other words, we
force all the players ifl,,;; to use the outcome of the common-coin subroutine as the source of randomness.
If the common-coin protocall.. assumes reliable broadcast channels, we will rurrauditedIl.. (For
details, see Lemma 15).

Lemma 15. Assume thail.. is an ar.-round (1,~y)-common-coin protocol tolerating an omission
adversary. Then, there are compilers that convert:

(1) Anyr-round protocoIHf”s'SV that works against dail-stopt-adversary, to a protocdlIZr'nsi:/ that works
against an omissiomin(t, 7)-adversary and runs id)(r) rounds.

(2) Any r-round protocoIHZ,fi:/ to a protocolll,mit. If the fault-tolerance oil
min(t, 5). The round-complexity dlym;t is O(recr).
(3) Anyr-round protocolll,n;: that works against an omissigradversary to a protocallg,, that works

against a Byzantinenin(¢, 5)-adversary and runs i)(r) rounds.

~v-SV
omit

is t, that of II i IS

Proof Sketch: We omit the proofs for parts (1) and (3). We proceed to describe the compiler for part (2).
Observe that since the adversary is intrusive, we can without loss of generality assume that in every round,
each player send its coin-tosses to every other player.

IMomir Works exactly IikeHZr'nSi:/ , except for the followingWhenever a playep; in HZ,;S.:/ is instructed
to toss a coin, all the players together execut® aaudited(1, v)-common-coin protocdl... Let the output
(the coin) beh;.> P; usesh; as the coin in the underlying protocol.

When an honest playe?, is instructed to toss a coin i >, all the players ifl,mi; See the outcome
of the P;-auditedII., since the auditoP; is honest. When a faulty playé; is instructed to toss a coin, the
outcome of theP;-auditedII. is a coin with bias at mosg, however a subsef of players do not see the
outcome of the coin-toss (since the audityiis dishonest). This correspondsipflipping a coin with bias
~ and sending it only to the players\ S in the underlying protocdlIZ;f;:/. Thus,IT,n; constructed as
above simulates the functionality Hfgmslz/ O
Proof of Main Theorem 2. Follows by putting together the compilers in Lemma 15.
6 O(1)-Round BA AgainstO(logLﬁn) Faults

In this section, we construct an expecte(l)-round BA protocol that tolerates a Byzantinexdversary for
anyt = O(W). In fact, we prove the following general theorem, which will allow us to construct a
BA protocol toleratinglogl%en faults, if a one-round coin-flipping protocol with the appropriate resilience
is given.

Theorem 16. Suppose there existsane-roundcollective coin-flipping protocoll.;, such that for any

Byzantine-adversaryA, Il.qin generates a coin with bias at mogt. Then, there exists a BA protocol in a
synchronous full-information network afplayers tolerating = O(—%—) Byzantine faults, for any > é

logﬁ n
The protocol runs in expected(1) rounds.

Proof. (of Theorem 16) By Main Theorem 2, it suffices to construct (1) a BA protocol against a fail-stop
t-adversary that usesaSV source as the source of randomness (for seme 0) and (2) a method of
generating the/-SV-source (that is, by running a collective coin-flipping protocol that outputs a coin with
bias at most). (1) follows from Lemma 18 and (2) follows from Lemma 17. O

The proof of Main Theorem 3 is a simple corollary.
Proof of Main Theorem 3. Use the coin-flipping protocol from Lemma 4 Hs,;, in Theorem 16.

SNote that, ifTI.. does not assume physical broadcast channd?s;auditedIl.. is Il.. itself.

A Coin-flipping Protocol with Bias O(loén). The coin-flipping protocols of Feige [14] and Russell-
Zuckerman [27] do not guarantee that the bias of the coin generated is as sme}(l)—iga\ns) (even wherthe
number of faults is small). Thus, we construct a new collective coin-flipping protocol (assuming broadcast

channels) that generates a coin with bé'{fg%, when the number of faults= O(&). More precisely,

Lemma 17. Suppose there existoae-roundollective coin-flipping protocdll.;, such that for any Byzan-
tine t-adversaryIl.;, generates a coin with biaga. Lety = ﬁ. Then, there exists @, v)-common-

coin protocolIl.. againstt < logiﬁn faults, for anyg > é (TIT.c uses reliable broadcast channels). The
round-complexity ofl.. is O(1).

Proof. Il selects a committee (much like the Russel-Zuckerman committee selection), but it does so in
three rounds. In théirst round, select a committe®; of sizelog! ™ n by running the Russell-Zuckerman
committee-selectioflgrzy amongn players (see Theorem 8). In the second round, elect a comraliteé
sizelog® nloglog n by running the Russell-Zuckerman committee-selectign among the players i@, .
In the third round, run the one-round protottl,;, among the players i@;. By Theorem 8, the probability

1

thatCy is a bad committee is at mo§t+ m = 0(@). If Cs is good, then runnindl..;, generates a

coin with bias at mosﬁfw < L. Thus, the total bias of the coin is at mest- + o(——). O
og” nloglogn) ogn

a — logn logn

Byzantine Agreement Protocol Using an SV-source Against Fail-stop Faults.Chor, Merritt and Shmoys [11]
constructed a simplene-roundBA protocol against fail-stop faults, which uses a uniformly random source.
Below, we show that the same protocol achieves BA even if the source of randomn%)%grinsSV—source.

Lemma 18. There exists a BA protocol in a synchronous full-information networkgfyers tolerating a
fail-stop¢-adversary fort < (1 — €)n (for anye > 0). The protocol runs in expected(1) rounds, even if

the randomness for the protocol is drawn from-&V-source withy = O(bén)-

Proof. As usual, we focus on constructing@mmon-coirprotocol. The protocol proceeds as follows.
(1) (Every playerP;) Samplelog n random bits, and sends it to every other player.

(2) (Every playerF;) If there is a uniqueP; from which P; received messagé electP; as leader, else
output_L.

(3) The leader flips a coin and sends it to everybody.
1

Lety = 5pg5;- Letsamp; denote thelog n-bit string sampled byP; from a -SV-source. Then,
wm<(3- 2101gn)logn < Pr[samp; = 0] < (5 + ﬁ)log" <5

If exactlyone of thegoodplayersF; obtainssamp; = 0 andall the bad players’; obtainsamp; # 0,
then it is easy to see that all the honest players will choose an honest player as the leader. The probability
that this happens is at leadt— £)! - (";*) L (1 — £)"~* > x for some constant > 0. Thus, the protocol

en

generates &, y)-common-coin in one round. O

Acknowledgments. We gratefully acknowledge discussions with Ran Canetti, Rafael Pass, Guy Roth-
blum, Salil Vadhan and David Zuckerman.

References

[1] Mikl 6s Ajtai and Nathan Linial. The influence of large coalitio@@mbinatorica 13(2):129-145, 1993.

[2] Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols (extended ab&t@iot}, pages
27-30, 1983.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computa-
tion (extended abstract). BTOGC pages 1-10, 1988.

[4] Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and minima of banzhaf vak@& $rpages 408-416,
1985.

(3]

(6]
(71
(8]
[9]

[10]
(11]

[12]
(13]

[14]
[15]

(16]
(17]
(18]
[19]

[20]
[21]

[22]
(23]
(24]
(25]
(26]
[27]

(28]

Michael Ben-Or, Elan Pavlov, and Vinod Vaikuntanathan. Byzantine agreement in the full-information médébgn) rounds. INSTOG
2006.

Manuel Blum. Coin flipping by telephone. BRYPTOpages 11-15, 1981.
Gabriel Bracha. An asynchronolin — 1)/3]-resilient consensus protocol. RODC, pages 154-162, 1984.
Gabriel Bracha. An Qlog n) expected rounds randomized byzantine generals protdcACM 34(4):910-920, 1987.

Benny Chor and Brian A. Coan. A simple and efficient randomized byzantine agreement algtEEB#iTrans. Software Engl1(6):531—
539, 1985.

Benny Chor and Cynthia Dwork. Randomization in byzantine agreement. 5:443-497, 1989.

Benny Chor, Michael Merritt, and David B. Shmoys. Simple constant-time consensus protocols in realistic failure njodeld/
36(3):591-614, 1989.

Benny Chor and Michael O. Rabin. Achieving independence in logarithmic number of rourf®06, pages 260-268, 1987.

Cynthia Dwork, David B. Shmoys, and Larry J. Stockmeyer. Flipping persuasively in constant$ii# J. Comput.19(3):472-499,
1990.

Uriel Feige. Noncryptographic selection protocols FlACS pages 142-153, 1999.

Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzantine agre&iévt). Comput.26(4):873—
933, 1997.

Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive considt@néyocess. Lett.14(4):183-186,
1982.

Oded Goldreich, Shafi Goldwasser, and Nathan Linial. Fault-tolerant computation in the full information n&idét J. Comput.
27(2):506-544, 1998.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness theorem for protocols with honest
majority. InSTOG pages 218-229, 1987.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker keeping secret all partial inform&iadCln
pages 365-377, 1982.

Ronen Gradwohl, Salil Vadhan, and David Zuckerman. Random selection with an adversarial ma@@iy.Report TR06-02&006.

Vassos Hadzilacos. Byzantine agreement under restricted types of failleebnical Report 18-83, Department of Computer Science,
Harvard University 1983.

Anna Karlin and Andrew Chi-Chih Yao. Probabilistic lower bounds for byzantine agreeeamituscript 1986.

Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agress@RReport TR06-022006.

Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance of distributed algorithAlgorithms 11(3):374-419, 1990.
M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence odauital of the ACM.27:228-234, 1980.
Michael O. Rabin. Randomized byzantine generBfSCS pages 403-409, 1983.

Alexander Russell and David Zuckerman. Perfect information leader electlog’im + O(1) rounds.JCS$63(4):612—-626, 2001.

M. Santha and U. V. Vazirani. Generating quasi-random sequences from slightly-random sour@€Slpages 434-440, Singer Island,
1984.

