
Fault-Tolerant Distributed Computing in Full-Information Networks

Shafi Goldwasser∗

CSAIL, MIT
Cambridge MA, USA

Elan Pavlov
MIT

Cambridge MA, USA

Vinod Vaikuntanathan∗

CSAIL, MIT
Cambridge MA, USA

December 15, 2006

Abstract

In this paper, we use random-selection protocols in the full-information model to solve classical
problems in distributed computing. Our main results are the following:

• An O(log n)-round randomized Byzantine Agreement (BA) protocol in a synchronous full-information
network toleratingt < n

3+ε faulty players (for any constantε > 0). As such, our protocol is asymp-
totically optimal in terms of fault-tolerance.

• An O(1)-round randomized BA protocol in a synchronous full-information network toleratingt =
O(n

(log n)1.58) faulty players.

• A compiler that converts any randomized protocolΠin designed to toleratet fail-stopfaults, where the
source of randomness ofΠin is an SV-source, into a protocolΠout that toleratesmin(t, n

3) Byzantine
faults. If the round-complexity ofΠin is r, that ofΠout is O(r log∗ n).

Central to our results is the development of a new tool, “audited protocols”. Informally “auditing” is a
transformation that convertsanyprotocol that assumes built-in broadcast channels into one that achieves
a slightly weaker guarantee,without assuming broadcast channels.

We regard this as a tool of independent interest, which could potentially find applications in the
design of simple and modular randomized distributed algorithms.

∗Supported by NSF grants CNS-0430450 and CCF0514167.

1

1 Introduction

The problem of hown players, some of who may be faulty, can make a common random selection in a
set, has received much attention. The challenge is that the faulty players may form a coalition and deviate
arbitrarily from the prescribed protocol. Despite this malicious behavior of some of the players, we want to
select an element of a set “as randomly as possible”. This problem was studied in various network models:
theprivate channelsmodel where players can communicate via perfectly private pairwise communication
channels; thecomputational modelwhere the faulty players are assumed to be computationally bounded
and cryptographic primitives are assumed to exist; and thefull informationmodel where no assumptions are
made on the existence of private channels nor are the faulty players computationally restricted.

When achievable, random selection is not only an end in itself, but is a useful building block in solving
other distributed tasks. Generally speaking, the paradigm of design is to first construct by random selection
protocols a source of randomness and then prove correctness and security of protocols under the assumption
that all players use this source. The most striking example of this paradigm is the progression of works by
Ben-Or, Rabin, Bracha, Dwork-Shmoys-Stockmeyer, and Feldman-Micali [2, 26, 8, 13, 15] on the Byzantine
agreement problem in the computational and the private channels model. Ultimately, [15] achieved expected
constant-roundrandomized protocols for Byzantine agreement, by first constructing global common coins
in a constant number of rounds, and then applying the round preserving reduction by [26, 13] of Byzantine
agreement to constructing global common coins. This paradigm was also used in the context of secure
computation [6, 19, 18, 3].

The focus of our work will be, in contrast, thefull information model. We will show how to use a
variety of random selection protocols, to address classical questions in fault tolerant distributed computing
in the full information model.

We remark that achieving results in the full information model is important, as these results hold un-
conditionally. Currently, all results in the computational model hold only under intractability assumptions
such as the existence of one-way functions. The results in the private channels model are conditioned on the
availability of private physical communication channels between pair of players. This elegant abstraction
is implemented by resorting to secure encryption, the existence of which is again based on intractability
assumptions.

There is an extensive body of work [17, 20, 14, 27, 6] on efficient random selection protocols in the full
information model, which we could potentially take advantage of. The challenge, however, in using these
protocols, is that inall of these works, an additional assumption is made: reliable broadcast channels exist
for free. Namely, when an honest player receives a message that is ’broadcast’, he is guaranteed that all
other honest players received the same message even if it was sent by a faulty player. Thus, no part of the
protocol needs to be dedicated to ambiguity. Indeed, both the correctness and efficiency (including the round
complexity) of [17, 20, 14, 27, 4] hold only under the additional assumption that broadcast is an atomic
unit-cost operation.

In our work, we do not assume that broadcast channels exist. In fact, one of our main results will be a
protocols to achieve broadcast (i.e, Byzantine Agreement) in the full information model.

We focus on the case of a point-to-point synchronous network. Messages are sent at the end of a round
and are delivered at the beginning of the next round. Delivery of messages is in therushingmodel. Namely,
a player may possibly see all messages sent in roundi by other players, before he sends his own roundi
messages.

The fault model we address is a coalition oft faulty (corrupted) players, whose identity is decided by
an adversary before the protocol begins. The adversary can be aByzantine t-adversary, in which case he
decideswhichmessages will be sent by thet faulty players in every round, deviating from the protocol in

the worst possible manner. The adversary can be afail-stop t-adversary, in which case every faulty player
follows the protocol, until the adversary instructs it to stop sending messages all together. This may happen
anytime, including in the middle of a round, after a faulty player has sent messages to a subset of the players.

We consider a computationally unbounded adversary who makes his decisions based on the information
about the state of all players (faulty and honest) including their coin tosses up to and including the current
round, and the entire history of communications between them. Such adversary was calledintrusiveby Chor
and Dwork [10]. An intrusive adversary was also assumed in [2, 9, 5].1

Main Results

• The Byzantine agreement problem is hown players, each of whom has a single bit input, can agree on
a common output bit, such that if all non-faulty players start with the same inputb, then the output isb
as well. We show

(1)An O(log n)-round randomized Byzantine Agreement (BA) protocol in a synchronous full-information
network toleratingt < n

3+ε faulty players (for any constantε > 0). This achievesasymptotically op-
timal fault toleranceas Pease, Shostak and Lamport [25] and Karlin and Yao [22] show that BA is not
possible ifn ≤ 3t. Our protocol improves on the fault-tolerance of the protocol of Ben-Or, Pavlov and
Vaikuntanathan [5] who show anO(log n) round Byzantine agreement fort ≤ n

4+ε .

(2) An O(1)-round randomized BA protocol toleratingO(n
log1.58 n

) faulty players. The best round com-

plexity known for this value oft wasO(log n) [5].

• A fail-stop adversary models a benign fault whereas a Byzantine adversary models a much more severe
fault. We show a compiler that takes any randomized protocolΠin designed to tolerate a Fail Stopt-
adversary, where thesource of randomness of all players inΠin is an SV-source[28],2 into a protocol
Πout that tolerates a Byzantinemin(t, n

3)-adversary. If the round-complexity ofΠin is r, that ofΠout is
O(r log∗ n). Previously, Hadzilacos, Neiger-Toueg, and Bracha [21, 24, 7] constructed such a compiler
for deterministic protocols, and [7] raised as an open question, whether such a compiler exists for
randomized protocols.

• The results above are derived via new leader election protocols in the full-information model that do not
assuming broadcast channels. Fort ≤ n

3+ε faults, we achieve leader election inO(log n) rounds.

1.1 A New Tool – Audited Protocols: How to Remove Broadcast Assumption

Given any distributed protocolΠ that possibly assumes broadcast channels, we would like to executeΠ “as
well as possible” when no reliable broadcast channels are given.

Of course, one could simulate any protocol assuming broadcast channels, by replacing each broadcast
instruction of the protocol with the execution of a sub-protocol for implementing reliable broadcast.

Note that reliable broadcast is trivially solved given any protocol for BA, simply by setting the inputs
of all non-faulty players in the Byzantine agreement protocol to be the message to be reliably broadcast.
This naive approach, however, runs into trouble, as it may increase the round-complexity of the simulated
protocol prohibitively. Moreover, even if one were to design a Byzantine agreement protocol with expected
round-complexityk = o(log n), it would not merely imply anO(k) factor slow-down in the number of

1We remark that even within the full-information setting, an intrusive adversary is especially powerful. Conceivably, one
can get more efficient protocols in the full-information model by taking advantage of weaker adversaries, such as one who is
computationally unbounded and can see all messages exchanged between non-faulty players but doesnot have access to their
private inputs and coin tosses.

2Namely, given all coins tossed by all players thus far, the probability that the next coin is “heads” is bounded between1
2
− γ

and 1
2

+ γ for someγ > 0.

rounds. As already observed by Chor and Rabin [12], the probability that all executions of a probabilistic
protocol halt within the expected number of rounds proved for a single execution can be exponentially small
in the number of executions.

Thus, we introduce a new protocol transformation calledAudit. This tool applies toany protocol de-
signed with the simplifying assumption that automatic broadcast is available and is at theheart of all of our
work.

Audit allows us to take any protocolΠ designed assuming reliable automatic broadcast, and produce a
protocolAudit(C, β,Π) whichdoes not assume automatic broadcast. TheauditingcommitteeC, is a subset
of then players andβ > 0. We say thatC is good when the fraction of corrupted players inC is smaller
thanβ. WhenC is a good auditing committee the output distribution of non-faulty players inAudit(C, β,Π)
will be as inΠ. WheneverC is not a good committee, the output of the non-faulty players inAudit(C, β,Π)
will be as inΠ exceptthat some non-faulty players may output⊥. The round-complexity ofAudit(C, β,Π)
is |C| times that ofΠ.

Informally, the role of the committeeC is to “audit” the execution ofAudit(C, β,Π) and ensure that in
each roundall honest players get the same messages, thus simulating the reliable broadcast functionality.
If the auditing committee contains a sufficient fraction of honest players this will be ensured. Otherwise
the worst that may happen is that some honest player will receive a⊥ message instead of what was sent by
honest players.

An interesting special case of ‘Audit’ used to derive the results in sections 0.5 and 0.6, is when the
auditing committee consists of a single player. In this case, the round-complexity of the audited protocol
is essentially the same as that of the original protocol. Recently, in independent work, Katz and Koo [23]
introduced the notion of moderated Verifiable Secret Sharing (VSS). The idea of a moderator is very remi-
niscent of the idea of an auditing committee which consists of a single auditor. In contrast with our work,
[23] obtain their results in the private channels model. We remark, that although our primary interest in
this paper is the full information model, theAudit transformation introduced here will apply to the private
channels model as well. Another interesting usage of ‘Audit’ is when the execution of a protocol is audited
not by a single committee, but by a collection of committees. Namely, the same execution is in parallel
audited by different committees (See Section 0.4 for details).

We proceed to outline the ideas behind our results.

1.2 O(log n)-Round Byzantine Agreement in Full Information Network

Since its introduction in [25], the problem of Byzantine Agreement (BA) has been the source of enormous
attention. The BA protocol of [25] had a round complexity oft + 1 rounds, which was shown to be optimal
for deterministic protocols by Fischer and Lynch [16].

Researchers quickly resorted to randomization as one of the ways to overcome this limitation. Ben-
Or, Rabin and Bracha [2, 26, 8] started this line of work, putting forth the idea of acommon coinas the
correct notion of randomization to achieve BA. In particular, Rabin [26] followed by Dwork, Shmoys and
Stockmeyer [13] distilled the notion of a common coin and showed that if there is anr-round common-coin
protocol, then there is an expectedO(r)-round Byzantine Agreement protocol.

In the private channels model (and the computational model under intractability assumptions), Feldman
and Micali [15] showed how to construct a common coin in inO(1) rounds toleratingt < n

3 faulty players.
Consequently, they achieved BA in expectedO(1) rounds.

Feige [14] and Russell and Zuckerman [27] construct a common-coin in the full-information model with
a round-complexity oflog∗ n + O(1) rounds, but this bound is proved under the assumption thatreliable
broadcast channels exist.

The precise notion of a coin necessary to make the Rabin reduction go through is that of an(ε, δ)-
common coin [13]. An(ε, δ)-common coin is a coin with biasδ which all players agree on with probability
ε. Thus, the protocols of [14, 27] construct an(1, δ)-common coin for someδ > 0. In other words, at the
end of the coin-flipping protocol, all the players output the same semi-random bitwith probability 1. In
this work, we will construct an(ε, δ)-common-coin protocol for someε, δ > 0, without assuming broadcast
channels. We then show,

Main Theorem 1. For any constantε > 0, there exists a BA protocolBAε in a synchronous full-information
network toleratingt < (1

3 − ε)n Byzantine faults, and runs for expectedO(log n
ε2

) rounds.

Prior to our work, in the full information model, the best known BA protocol was due to Ben-Or, Pavlov,
and Vaikuntanathan [5] who construct anO(log n)-round protocol that toleratest < (1

4 − ε)n faults, with
quasi-polynomial communication complexity.

Whereas the basic paradigm outlining the result of [5] was to use (in a complex fashion) the leader
election protocol of Feige [14], the basic building block outlining our new protocol is the random selection
protocol of Russell and Zuckerman (RZ) [27]. Informally, we will use the committees defined by the RZ
protocol as auditors for an execution of the RZ protocol itself. This is possible, since in the RZ protocol, the
committees are defined in advance. This idea is not (at least directly) applicable to Feige’s protocol since it
constructs the committees on-the-fly.

1.3 Transforming Fail-Stop Fault Resilient Protocols into Byzantine Faults Resilient Protocols

Designing distributed algorithms that tolerate Byzantine failures is a complex task. The task of the protocol-
designer would be simpler, were there acompilerthat takes as input a distributed protocolΠ that tolerates
benign failures, and outputs a robust distributed protocolΠ′ that tolerates the mostseverefailures.

The problem of designing a compiler that automatically converts anydeterministicprotocol that tolerates
fail-stop faults to one that tolerates Byzantine faults was considered by Hadzilacos[21] and Neiger and Toueg
[24]. They provide a procedure that converts any deterministic protocolΠin that tolerate fail-stop faults into
Πout whose output in the presence of Byzantine faults, is identical to the output ofΠin in the presence
of fail-stop faults. We remark that their transformation explicitly assumes that inΠin the inputs of honest
players is sent to all other players in the first round, however when the adversary is intrusive this restriction
is unnecessary.

Bracha [7] explicitly raised the question, which we partially address here, whether such a transformation
is possible for randomized protocols as well. The additional challenge over the deterministic case is that a
fail-stop fault in a randomized protocol will flip coins fairly as prescribed by the protocol, but a Byzantine
failure could potentially use any biased coins it likes (or none at all, in particular).

Our main result of this section is:

Main Theorem 2. 3 Suppose there is anrcc-round (1, γ) common-coin protocol (possibly using reliable
broadcast channels). Then there is a compiler that converts anyrΠ-round protocolΠ in which the ran-
domness source is aγ-SV-source and which tolerates a fail-stopt-adversary, to arΠ′-round protocolΠ′

that uses a uniformly random source and tolerates a Byzantinet′-adversary wheret′ = min(t, n
3), and

rΠ′ = O(rccrΠ).
3For a non-intrusive adversary, the theorem statement would hold for those protocolsΠ in which all players send their inputs

in the first round, and in which all coins tossed by players are public-coin, i.e in each round the honest players send the outcome
of their coins along with their messages. All random selection protocols we know of are of this type. Indeed, within this work,
we only apply the above theorem to random selection protocols in full information model which have no initial inputs and which
use public coins. It is an interesting question whether one can design better (with less rounds and/or better bias) random selection
protocols in which the players use private-coins.

It is an interesting question whether the condition on in the above theorem on the coins of the players in
the input protocol can be removed.

1.4 O(1)-Round BA Against O(n
logβ n

) Faults

Ben-Or et al [5] construct an expectedO(1)-round Byzantine Agreement protocol that toleratesO(n
log2 n

)
Byzantine faults, using theone-roundcollective coin-flipping protocol of Ajtai and Linial [1]. This is the
best fault-tolerance for which we know how to construct an expectedO(1)-round BA protocol. In particular,
the best known BA protocol that toleratest = ω(n

log2 n
) faults has a round-complexity ofO(log n) [5]. We

show the following theorem.

Main Theorem 3. There exists anO(1)-round BA protocol in a synchronous full-information network ofn
players toleratingt = O(n

log1.58 n
) malicious faults.

This O(1)-round BA protocol works in two steps. First, we construct a new common-coin protocol in
the full information model with broadcast channels with biasO(1

log n) toleratingt = O(n
log1.58 n

) faults.
Interestingly, one cannot use [14, 27] directly for this task, as they do not achieve such small bias even when
the number of faults is small. Then, we use the compiler from the previous section, applied to a very simple
one-round Byzantine Agreement protocol designed to tolerate fail-stop adversary due to Chor, Merritt and
Shmoys [11]. It is an easy calculation to show that the [11] protocol works even when the randomness source
is aγ-SV-source withγ = O(1

log n). In fact, we prove a more general theorem than above (See Section 0.6
for details).

2 Technical Preliminaries

Notation. For a vector~x = (x1, x2, . . . , xn) and a predicateP (i) on indicesi, ~x
∣∣
i:P (i)

denotes the vector

consisting of allxi’s such thatP (i) is true.

2.1 Formal Model of a Synchronous Distributed System

We will let n denote the number of players, andP = {P1, P2, . . . , Pn} the set of players. The communica-
tion network consists of reliable communication channels between every pair of players. Wedo notassume
the existence of built-in broadcast channels.

Protocols. A distributed protocol~Π is specified by ann-tuple of interacting randomized programs(Π1,Π2, . . . ,Πn),
where we think ofΠi as the program executed by playerPi. In each round, each programΠi receives mes-
sages from the other programs,tosses coins, sends messages to the other programs and changes state.

Randomness. We model the randomness used by the components in a distributed protocol by a random
sourceR that generates a sequence of bits according to some distribution. Whenever one of the programs
Πi requests a random bit (“tosses a coin”), the next bit from the source is returned. We consider two specific
sourcesR in this paper. The first one, which is traditionally assumed by randomized distributed protocols,
is a perfectly random source (that is, whenR is just a sequence of unbiased and independent bits). The
second one is aγ-SV-source [28]. Aγ-SV-source (where0 ≤ γ ≤ 1

2) is a sequence of bitsb1b2 . . . such that
for anyi, 1

2 − δ ≤ Pr[bi+1 = 0 | b1, . . . , bi] ≤ 1
2 + δ.

Adversaries. We consider static adversaries in this paper. A static adversary corrupts playersbefore
the protocol execution begins, as opposed to a dynamic (or adaptive) adversary which can corrupt play-
ers throughout the execution of the protocol.

An t-adversary corrupts at mostt players, by replacing the programΠ of each corrupted player with a
programΠ̃. The adversaries we consider are of three types – Byzantine, omission and fail-stop. In the case

of aByzantine (malicious)t-adversary,̃Π is an arbitrary program. In the case of an omissiont-adversary,̃Π
is the same asΠ except that in every round,̃Π canomit to send or receivean arbitrary subset of the outgoing
messages. In the case of a fail-stop adversary,Π̃ is the same asΠ except that it canhalt, possibly in the
middle of a round and send an arbitrary subset of the messages it is supposed to send.

In each round, the adversary can decide what the corrupted players send in a round (resp. decide when
the corrupted players halt)after seeing the messages sent by the honest players inthe same round, in ad-
dition to the messages from the previous rounds. Such an adversary is called arushingadversary. Note
that the adversary can observeall the messages exchanged in the network, even the ones that honest players
exchange amongst themselves. In other words, no communication is assumed to be secret and no computa-
tional restrictions are imposed on the adversary (this models the “full-information” aspect of the network).
In addition, the adversary has access to the state of all the players, including their past (but not future)
random coins (this stronger model has been called an “intrusive adversary”)4.

We letOi(~Π, ~x,R, A) denote the output distribution of the playerPi in the execution of the protocol
~Π against the adversaryA, when the input vector of the players is~x and the randomness is taken from a
source (with distribution)R. We will letO(~Π, ~x,R, A) denote the joint distribution of the outputs ofall the
players.

Definition 1 (Simulation of a Protocol Π by a Protocol Π′). ProtocolΠ′ with randomness sourceR′ is
said toperfectly simulateΠ with randomness sourceR if, for every adversaryA′, there exists an adversary
A such that for every input vector~x, the output distribution ofΠ′ under the influence ofA′ is identical to
the output distribution ofΠ underA. That is,∀A′,∃A such thatO(Π′, ~x,R′, A′) ≡ O(Π, ~x,R, A). In such
a case, we writeΠ′ ∼ Π.

If the output distribution ofΠ′ is identical to that ofΠ except that some players output⊥, we say that
Π′ ⊥-simulatesΠ. We writeΠ′ ∼⊥ Π.

2.2 Byzantine Agreement and Reliable Broadcast

In its most basic form, the problem of Byzantine Agreement [25] is as defined below.

Definition 2 (Byzantine Agreement). LetΠ be a protocol amongn players, in which each playerPi starts
with an input bitbi, andPi outputs a bitci at the end of the protocol.Π is a Byzantine Agreement protocol,
if the following conditions hold: (1)Agreement: For any two non-faulty playersPi andPj , ci = cj . (2)
Validity: If all the non-faulty players start with the same input bitb, then the output of every non-faulty
player isb. (3) Termination: ProtocolΠ terminates with probability1.

Note that, ifΠ is randomized, the Agreement, Validity and Termination conditions are required to hold
with probability1 over the coin-tosses of the processors. The principal complexity measure of interest is the
expectedrunning time of the protocol.

We also define reliable broadcast, which is easily seen to be equivalent to Byzantine Agreement problem.

Definition 3 (Reliable Broadcast). Let Π be a protocol amongn players, in which a designated player
D ∈ P starts with inputb and every playerPi outputs a bitci. Π is a reliable broadcast protocol, if the
following conditions hold: (1)Agreement: For any two non-faulty playersPi andPj , ci = cj . (2) Validity:
If D is honest, then the output of every non-faulty player isb. (3) Termination: ProtocolΠ terminates with
probability1.

4Since we show positive results in this paper, it is only better to work against a stronger adversary

2.3 Graded Broadcast

An appropriate formalization of a semi-reliable broadcast channel is the following notion of graded broad-
cast (introduced and implemented by Feldman and Micali [15]).

A protocolP is said to be achieve graded broadcast if, at the beginning of the protocol, one of the players
(the dealerD) holds a valuev, and at the end of the protocol, every playerPi outputs a pair(vi, confi) such
that the following properties hold: (∀i, confi ∈ {0, 1, 2}) (1) If the dealerD is honest, thenvi = v and
confi = 2 for every honest playerPi. (2) For any two honest playersPi andPj , |confi − confj | ≤ 1. (3)
For any two honest playersPi andPj , if confi > 0 andconfj > 0, thenvi = vj . The following lemma is
proven in [15].

Lemma 1 (Feldman-Micali [15]). There exists a protocolΠFM amongn players which achieves graded
broadcast as long ast < n

3 players are corrupted by a Byzantine adversary.ΠFM runs inO(1) rounds.

2.4 Common Coin

The precise notion of a “common-coin” necessary for the Ben-Or and Rabin reduction from Byzantine
Agreement to coin-flipping was distilled by Dwork, Shmoys and Stockmeyer [13] and is as given below.

Definition 4 (Common-coin). A protocolΠ is said to be a(ε, δ)-common-coin protocol if, at the end of the
protocol, each playerPi outputs a bitbi, and there exist constantsε, δ > 0 such that the following hold:
(1) Commonality: With probability at leastε, all the players output the same bitb. That is,Pr[∃b such that ∀i, bi =
b] ≥ ε.
(2) Randomness: Given that all the players output the same bitb, the bias ofb is at mostδ. That is,
1
2 − δ ≤ Pr[b = 0 | ∃b such that ∀i, bi = b] ≤ 1

2 + δ.

2.5 Combinatorial Tools

Construction of Committees. Let C ⊆ {Ci | Ci ⊆ [n] such that|Ci| = n′} be a collection ofm subsets
of then players, each subset of sizen′. Each such subset is referred to as acommittee. Thus,C is a collection
of m committees.

Assuming thatβn of then players are corrupt, a natural property to desire on the part of the collection
of committees is that,very fewof the committees have much more thanβn′ bad players. More formally, a
committeeC is said to beε-bad with respect to a setB ⊆ [n] if |B ∩ C| > (1 + ε)βn′. The collection of
committeesC is good if, for anyB ⊆ [n], the number of bad committees inC with respect toB is at most
3n.

The following lemma shows that such committees with appropriate parameters exist.

Lemma 2. Letn denote the number of players andt denote the number of bad players. Then, there exists a
good collection ofm committeesC such thatm = n2 andn′ = O(log n

ε2
).

Hitting Sets. To define the notion of a hitting set for combinatorial rectangles, we first need a few defini-
tions.

Fix ana > 0. A combinatorial rectangleR ⊆ [a]n is defined to beR = R1 × R2 × . . . × Rn where
eachRi ⊆ [a], and|Ri| = a− 1. The volume ofR in [a]n is vol(R) = 1

an

∏n
i=1 |Ri|.

A setD ⊆ [a]n is called an(a, n, m)-hitting set if (1)|D| = m, and (2) for every combinatorial rectangle
R ⊆ [a]n, |D∩R| > 0. The following lemma shows that hitting sets exist for a certain choice of parameters.

Lemma 3. There exists an(a, n, m)-hitting setD for everyn, m = n2 anda = 2n
log n .

2.6 Other Tools

Lemma 4 ([4]). There exists a one-round(1, t
n0.63)-common-coin protocol amongn players tolerating a

Byzantinet-adversary.

Lemma 5 ([9]). There exists a randomized BA protocol in the synchronous full-information model that
tolerates a Byzantinet-adversary for anyt < n

3 and runs in expectedO(t
log n) rounds.

3 Audited Protocols

Given any distributed protocolΠ that possibly assumes broadcast channels, we would like executeΠ “as
well as possible” when no reliable broadcast channels are given. For any distributed protocolΠ and for
any playerP (the “auditor”), we define an “audited” protocolΠ′ = Audit(P,Π). Informally, Audit(P,Π)
provides the following guarantees: If the auditorP is honest,Π′ works exactly likeΠ. In particular, the
outputs of the honest players inΠ′ are distributed exactly as they are inΠ. Even if the auditor is dishonest,
he can do only minimal damage – the worst he can do is set the outputs of some of the players to⊥. The
players that do get a legal output (an output different from⊥) get one that is distributed according toΠ.

More generally, we could have a set (a “committee”) of playersC (rather than a single playerP) be the
auditor. We defineΠ′ to be anAudit(C, β,Π) if, Π′ behaves exactly likeΠ wheneverC is a good committee
– that is, when the number of bad players inC is smaller thanβ. Even whenC is bad (that is, the fraction of
bad players inC is larger thanβ), the worst thatC can do is to set the outputs of some of the honest players
to⊥; the honest players that do get some legal output get a correctly distributed one. More formally,

Definition 5 (Audit(C, β,Π)). Define a committeeC ⊆ P to be good if the number of bad players inC
is at mostβ|C|. Given any protocolΠ amongn players, and a designated committeeC ⊆ P, a protocol
Π′ = Audit(C, β,Π) is called a(C, β)-auditedΠ if,

• WhenC is good, the output vector of the players inΠ′ is identically distributed as inΠ. Thus,Π ∼ Π′.

• Even whenC is bad, the honest players get a correctly distributed output, or⊥. Thus,Π′ ∼⊥ Π.

Note that auditing by a single player is a special case of auditing by committees. In particular,Audit(P,Π)
is exactlyAudit({P}, 0,Π).

Transforming Any Protocol into an Audited Protocol

We provide a transformation that converts any protocolΠ that assumes broadcast to a(C, β)-auditedΠ, as
defined above (See Table1). We get aP -auditedΠ as a corollary of this transformation.

Theorem 6. There exists a transformationAudit that takes any distributed protocolΠ, the description of
a committeeC and a number0 ≤ β < 1

3 , and outputs a protocolΠ′ = Audit(C, β,Π) such thatΠ′

is a (C, β)-auditedΠ (as in Definition 5) If the fault-tolerance ofΠ is t, that of Π′ is min(t, n
3). If the

round-complexity ofΠ is rΠ, the round-complexity ofΠ′ is at most|C|rΠ.

Proof. (Sketch.) We will show that the protocolΠ′ = Audit(C, β,Π) (given in Table1) satisfies Definition
4. The proof will proceed in two parts: first, we show thatΠ′ is an audited version ofΠ, whenever|C| = 1.
That is, when the auditor is a single player. Secondly, we will show that a committee “behaves like” a player,
in a sense to be made precise below.

First of all, assume that|C| = 1 (Notice that this considerably simplifies Steps 2(b) and 2(c)). If all the
honest players setfailj = 1 at the end ofΠ′, then all of them output⊥, and there is nothing to prove. Our
goal will be to show that if some honest playerPj setsfailj = 0 (that is, his output is not⊥) then for every

Input: ProtocolΠ.
Output: ProtocolΠ′ = Audit(C, β,Π)
Each Round of ProtocolΠ is simulated as follows.
(1) If Π instructsPi to send a message toPj , Π′ instructs the same.
(2) If Π instructsPi to broadcast a messagem to all the players, the following subroutine is invoked.

(a) (Player Pi) Gradecastm to all the players.

(b) (The Auditor C) Let C = {Q1, Q2, . . . , Q|C|}. Let m′
k denote the message thatQk received as

a result ofPi’s gradecast, in Step 2(a). The players inC run a deterministic Byzantine Agreement
among themselves, withQk’s input to the BA beingm′

k. Each playerQk ∈ C gradecasts the
outputm′′

k of the BA to all the players.

(c) (Every player Pj) Receive|C| pairs(m′′
k, confk) from each playerQk ∈ C. If there aremore

than |C|
2 pairs of the form(µ, 2), then setmC = µ andconfC = 2. Else, if there aremore

than |C|
2 pairs of the form(µ,≥ 1), then setmC = µ, andconfC = 1. Else, setmC = ⊥ and

confC = 0.

(d) (Every player Pj) Let (mi, confi) and(mC , confC) denote the outputs ofPj from the grade-
cast in step (a) and the computation in step (c), respectively.Pj will take mC as the message
broadcast byPi in the underlying execution ofΠ.

(e) (Every player Pj) Set a bitfail = 1 if either (1)mC 6= mi andconfi = 2, or (2)confC 6= 2.

Finally, each playerPi gets an outputOi from the underlying execution ofΠ. Pi outputsOi if fail = 0,
and⊥ otherwise.

Table 1: The transformationAudit

time a broadcast instruction in the protocol is simulated by Step (2) ofAudit, all the honest players in fact
receive the same message (and thus, the functionality of broadcast is achieved).

Suppose some honest playerPj setsfailj = 0. This means that, in all steps of the simulation (that is,
every time a playerPi broadcasts a messagem), in the view ofPj , both (1)confC = 2, and (2) mC = mi

or confi 6= 2. This follows from Step2(e) of Audit. SinceconfC = 2, every other honest player receives
the same message from the committeeC, with confidence at least1. Thus, it follows that all the players
receive the same value for the broadcast of playerPi. Moreover, ifPi is good, thenconfi = 2. Then,
by condition (ii) above,mC = mi. This means that, ifPi is good, all players accept the message thatPi

“broadcast” (regardless of whether the committee is good or not). Thus, we showed that every player gets
the same message as a result ofPi’s broadcastandmoreover ifPi is good, they accept the messagePi sent.
This simulates the functionality of reliable broadcast perfectly, in each round.

To finish the proof, we show that a committee “behaves like” a player in the following sense: Suppose
a committee gradecasts a messagem (i.e, all the honest players in the committee gradecastm), and two
honest playersPi andPj receive the committee’s gradecast with confidences(mi, confi) and(mj , confj)
(as in Step 2(c) of the transformation). Then, if the committee is good (i.e, has more than1

3 fraction of
honest players),mi = mj = m andconfi = confj = 2. Even if the committee is bad,|confi − confj | ≤ 1
and ifconfi andconfj ≥ 1, thenmi = mj . This follows by inspection of Steps 2(b) and 2(c), a formal proof
is omitted. The claim about the fault-tolerance ofAudit(C, β,Π) and round complexity are easy to check
and are omitted.

4 O(log n)-round Byzantine Agreement

Theorem 7(Main Theorem 1, Restated). For any constantε > 0, there exists a protocolBAε that achieves
Byzantine Agreement in a synchronous full-information network ofn players toleratingt < (1

3 − ε)n faults.

The round complexity ofBAε is O(log n
ε2

).

Our BA protocol uses as a key tool theAudit transformation from Section 0.3, applied to the committee-
selection protocol of Russell and Zuckerman [27].

4.1 Committee Selection Protocol

The goal of a committee-selection protocol is to select, from amongn players, a set of committees, each
consisting ofn′ players, such that with probability at least1− 1

n , all the selected committees are good.
Russell and Zuckerman use the tools developed in Subsection 0.2.5 (committee construction and hitting

sets) to build a committee selection protocolΠRZ. In particular, they prove the following theorem.

Theorem 8(Russell-Zuckerman [27]). Letn be the number of players andt be the number of bad players.
Then, there exists a protocolΠRZ which outputs a set ofk ≥ 1 committeesCi, where each committee has
sizen log n

t , such that with probability at least1− 1
n , all the committees thatΠRZ outputs are good.

Proof Sketch: The protocolΠRZ proceeds as follows. The proof of correctness is as in [27] and is
omitted for lack of space. The public setup for the protocol consists of (1) a collection of committees
C = {C1, C2, . . . , Cm}, (2) A hitting setD ⊆ [a]n with |D| = m and (3) A bijectionh : C 7→ D.

(1) Each PlayerPj choosesrj ∈ [a], andbroadcastsrj to all the players.
(2) Locally compute and output a vector~e = 〈e1, e2, . . . , em〉 whereei = 1 if and only if for some
1 ≤ j ≤ n, h(C)|j = rj . CommitteeCi is said to be eliminated ifei = 1.

4.2 Overview of the Proof of Theorem 7

The classical paradigm for designing randomized BA protocols, pioneered by Ben-Or and Rabin [2, 26],
reduces the problem of BA to the problem of constructing a common-coin. A common-coin is a bitb which
has a constant bias, and is seen by all the players with a constant probability. Rabin shows that if there is an
r-round common-coin protocol, then there is an expectedO(r)-round Byzantine Agreement protocol. For
the precise definition of a “common-coin protocol”, see Subsection 0.2.4.

Suppose we could select a “good committee” (i.e, a committee with more than2/3 fraction of honest
players) of sizeO(log n) without using broadcast channels, then we will immediately get anO(log n)-
round Byzantine Agreement protocol by the following strategy: We first choose the committee, and then
run anO(log∗ n)-roundcoin-flipping protocolwithin the selected committee. These coin-flipping protocols
themselves require reliable broadcast channels among the players in the committee. However, since the
number of players in the committee is small, we can simulate the reliable broadcast channels by the Chor-
Coan protocol (Lemma 5), resulting in ao(log n) rounds coin-flipping. After the players in the committee
agree on a coin, theywill sendthe value of the coin to all the players. Each player, in turn, computes the
majority of all the coins he receives from the committee members. Since the committee is good, the majority
will indeed be the coin-flip of the honest players.

It remains to specify how we could select a good committee of sizeO(log n) without broadcast chan-
nels. The committee-selection protocolΠRZ, described above, assumes the existence of reliable broadcast
channels, over which the players can announce their choice of which committees to eliminate. TakeC to
be the set ofm committees defined before the beginning of the committee sampling protocolΠRZ. We

construct anauditedcommittee-selection protocol, wherethe same executionof ΠRZ is audited by all the
committeesC ∈ C. Thus, a committee acts both as a committee inΠRZ as well as an auditor forΠRZ.
As opposed to auditing by a single committee, this structure will allow us to eliminate the use of broadcast
channels inΠRZ. For details, see the formal proof below.

4.3 Auditing by a Set of Committees

We make precise the notion of a set of committees auditing the same execution of a protocol (alluded to in
the overview above). We defineAudit(C, 1

3 ,Π) (refer to Table1) to be the protocol obtained by applying
the Audit transformation to protocolΠ, except for the following changes: Steps1 and2(a) of theAudit
transformation remain exactly the same. Steps 2(b)–2(e) are executed by each committeeC ∈ C separately.
The output of each player is a vector ofm values~O = 〈O1, O2, . . . , Om〉, corresponding to them auditing
committees.

In the following, we focus onAudit(C, 1
3 ,Π) for a specific, simple protocolΠ, namely that of a player

Q broadcasting a messageµ to all the players. Call this functionalityBCast(Q,µ). We show the following
lemma about the output of the players inAudit

[
C, 1

3 ,BCast(Q,µ)
]
.

Lemma 9. Let P andP ′ be any two honest players. Let the output ofP in Audit
[
C, 1

3 , Broadcast(Q,µ)
]

be the vector〈O1, O2, . . . , Om〉 and that ofP ′ be〈O′
1, O

′
2, . . . , O

′
m〉.

(1) If Ci is a good auditor, thenOi = O′
i.

(2) If the broadcasterQ is honest, then for every good auditorCi, Oi = µ. Even ifQ is dishonest, there is
a uniquemessageµ′ such that for every good auditorCi, Oi ∈ {µ′,⊥}.

Proof Sketch: Part (1) follows from Theorem 6 and the fact thatCi is a good auditor. Part (2) essentially
follows by the property of gradecast. Observe that afterQ gradecasts his message, each player gets either
the same messageµ, or ⊥. Thus, each good auditor will send eitherµ or ⊥ in Step 2(b) of theAudit
transformation. IfQ is honest, each player getsµ as a result ofQ’s gradecast, and thus each good auditor
will sendµ.

4.4 Formal Proof of Theorem 7.

For the full description of the protocol, see Table2. By Lemma 10 below,Πselect selects a good committee
with probability1− 1

n and all the honest players know the identity of the chosen committee. By the argument
in the overview, once we have a good committee, Byzantine Agreement follows (by running a coin-flipping
protocol within the committee, and using Rabin’s reduction from BA to coin-flipping). The claims about
fault-tolerance and round-complexity follow from the corresponding claims in Lemma 10.

Lemma 10(Committee-selection without Broadcast Channels). For everyε > 0, there is anO(1)-roundn-
player protocolΠselect to select a committeeC ⊆ [n], consisting oflog n

ε2
players, such that with probability

1− 1
n , all honest players output the same committeeC. Πselect does not assume reliable broadcast channels.

Proof Sketch: The protocolΠselect is given in Table2. Lemma 12 shows that all the honest playersagree
on the list of committees that have not been eliminated. Lemma 11 shows that at the end ofΠselect, all the
bad committees are eliminated and Lemma 13 shows that at least one committee is not eliminated. Thus the
committeeCi output at the end ofΠselect is good, and all the honest players agree on which committee is
chosen.

First, we will show that at the end ofΠselect, all the bad committees are eliminated.

PROTOCOLΠselect

Public Setup.As in Theorem 8

1. (Each PlayerPj) Chooserj randomly from[a]. RunAudit
[
C, 1

3 ,BCast(Pj , rj)
]
. The output of

playerP from Audit
[
C, 1

3 ,BCast(Pj , rj)
]

is a vector〈rP
j1, r

P
j2, . . . , r

P
jm〉.

2. (Each PlayerP , locally) Construct anm × n matrix RP = [rP
ij], where each row corresponds

to an auditor and each column corresponds to a player. Thejth column ofRP is the output of
Audit

[
C, 1

3 ,BCast(Pj , rj)
]

from Step (1).

3. (Each PlayerP , locally) FromRP , construct anm×m matrixDP = [dP
ik], wheredP

ik = 1 iff
there exists aj such thath(Ck)|j = rP

ij .

4. (Each CommitteeCi) Run a deterministic BA among the players inCi, where a playerP ’s input
is the matrixDP from Step (3). Let the resulting matrix (after the BA) of playerP be denoted
D̃P . If the ith column ofD̃P contains more thann 1’s, thenP sends a message, “EliminateCi”
to all the players.

5. (Each PlayerP , locally) Construct a vector~eP such that~eP
i = 1 if and only if either, (1) theith

column ofDP contains more than4n 1’s, or (2)P received “DisqualifyCi” messages from more
than half the members ofCi. Ci is said to beeliminatedif ~eP

i = 1. Output the lexicographically
smallestCi that isnot eliminated.

Table 2: Committee-Selection Without Broadcast

Lemma 11. With probability 1 − 1
n over the coin-tosses of the honest players, all bad committees are

eliminated after Step (5) ofΠselect. More precisely, for every bad committeeCk and every honest playerP ,
~eP

k = 1.

Proof. With probability at least1− 1
n , every bad committee is eliminated at the end ofΠRZ (See Theorem 8).

That is, for every bad committeeCk, there is an honest playerPj (who broadcastsrj) such thath(Ck)|j = rj .
Because of the property ofAudit

[
C, 1

3 ,BCast(Pj , rj)
]

(Lemma 9, Part (2)), thejth column ofRP contains
n2 − 3n rj ’s (one for each good auditing committee). This means that, by the construction ofDP , thekth

column ofDP containsn2 − 3n 1’s. Sincen2 − 3n > 4n + 1, Ck is eliminated by playerP . Since the
above argument holds for every honest playerP , ~ek = 1 for every bad committeeCk and honestP .

The next lemma shows that if an honest playerP thinks thatCj has been eliminated, then every other
honest playerQ will think that Cj has been eliminated too.

Lemma 12. Let ~eP and~eQ be the vectors constructed by honest playersP and Q in Step (5) ofΠselect.
Then,~eP = ~eQ.
Proof Sketch: It is sufficient to show that for everyi such that~eP

i = 1, ~eQ
i = 1 too. First of all, for every

bad committeeCi, ~eP
i = ~eQ

i = 1 (be Lemma 11). In the rest of the proof, we letCi be a good committee. If
~eP

i is 1, then it is because of one of the following reasons (See Step (5) of Table2).
(1) P received “DisqualifyCi” messages from more than half the members ofCi: In this case, sinceCi runs
a BA protocol before sending the “DisqualifyCi” messages and sinceCi is good, all honest players inCi

send “DisqualifyCi” messages too. This means that every other honest playerQ receives a “DisqualifyCi”
message from more than half the members ofCi. This results in~eQ

i = 1.

(2) Theith column ofDP contains more than4n 1’s: Consider thekth row in RP corresponding to a good
auditorCk. By Part (1) of Lemma 9, thekth row of RQ will be the same. Thus, thekth rows ofDP andDQ

are the same too, by construction. Of the4n 1’s in theith column ofDP , at most3n belong to bad auditors.
Thus, there are more thann 1’s in the ith column ofDQ. Since this is true for every honest playerQ, in
Step 4 ofΠselect, the matrixD̃Q will contain more thann 1’s. Thus all the honest players inCi will send a
“Disqualify Ci” message to all the players. This makes~eQ

i = 1.
Finally, we show that at least one committee is not eliminated.

Lemma 13. There exists ani such that~eP
i = 0 for every honest playerP .

Proof Sketch: Fix the collection of messagesrj sent by all the players (including the faulty ones). By
Theorem 8, there is at least one committeeCi such thath(Ci)|j 6= rj for any j. This means that the
ith column ofDP has at mostn 1’s, for any honest playerP . P will set ~eP

i = 0, and thus,Ci is not
eliminated.

Corollary 14. For everyε > 0, there exists a leader election protocol amongn players that runs inO(log n
ε2

)
rounds toleratingt < n

3+ε faulty players and does not assume reliable broadcast channels.

5 Transformation from Fail-stop to Byzantine

In this section, we will construct a compiler that takes as input any full-information protocolΠγ-SV
fs that

tolerates a fail-stopt-adversary and uses aγ-SV-source as the source of randomness, and outputs a protocol
ΠByz that realizes the same functionality asΠγ-SV

fs , tolerates a Byzantinemin(t, n
3)-adversary and uses a

uniformly random source.
To understand our compiler, we first focus on the difference between a fail-stop adversary and a Byzan-

tine one. Informally, a Byzantine fault is more malicious than a fail-stop fault in two aspects: (1) a Byzantine
player can use arbitrary coins as the source of randomness, whereas a fail-stop player uses the prescribed
source of randomness, (2) a Byzantine player can send arbitrary messages to players in every round, whereas
a fail-stop player follows the prescribed protocol, and can only halt (possibly in the middle of a round).

Thus, to transform a protocol tolerating fail-stop faults to one tolerating Byzantine faults, we should (1)
force the Byzantine player to flip “good coins” and (2) restrict her to follow the prescribed protocol. The
compiler we construct reflects the above intuition.

Overview of the Compiler. The compiler proceeds in three steps.
Step1. Convert the input protocolΠγ-SV

fs to a protocolΠγ-SV
omit that toleratesomissionfaults, where in both

Πγ-SV
fs andΠγ-SV

omit , all the players use aγ-SV source as the source of randomness.

Step2. ConvertΠγ-SV
omit to a protocolΠomit, which toleratesomissionfaults, and uses a uniformly random

source, but allows the faulty players to flip their own coins. Recall thatΠγ-SV
omit worked only against adver-

saries that used the prescribed source of randomness (which is an SV-source).
Step3. ConvertΠomit to ΠByz that tolerates Byzantine faults.

Steps1 and3 exactly follow the compiler constructed by Neiger and Toueg [24]. The proof of correct-
ness, however, is slightly more complex than [24], since we deal with randomized protocols.

The main novelty is in Step2, which we proceed to describe. Observe that since the adversary is
intrusive, we can without loss of generality assume that all the players inΠomit send their coin-tosses in
every round. Step2 will proceed by running a(1, γ)-common-coin subroutineΠcc for playerP , whenever
the underlying protocolΠγ-SV

omit asksP to sample a coin from theγ-SV random source. In other words, we
force all the players inΠomit to use the outcome of the common-coin subroutine as the source of randomness.
If the common-coin protocolΠcc assumes reliable broadcast channels, we will run aP -auditedΠcc (For
details, see Lemma 15).

Lemma 15. Assume thatΠcc is an a rcc-round (1, γ)-common-coin protocol tolerating an omissiont-
adversary. Then, there are compilers that convert:
(1) Anyr-round protocolΠγ-SV

fs that works against afail-stop t-adversary, to a protocolΠγ-SV
omit that works

against an omissionmin(t, n
2)-adversary and runs inO(r) rounds.

(2) Any r-round protocolΠγ-SV
omit to a protocolΠomit. If the fault-tolerance ofΠγ-SV

omit is t, that ofΠomit is
min(t, n

2). The round-complexity ofΠomit is O(rccr).
(3) Anyr-round protocolΠomit that works against an omissiont-adversary to a protocolΠByz that works
against a Byzantinemin(t, n

3)-adversary and runs inO(r) rounds.

Proof Sketch: We omit the proofs for parts (1) and (3). We proceed to describe the compiler for part (2).
Observe that since the adversary is intrusive, we can without loss of generality assume that in every round,
each player send its coin-tosses to every other player.

Πomit works exactly likeΠγ-SV
omit , except for the following:Whenever a playerPi in Πγ-SV

omit is instructed
to toss a coin, all the players together execute aPi-audited(1, γ)-common-coin protocolΠcc. Let the output
(the coin) bebi.5 Pi usesbi as the coin in the underlying protocol.

When an honest playerPi is instructed to toss a coin inΠγ-SV
omit , all the players inΠomit see the outcome

of thePi-auditedΠcc, since the auditorPi is honest. When a faulty playerPi is instructed to toss a coin, the
outcome of thePi-auditedΠcc is a coin with bias at mostγ, however a subsetS of players do not see the
outcome of the coin-toss (since the auditorPi is dishonest). This corresponds toPi flipping a coin with bias
γ and sending it only to the players inP \ S in the underlying protocolΠγ-SV

omit . Thus,Πomit constructed as

above simulates the functionality ofΠγ-SV
omit .

Proof of Main Theorem 2. Follows by putting together the compilers in Lemma 15.

6 O(1)-Round BA Against O(n
logβ n

) Faults

In this section, we construct an expectedO(1)-roundBA protocol that tolerates a Byzantinet-adversary for
any t = O(n

log1.58 n
). In fact, we prove the following general theorem, which will allow us to construct a

BA protocol tolerating n
log1+ε n

faults, if a one-round coin-flipping protocol with the appropriate resilience
is given.

Theorem 16. Suppose there exists aone-roundcollective coin-flipping protocolΠcoin such that for any
Byzantinet-adversaryA, Πcoin generates a coin with bias at mosttnα . Then, there exists a BA protocol in a
synchronous full-information network ofn players toleratingt = O(n

logβ n
) Byzantine faults, for anyβ > 1

α .

The protocol runs in expectedO(1) rounds.

Proof. (of Theorem 16) By Main Theorem 2, it suffices to construct (1) a BA protocol against a fail-stop
t-adversary that uses aγ-SV source as the source of randomness (for someγ > 0) and (2) a method of
generating theγ-SV-source (that is, by running a collective coin-flipping protocol that outputs a coin with
bias at mostγ). (1) follows from Lemma 18 and (2) follows from Lemma 17.

The proof of Main Theorem 3 is a simple corollary.

Proof of Main Theorem 3. Use the coin-flipping protocol from Lemma 4 asΠcoin in Theorem 16.

5Note that, ifΠcc does not assume physical broadcast channels, aPi-auditedΠcc is Πcc itself.

A Coin-flipping Protocol with Bias O(1
log n). The coin-flipping protocols of Feige [14] and Russell-

Zuckerman [27] do not guarantee that the bias of the coin generated is as small asO(1
log n) (even whenthe

number of faults is small). Thus, we construct a new collective coin-flipping protocol (assuming broadcast
channels) that generates a coin with bias12 log n , when the number of faultst = O(n

log n). More precisely,

Lemma 17. Suppose there exists aone-roundcollective coin-flipping protocolΠcoin such that for any Byzan-
tine t-adversary,Πcoin generates a coin with biastnα . Letγ = 1

2 log n . Then, there exists a(1, γ)-common-

coin protocolΠcc againstt < n
logβ n

faults, for anyβ > 1
α (Πcc uses reliable broadcast channels). The

round-complexity ofΠcc is O(1).

Proof. Πcc selects a committee (much like the Russel-Zuckerman committee selection), but it does so in
three rounds. In thefirst round, select a committeeC1 of sizelog1+β n by running the Russell-Zuckerman
committee-selectionΠRZ amongn players (see Theorem 8). In the second round, elect a committeeC2 of
sizelogβ n log log n by running the Russell-Zuckerman committee-selectionΠRZ among the players inC1.
In the third round, run the one-round protocolΠcoin among the players inC2. By Theorem 8, the probability
thatC2 is a bad committee is at most1

n + 1
log2+β n

= o(1
log n). If C2 is good, then runningΠcoin generates a

coin with bias at most log log n

(logβ n log log n)α ≤ 1
log n . Thus, the total bias of the coin is at most1log n +o(1

log n).

Byzantine Agreement Protocol Using an SV-source Against Fail-stop Faults.Chor, Merritt and Shmoys [11]
constructed a simpleone-roundBA protocol against fail-stop faults, which uses a uniformly random source.
Below, we show that the same protocol achieves BA even if the source of randomness is a1

2 log n -SV-source.

Lemma 18. There exists a BA protocol in a synchronous full-information network ofn players tolerating a
fail-stopt-adversary fort < (1 − ε)n (for anyε > 0). The protocol runs in expectedO(1) rounds, even if
the randomness for the protocol is drawn from aγ-SV-source withγ = O(1

log n).

Proof. As usual, we focus on constructing acommon-coinprotocol. The protocol proceeds as follows.
(1) (Every playerPi) Samplelog n random bits, and sends it to every other player.
(2) (Every playerPi) If there is a uniquePj from which Pi received message0, electPj as leader, else
output⊥.
(3) The leader flips a coin and sends it to everybody.

Let γ = 1
2 log n . Let sampi denote thelog n-bit string sampled byPi from a γ-SV-source. Then,

1
en ≤ (1

2 −
1

2 log n)log n ≤ Pr[sampi = 0] ≤ (1
2 + 1

2 log n)log n ≤ e
n .

If exactlyone of thegoodplayersPi obtainssampi = 0 andall the bad playersPj obtainsampj 6= 0,
then it is easy to see that all the honest players will choose an honest player as the leader. The probability
that this happens is at least(1− e

n)t ·
(
n−t
1

)
1
en(1− e

n)n−t ≥ κ for some constantκ > 0. Thus, the protocol
generates a(κ, γ)-common-coin in one round.

Acknowledgments. We gratefully acknowledge discussions with Ran Canetti, Rafael Pass, Guy Roth-
blum, Salil Vadhan and David Zuckerman.

References
[1] Mikl ós Ajtai and Nathan Linial. The influence of large coalitions.Combinatorica, 13(2):129–145, 1993.

[2] Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols (extended abstract). InPODC, pages
27–30, 1983.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computa-
tion (extended abstract). InSTOC, pages 1–10, 1988.

[4] Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and minima of banzhaf values. InFOCS, pages 408–416,
1985.

[5] Michael Ben-Or, Elan Pavlov, and Vinod Vaikuntanathan. Byzantine agreement in the full-information model inO(log n) rounds. InSTOC,
2006.

[6] Manuel Blum. Coin flipping by telephone. InCRYPTO, pages 11–15, 1981.

[7] Gabriel Bracha. An asynchronousd(n − 1)/3e-resilient consensus protocol. InPODC, pages 154–162, 1984.

[8] Gabriel Bracha. An O(log n) expected rounds randomized byzantine generals protocol.J. ACM, 34(4):910–920, 1987.

[9] Benny Chor and Brian A. Coan. A simple and efficient randomized byzantine agreement algorithm.IEEE Trans. Software Eng., 11(6):531–
539, 1985.

[10] Benny Chor and Cynthia Dwork. Randomization in byzantine agreement. 5:443–497, 1989.

[11] Benny Chor, Michael Merritt, and David B. Shmoys. Simple constant-time consensus protocols in realistic failure models.J. ACM,
36(3):591–614, 1989.

[12] Benny Chor and Michael O. Rabin. Achieving independence in logarithmic number of rounds. InPODC, pages 260–268, 1987.

[13] Cynthia Dwork, David B. Shmoys, and Larry J. Stockmeyer. Flipping persuasively in constant time.SIAM J. Comput., 19(3):472–499,
1990.

[14] Uriel Feige. Noncryptographic selection protocols. InFOCS, pages 142–153, 1999.

[15] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzantine agreement.SIAM J. Comput., 26(4):873–
933, 1997.

[16] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive consistency.Inf. Process. Lett., 14(4):183–186,
1982.

[17] Oded Goldreich, Shafi Goldwasser, and Nathan Linial. Fault-tolerant computation in the full information model.SIAM J. Comput.,
27(2):506–544, 1998.

[18] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness theorem for protocols with honest
majority. InSTOC, pages 218–229, 1987.

[19] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker keeping secret all partial information. InSTOC,
pages 365–377, 1982.

[20] Ronen Gradwohl, Salil Vadhan, and David Zuckerman. Random selection with an adversarial majority.ECCC Report TR06-026, 2006.

[21] Vassos Hadzilacos. Byzantine agreement under restricted types of failures.Technical Report 18-83, Department of Computer Science,
Harvard University, 1983.

[22] Anna Karlin and Andrew Chi-Chih Yao. Probabilistic lower bounds for byzantine agreement.Manuscript, 1986.

[23] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement.ECCC Report TR06-028, 2006.

[24] Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance of distributed algorithms.J. Algorithms, 11(3):374–419, 1990.

[25] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.Journal of the ACM., 27:228–234, 1980.

[26] Michael O. Rabin. Randomized byzantine generals.FOCS, pages 403–409, 1983.

[27] Alexander Russell and David Zuckerman. Perfect information leader election inlog∗ n + O(1) rounds.JCSS, 63(4):612–626, 2001.

[28] M. Santha and U. V. Vazirani. Generating quasi-random sequences from slightly-random sources. InFOCS, pages 434–440, Singer Island,

1984.

