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ABSTRACT 
Consider a synchronous network of n players, each with a 
local input. The goal of distributed consensus is to globally 
agree on one of the valid inputs even if some non-trivial sub- 
set of the players are faulty. By valid input, we mean the 
input of any non-faulty player. Extant  results in Byzantine 
agreement literature capture the behaviour of faulty players 
in an "all-or-nothing" fashion. For instance, a (Byzantine) 
faulty player is completely unconstrained and could behave 
differently with different players. This leads to a gross un- 
derestimation of the achievable fault-tolerance. In this work, 
we propose a fault-model tha t  considerably improves the es- 
timation of fault-tolerance and helps capture real-life sce- 
narios better. For instance, if two (honest) players were 
part of the same LAN (which is essentially a broadcast net- 
work), it is impossible for a external faulty player to behave 
differently with these two players (though the faulty player 
may behave with "equal" malice with both these players!). 
Among our results, we introduce the sectional fault-model 
that is more general and can capture practical scenarios not 
captured by any extant model. We provide a complete char- 
acterization of the tolerable faults and present efficient pro- 
tocols to achieve consensus. We remark that  the results 
of this paper strictly generalize the extant characterizations 
of fault-tolerance. For example, consider a network of four 
players P1,P2,P3 and P4, under the corrupting influence 
of a Byzantine adversary given by the adversary structure 
A = {(P1, P2), (P2, P3),  (P4)}.  Agreement is impossible in 
such a scenario, since the three sets from .A cover the player 
set. However, it would be evident from our results that  con- 
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sensus in the above scenario was indeed possible if (and only 
if) the players P1, Pa and Pa belonged to a single LAN in 
the network! 

K e y w o r d s :  distributed consensus, sectional faults 

1. INTRODUCTION 
The problem of consensus is a classic problem in dis- 

tributed computing. In many practical situations, it is nec- 
essary for a group of processes in a distributed system to 
reach agreement on some issue, despite the presence of some 
faulty processes. Formally, a protocol among a group of 
players (some of which may be faulty), each having a value 
(from {0, 1}), is said to achieve consensus, if, at the end of 
the protocol, all honest players agree on a value and the 
following conditions hold: 

1. Agreement: All honest players agree on the same value. 

2. Validity: If all honest players start with the value v, 
then all honest players agree on v. 

3. Termination: All honest players eventually agree. 

There exists a rich literature in this field. The players' 
distrust in each other and in the underlying synchronous 
network is usually modeled via a centralized adversary that 
has control over some of the players. Many different adver- 
sary models have been considered. These approaches can be 
classified according to a number of criteria. Some prominent 
ones are briefly discussed below. 

1. Computational resources: The adversary may be com- 
putationally limited (to probabilistic polynomial time) 
as in [5, 14] or computationally unbounded as in [14, 
12]. 

2. Control over corrupted players: If the adversary can 
only stop the working of any of the corrupted play- 
ers, then it is a fail-stop adversary [13](or an omission 
adversary if the crashed player may subsequently re- 
cover). A Byzantine or active adversary [12] can also 
take complete control of the corrupted players and al- 
ter the behaviour of the corrupted players in an arbi- 
trary fashion. Mixed adversaries have also been con- 
sidered [10, 1]. 

3. Mobility: A static adversary decides on the set of play- 
ers that  it would corrupt before the protocol begins 
its execution, unlike an adaptive adversary [4] which 
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chooses the players to corrupt as the protocol execu- 
tion proceeds, or a mobile adversary [15, 9] where dif- 
ferent set of players are corrupted at different times 
during the protocol run-time. 

4. Corruption capacity: In the threshold specification, like 
in [12], the number of corrupted players, at any given 
time, is limited to at most t. In case of the non- 
threshold specification, like in [7], an adversary struc- 
ture, that is a monotone set of subsets of player set, 
is used wherein the adversary is permitted to corrupt 
the players of any one set in the adversary structure. 

In this paper, we postulate an adversary that  is compu- 
tationally unbounded, Byzantine, static and non-threshold. 
In this adversarial setting, it has been proved [7] that dis- 
tributed consensus among n players "P = {P1, • • •, P~}, where 
every pair of players is connected by a point-to-point com- 
munication channel, 1 tolerating an adversary characterized 
by the adversary structure .,4 is possible if and only if .,4 sat- 
isfies the property Q(3), that  is, no three sets in .,4 cover p.2 
As a special instance, the necessary and sufficient condition 
for the threshold adversary case will be t < ~ [14]. 

A natural question that  arises is the following: how can the 
fault-tolerance bound of Q(3) be .improved? There exist many 
(independent) approaches to achieving the same. Below, we 
list three of the prominent approaches used in the literature. 

1. Assume additional primitives more powerful than just 
point-to-point channels. 

2. Use a stronger adversary model that  gives some addi- 
tional "knowledge" about the fault in the system. 

3. Suitably relax the constraints of the consensus problem 
itself. 

There exists enough evidence in the literature that all the 
above approaches are quite powerful and can strictly improve 
the fault-tolerance. For example, consider the threshold case 
bound of t < ~. Using the first approach, [8] showed that  
in the presence of a broadcast channel among every three 
players, the bound can be improved to t < ~. The second 
approach was used in [7, 11]; infact, their non-threshold ad- 
versarial model helped improwe the t < ~ bound to Q(3).3 
As a part of this work, we use the approach to in turn  im- 
prove the Q(3) bound. The third approach was adopted in 
[6], thus proving that "detectable" Byzantine agreement was 
possible with t < n, again significantly improving the t < 
bound. Note that in each case, there is a strict improvement 
in the fault-tolerance. 

In this paper, we use a blend of the first and second ap- 
proaches. More precisely, the additional "knowledge" about 
the faults in the system is derived from the properties of 
the underlying synchronous communication network. Infor- 
mally, a faulty player cannot "lie differently" to the players 
in each of the specified subset(s). As far as we know, this 
line of research has received little attention. Related (though 
only slightly) work is the one by Babaoglu and Drummond 
[2] who consider the Byzantine agreement problem in faulty 

1The po in t - to -po in t  channe l  is a s sumed  to he a u t h e n t i c a t e d .  

2More general ly,  an adve r sa ry  s t r u c t u r e  .,4 is said to  sa t i s fy  the  prop- 
er ty  Q(k) if no k sets  in .,4 cover T'. Th i s  is deno ted  by Q(~)(7::', .,4). 
3Note t h a t  there  are exponen t i a l  n u m b e r  of adve r sa ry  s t ruc tu r e s  t h a t  
sa t is fy  Q(a) bu t  are imposs ib le  to  to l e ra t e  us ing a th resho ld  protocol .  

broadcast networks, as part of which they develop simple 
two-round protocols for partition faults, in the threshold 
adversarial model. Partit ion faults are broadcast networks 
with two partitions of the player set - one in which all receive 
the same value and others who do not. 

2. THE SECTIONAL FAULT MODEL 
In this section, we define our adversarial model. We first 

define the Basic Sectional Fault model, followed by the Sec- 
tional Fault model and finally the Generalized Sectional Fault 
model. In each case, we begin with motivation(s) for the 
model and subsequently give the intuition behind the fault 
abstraction and formally define the adversary. 

Consider the network in Figure 1 under the corrupting 
influence of the active adversary given by the adversary 
structure {(al, a2), (51, b2), (cl, c2)} (throughout this paper 
we abuse "adversary structure" to mean the maximal basis 
of the adversary structure), Clearly, Q(3) is not satisfied; 
thus no known protocol can achieve consensus. However, 
we note that the very character of the network present.,; a 
feature that  can aid the consensus protocol. If we assume 
that every player on a LAN can listen to all messages that 
are received at the LAN (essentially making a LAN a local 
broadcast channel), a faulty player reporting a value to all 
the other players in the player set cannot quote different val- 
ues to the players on this LAN (without being identified ~s a 
faulty player). In fact, we shall show (see Theorem 3.2) that 
consensus in this network is actually possible! Intuitively: it 
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F i g u r e  1: E x a m p l e  N e t w o r k  

is clear that  all the players in the same LAN comprise an 
equivalence class with respect to the received value. Thus, 
we model the adversary as follows. 

DEFINITION 2 .1  ( B A S I C  SECTIONAL ADVERSARY).  T h e  

adversary is characterized by an ordered pair (..4, H), where 
.,4 is the adversary structure as in [11, 7] and H (hereafter 
called the partition) is a partition of the player set. An ad- 
versary can corrupt any one set from .,4. All players in one 
set of H can listen to messages received by any player of that 
set. 4 

Evidently, the Basic Sectional Adversary model is based 
on the first approach, namely, of using more powerful prim- 
itives than just point-to-point channels. However, it is also 
possible to view the Basic Sectional Adversary model to be 

4This  impl ies  t h a t  the  adve r sa ry  canno t  send different  values to the  
players  of a set  in IFi w i t h o u t  be ing  de tec ted .  
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based on the second approach, that is, using a stronger ad- 
versary model that  gives additional knowledge about the 
fault in the system; more precisely, the additional knowl- 
edge is that the adversary cannot send different values to 
the players of a set in H without being detected. 

In more general scenarios, the additional knowlegde could 
be sender dependent; i.e., the adversary cannot send differ- 
ent values to the players of a set in H without being detected, 
where the set H is depends on the sender's identity. 5 In order 
to incorporate the above discussed "locality" of partitions, 
we augment the previous model and extend the idea of a 
"global" partition to a player-wise view of the partition as 
follows. We associate with each player P~ an independent 
partition of the player set Hi. Informally, each of the players 
Pi, i = 1 , . . .  , n  behaves as if the "global" partition was IIi, 
i = 1 , . . . ,  n respectively. 

DEFINITION 2.2 (SECTIONAL ADVERSARY). The adver- 

sary is characterized by an ordered pair (.4, H), where .A is 
the adversary structure as in [11, 7] and H = (H1, H2, • •., IIn), 
with IFlk being a partition of the player set. An adversary can 
corrupt any one set from .A. All players in one set of Hk 
can listen to messages sent by player k to any player of that 
set. 

In the final extension to the fault model, we incorporate 
uncertainty about the fault into the model. On the lines of 
[11], we model possibly incomplete knowledge of the parti- 
tion by a set of partitions. 

DEFINITION 2.3 (GENERALIZED SECTIONAL ADVERSARY). 

The generalized adversary is characterized by an ordered pair 
(A, ~), where A is the adversary structure as in [11, 7] and 

= (~bl, ¢2 . . . .  , ¢~), with ~bk being a collection of partitions 
of the player set. An adversary can corrupt any one set from 
A and choose one partition from each Ck, which defines the 
Sectional adversary description for this run. 6 

The organization of the rest of the paper is as follows. In 
Section 3, we completely characterize the tolerable adver- 
saries in the Sectional and the Generalized Sectional adver- 
sary models. To demonstrate sufficiency, we present a simple 
(but inefficient) protocol. Subsequently, in Sections 5 and 6, 
efficient (but more complex) protocols are presented. The 
results for the basic Sectional adversary follow as a special 
case of those of the Sectional adversary. 

3. CHARACTERIZATION OF DISTRIBUTED 
CONSENSUS 

THEOREM 3.1 (ToP-LEVEL CHARACTERIZATION). In any 
(of the three) adversary model(s), consensus tolerating (.,4, X) 
is possible 7 if and only if consensus is possible tolerating 
(A ' ,X)  for every A'  such that A '  C A and [..4'[ = 3. 

5In fact, the set H could depend on both the sender's and the re-  
c e i v e r ' s  identity. We consider this in the full version of the paper. 
6Technically, the notion of a partition is essential only for corrupt 
players; a honest player will anyway not "lie", leave alone "lie dif- 
ferently". Thus, without any loss in correctness, we can have the 
adversary to choose a partition for all the players (rather than just 
the corrupted players). 
7The variable X could vary depending on the model, but it does not 
matter. 

P r o o f  : In the "==,," direction, the statement is trivially 
true. For the ".¢==" direction, we prove by induction on I.,41 
that  a protocol for agreement tolerating (.,4, X) always exists 
provided consensus is possible tolerating (.An,X) for every 
..,4 ~ such that  .A' C_ ..4 and I.,4'1 = 3. The proof is based on the 
player simulation idea of [11]. The basis case is when IA] = 
3. In this case, .A ~ = A and hence a protocol exists. Now, 
assume that  the theorem is true if I.,4[ < k. Consider the 
case where I.,41 = k. Let (Y1, Y2, Y3, Ya) be a four-partition of 
A, with ]Y~I > 0, i = 1, 2, 3, 4. Then, the four structures ..41, 
Az,A3 and A4, where .Ai = A \ Y/, i = 1,2,3,4, are such 
that  each of them is strictly smaller than k. Thus, from 
the induction hypothesis, there exist four consensus proto- 
cols F1,F2,Fz and F4 tolerating (A1,X),  ( A 2 , X ) , ( A 3 , X )  
and (.An, X) respectively. Next, one can construct a con- 
sensus protocol among four "virtual" players that tolerates 
one active fault (using standard Byzantine Agreement pro- 
tocols for the threshold fault model [3]). Then, the four vir- 
tual players can be simulated by the recursively constructed 
protocols F1,F2, F3 and F4 respectively. Note that, by our 
choice of .,41, A2,A3 and .,44, each Z C ..4 is guaranteed to 
occur in three of the four .Ai's, assuring the honesty of at 
least three of the four virtual players. Thus the constructed 
protocol achieves consensus. [] 

3.1 On Tolerable Sectional Adversaries 
In this subsection, we present the characterization of tol- 

erable Sectional adversaries (A,I]) where IAI = 3. This 
result, along with Theorem 3.1, complete the required nec- 
essary and sufficient conditions. 

First, we define the notion of verifiability of an adver- 
sary set w.r.t an adversary structure. We use the notation 
U(A,.A) to denote the set of players who belong to A and 
who do not belong to any other adversary set in .A. We write 
U(A) if the adversary structure is clear from the context. 

DEFINITION 3.1 (VERIFIABILITY). A Sectional adversary 
set A (e  .A) is said to be verifiable w.r.t (.A,H) if there ex- 
ists a player i in U(A) such that for some set r in Hi and 
VA' E A \ {A}, 7r N U(A')  ~ O. 

Note that for a set to be verifiable w.r.t a Sectional adversary 
structure consisting of more than two sets, the adversary 
structure should satisfy Q(2). 

THEOREM 3.2. Consensus tolerating the adversary struc- 
ture (.A, H), where .A = {A1, A2, A3}, is possible if and only 
i rA1U Az tA Az ~ 79 or each A~ is verifiable w.r.t. (A,H).  

P r o o f  of t h e  n e c e s s a r y  c o n d i t i o n :  

We now prove the necessary part of the characterization, 
i.e. we show that  if A1 tA A2 U A3 = 79 and some Ai is 
not verifiable w.r.t. (A,H), consensus is impossible. We 
assume that such a protocol exists and obtain a contradic- 
tion. Informally, the proof aims to construct three scenarios 
of protocol execution by defining the player inputs and be- 
haviour in each case. Before proceeding with the proof, we 
first introduce some notation. We denote the messages sent 
from player x to player y in round r as M~u(~ ) where 5 is the 
scenario under consideration. We also let .A4~(5) denote the 
ordered list of all the messages sent to the player x through 
rounds 1, 2 , . . .  , r .  
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We define two scenarios X and Y to be indistinguishable 
with respect to player x after r rounds if .A//~(X) = .ME(Y) 
and player x's initial values in X add Y are the same. 

We first deal with the case when Q(2)(.A) does not hold. 
In this case, it is clear that  agreement is not possible satisfy- 
ing the validity condition. In what follows, we assume that 
Q(2)(.A) holds and therefore, U(A1),U(A2) and U(A3) are 
all non-empty. Without  loss of generality, we suppose that  
A2 is not verifiable. We now describe three scenarios, a, f~ 
and 7 of protocol execution and show that  the requirements 
of consensus in these three scenarios imply a contradiction 
to the existence of a protocol. For each scenario, we specify 
the behaviour of players belonging to each adversary set. 

1. Scenar io  a: In this scenario, the adversary corrupts 
players belonging to the adversary set A3. Players in 
A1 \ A3 and A2 \ A3 are all honest and start with input 
0. 

2. Scena r io  j3: The adversary corrupts players belonging 
to the adversary set A2. Players in U(A3) have input 
1 while players in A1 \ A2 have input 0. 

3. Scenar io  7: The adversary corrupts players belonging 
to the adversary set A1. Players in A3 \ A1 and A2 \A1 
are honest and start with the input value 1. 

We now describe the adversary strategy for each of the sce- 
narios. 

1. In scenario a, the faulty players send the same mes- 
sages as in scenario ~3. Formally, Vr Mix(a)  = M~x(/3), 
z E A 3 .  

2. In scenario "7, the faulty players send the same mes- 
sages as in scenario j3. Formally, 'fir M~z (7) = Mix (j3), 
z E A l .  

3. In scenario fl, the adversary corrupts players belong- 
ing to the adversary set A2. In their communication 
with players in U(A1) the faulty players belonging to 
U(A2) send the same messages that  were sent by them 
in scenario c~. In their communication with players 
in U(A3) they send the same messages as in scenario 
7. Note that since A2 is not verifiable, there does 
not exist a scenario, in which a player belonging to 
U(A2) is constrained to send the same value to a player 
each in U(A~) and U(A3). Formally, Vr M~(j3) = 
M[~(a), z E A2 and x E A1. 

4. Players belonging to more than one adversary set send 
the same messages as in the scenario in which they are 
honest. Therefore, they send the same messages in all 
the three scenarios. 

5. In their communication with players belonging to more 
than one adversary set, faulty players send messages 
with the sole constraint that they be consistent with 
the possible existence of any partitions. 

We complete the proof by separately proving the following 
statement: No protocol can achieve agreement in all three 
scenarios (see Lemma 3.3). 

Evidently, the above statement completes the contradic- 
tion to the assumption that  consensus is possible if the nec- 
essary condition does not hold. This, therefore, completes 
the proof of the necessary part of Theorem 3.2. [] 

We show the following two lemmas as a prelude to proving 
Lemma 3.3. 

LEMMA 3.1. The two scenarios, ce and f3 are indistin- 
guishable to any player belonging to U(A1). 

P r o o f  : Players belonging to U(A1) start with the same 
value in both the scenarios a and fL Hence they behave 
similarly in the first round of both the scenarios. By the 
specified adversarial strategy, players belonging to A2 and 
A3 send the same messages to players in U(A1) in both the 
scenarios. By induction on the number of rounds, it follows 
that U(A1) receive the same messages in both the scenarios, 
i.e. Vr M~(a) = M~r(~), x E U(A~). [] 

LEMMA 3.2. The two scenarios, fl and "7 are indistin- 
guishable to any player belonging to U(A3). 

Proof :  Similar to the proof of Lemma 3.1. [] 

LEMMA 3.3. No protocol can achieve agreement in all three 
scenarios. 

Proof." Suppose there exists a protocol which achieves agree- 
ment in all the three scenarios. From the validity condition 
for agreement, it follows that  the honest players in each sce- 
nario, must agree on the value 0 in scenario o~, and the vahte 
1 in scenario "7. Players in U(A1), who behave honestly in 
both the scenarios, a and 13 perceive both these scenarios 
to be indistinguishable (Lemmas 3.1 and 3.2), hence decide 
on the same value in both the scenarios, viz, 0. Similarly, 
the players in U(A3) decide on the same value in scenarios 
and 7, namely 1. Th i s  contradicts the agreement condition 
for consensus in scenario/3. [] 
This completes the proof of necessity for Theorem 3.2. 

P r o o f  of suff ic iency (for T h e o r e m  3.2): 

We now give a protocol to achieve consensus whenever 
the necessary condition of Theorem 3.2 is satisfied and then 
prove the correctness of the protocol. 

We first consider the case when A1 W A2 U A3 does not 
cover 7 9. In this case, there always exists a honest player in 
79 - (A1 t2 A2 t2 A3) and the protocol trivially follows. 

We now consider the case when A1 t2 A2 t2 A3 = 79 and 
each of the sets A1,A2 and A3 is verifiable w.r.t the ad- 
versary structure A1, A2, A3. In this case, corresponding to 
each adversary set, there exists a triplet of players, one in 
each adversary set, one of which is constrained to send the 
same value to the other two. The sender is called the rep- 
resentative. These set of nine players are denoted by Pi,3, 
1 < i , j  < 3, such that pl,j,p2.j and p3,j belongs to Aj. For 
each i, we require that pl,j E U(A~). The representative of 
Ai, is the player pi,i. All other (six) players are called ver~- 
tiers. The representative pi,i, is constrained to send the same 
value to the other two players (verifiers), viz, pi,j, j ¢ ~. 
We call this ordered tuple of nine players, consisting of the 
three representatives and the six verifiers, the committee of 
this adversary structure: i.e. the set of real players that hell) 
achieve agreement tolerating this adversary structure. The 
protocol, denoted by C, is described below. 

• Round 1 : All representatives( pi,i ) send their value 
to the corresponding verifiers (pi,j, j ~ i). 
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• Round 2 : Verifiers and representatives together send 
the value received from the corresponding representa- 
tives to all the players. Each player then concludes 
three values, one for every adversary set, by taking 
the majority among the three values { Pi,1, pi,2, pi,3 } 
corresponding to that  adversary set. Each player then 
takes the final value of the protocol to be the majority 
of the three values (that were concluded for each i). 

From Lemmas 3.4 and 3.5 and the fact that  the protocol 
certainly terminates, we know that  the protocol C achieves 
consensus. [] 

LEMMA 3.4 (AGREEMENT). At  the end of protocol C, 
all the players conclude on the same final value. 

P r o o f  : In any execution of the protocol, only one player 
of the three players in the triplet corresponding to one ad- 
versary set can be corrupted by the adversary. Even if the 
representative is corrupted, due to the restrictions imposed 
by the partition H, the representative will be forced to send 
the same value to both the (honest) verifiers. Therefore, of 
the three versions of the representative's value that all play- 
ers receive, at least two versions will be the same and will 
also be received the same by all the players. This means 
that all players will conclude on the same value for each 
of the representatives. Thus the agreement on each of the 
three values is assured. Since all the players take the major- 
ity of the three values, agreement on the final value is also 
assured. [] 

LEMMA 3.5 (VALIDITY). A t  the end of protocol C, all 
the players agree on a honest player's value. 

P r o o f  : The protocol agrees on the majority of the val- 
ues of the three representatives. In any execution of the 
protocol, at least two of the three representatives are hon- 
est and therefore, the agreed value will be a honest player's 
value. [] 

3.2 Characterization of tolerable Generalized 
Sectional Adversaries 

In the Generalized Sectional adversary model, a player is 
associated with more than one partition of the player set, 
one of which may be in use during any execution of the 
protocol. 

THEOREM 3.3. Consensus is achievable in the presence 

of Generalized Sectional adversa~, ( A, I~ ) where I~ = 
([I~, I I ~ , . . . ,  YI~), and I-Ik is a collection of partitions of 
the player set, i f  and only i f  consensus is achievable in each 
of the Sectional adversaries formed by choosing one partition 
each f rom each [L" 

P r o o f  : To see that  the above condition is necessary, we 
note that if consensus is not achievable for the Sectional 
adversary corresponding to a particular combination of par- 
titions, then consensus will not be achievable in the Gener- 
alized Sectional adversary, when the adversary chooses this 
combination of partitions. 

To show that this condition is sufficient, we give a proto- 
col, which will achieve consensus tolerating every adversary 
substructure .A' C .A of size 3. This combined with Theo- 
rem 3.1 completes the proof of the sufficiency condition. 

Let the adversary structure that  is being tolerated be .X 
= { A1, A2, A3 }. 

If P ~ A1 t2 A2 U Aa then there exists an honest player, 
and hence, consensus can be trivially achieved. 

If P = A1 tA A2 tA A3 then from the necessary condition 
it follows that  for every combination of partitions, .A' must 

i be verifiable. For each combination i, let al,2 E U(A2) and 
i a~,3 E U(A3) belong to the same partition for a1,1 E U(A1).  

Hence, if the i th combination is in operation, then the rap- 
will be forced to send the same value to the resentative a1,1 

i and i Let pl,  p2 and p3 be three players verifiers al,2 al,3. 
in U(A1) , U(A2), and U(A3) respectively. We describe a 
protocol to broadcast p l ' s  value to all the players. Simi- 
lar protocols can be used to broadcast p2's and p3's values 
t o  all the players and these can be put together to achieve 
consensus as in the protocol of Theorem 3.2. 

• Round 1: Player pl broadcasts its value to all the rep- 
resentatives, a~,l for every combination i. 

• Round P : Each virtual player representative, at,l ,  
broadcasts the value it received from pl to the cor- 
responding verifiers. 

• Round 3 : The virtual player verifiers, a i and a i 1,2 1,3 
send the value they have received from the correspond- 
ing virtual player representative a~,l to all the players. 
The players then use the following algorithm to com- 
monly agree upon a value corresponding to A1. 

- If any player receives the same value, v, from all 
players a~,l and a~,2 for every combination i, or if 
the player receives the same value, v, from players 
a1,1 i and a il,3 for every combination i, then the 
player accepts v as Al ' s  value. This corresponds 
to the case when the set A1 is not corrupted. 

- Otherwise let j be the smallest index such that 
the values quoted by a j and a j 1,2 1,3 are the same, 
namely, v. Then the player accepts v as Al 's  
value. Note that  some such j exists because some 
combination of partitions is in operation and there 
exists a committee guaranteed to work with this. 

We note that  if the adversary set A1 is not corrupted, 
player pl is honest and all representatives, V i at , l ,  are hon- 
est. Moreover, if A2 is not corrupted, the values reported 

i By the first by players a~,2 match with those of players a1,1. 
clause of the algorithm described in Round 3 in the above 
protocol, all players agree on on pl ' s  value. In case A1 is 
corrupted, the partition forces some player a j to send the 1,1 
same value to the corresponding verifiers and the second 
clause applies. We note that  since all verifiers are honest 
in this case, the smallest i for which this happens is the 
same for all players. It may also happen that  a player con- 
cludes on a value v using the first clause in this case too, 
but the honesty of the verifiers assures us that  this value is 
the same as the value that  other players, possibly using the 
second clause, agree on. This proves that  the above proto- 
col succeeds in broadcasting player pl ' s  value if A1 is not 
corrupted or in achieving agreement on some value if A1 is 
corrupted. 

Similar protocols can be run for players p2 and p3 to com- 
plete a protocol on the lines of the protocol in the proof of 
Theorem 3.2. The assurance of agreement, along with the 
fact that  at least two of the players pl ,  p2 and p3 are honest, 
assures the correctness of the protocol. [] 
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4. ACHIEVING POLYNOMIAL COMPLEX- 
ITY 

In this section, we consider the issue of complexity for the 
case of the Sectional adversary. The bottleneck in most dis- 
tributed protocols is the communication complexity rather 
than the computation complexity. We therefore analyze 
all our protocols for their communication complexity alone; 
nevertheless, we remark that  all presented protocols have a 
computation complexity polynomial in the input size. 

We present a protocol with communication complexity 
polynomial in the number of players, n, for the case of the 
Sectional adversary, unlike the ones in the previous section 
that were polynomial in the size of the maximal basis of 
the adversary structure, s In the next section, we modify 
this protocol to achieve a more efficient protocol. We then 
present methods to transform the final version of the proto- 
col to a protocol tolerating the Generalized Sectional adver- 
sary. 

The key to the development of a better protocol is the 
use of virtual players. Theorem 3.2 assures us that,  cor- 
responding to each adversary structure of three sets which 
together cover 7 9, there exists a committee of players, which 
can be used to perform consensus when this adversary struc- 
ture is in operation. Thus, for every adversary structure 
.,4 ~ = {A1, A2, A3} of size thre~, such that  A1LI A2 to A3 -- 79, 
there exists a virtual player on the lines of the player simu- 
lation idea of [11]. We denote the set of virtual players by 
V79. Let 

f~a~ : Y79 ~ A x A x A 

be the function such that  f~d,(V) = (Y~, Y2, Y3} implies that 
the virtual player V corresponds to the adversary structure 
{ Y~ , Y2, Y3 }. 

Let .A~ C 2 ~Uv~ denote the adversary structure repre- 
senting the failure knowledge of the players and virtual play- 
ers taken together, i.e. the adversary structure on the set 
79 U'V'P. The structure .A. is constructed as follows. Let the 
original adversary structure A = {B1, B2 , . . . ,  B~}. Then, 

.A, = {(B~ U {Z ~ Y79JB~ ¢ fad~(Z)})li = 1 ,2 , . . .  ,w}  

In other words, corresponding to every adversary set in the 
original adversary structure, any virtual player, whose cor- 
responding adversary structure contains this set is honest. 
All other virtual players are assumed to be faulty (This is 
an over-estimation of the actual failure knowledge but  it will 
do for the purpose of the protocol). 

The following observation regarding the set of players and 
virtual players taken together is crucial to the development 
of a polynomial communication complexity protocol. 

OBSERVATION 4.1. Q(3)(79 L] V79,.Av) holds. 9 

P r o o f  : Suppose that this is not so. Then there exist three 
adversary sets - . v , - . v , - . v  A1 A2 z13 of Av which cover 79 U ~7 9. Each 
.A~ consists of players and virtual players, with the player 
subset corresponding to an adversary set of the original ad- 
versary structure ..4. By the assumption made at the begin- 
ning of the proof, the player subsets of each of.A~'s together 
cover the player set 79. These, therefore, constitute an ad- 
versary substructure (of .,4) of size 3 which violates Q(3). 

SNote that  the size of the maximal basis of the adversary structure 
could be exponential in the number of players. 
9In fact, Q(3) ('12~, A~) holds. 

By the characterization condition (Theorem 3.2), it follows 
that there exists a honest virtual player corresponding to 
this substructure. This virtual player does not appear in 
any of the virtual player subsets of .A~'s, thereby contra- 
dicting the earlier assumption. [] 

This observation directly motivates an agreement protocol 
on the set 79 tO V79. In fact, any deterministic agreement 
protocol where: 

1. the initial values of the virtual players are generated 
by agreement among the representatives of the virtual 
player committee; 

2. the operations of the protocol for virtual players are 
substituted by agreement protocols among the virtual 
player committees; 

achieves consensus, in the sense that it satisfies the condi- 
tions of the consensus problem among the real players. 

The protocol thus formed is still potentially exponential 
in communication complexity because there can be as many 
as (13~1) virtual players. We note, however, that  two virtual 
players which share the same committee are effectively the 
same. By this we mean that firstly, they have the same 
input values, and secondly, they receive the same messages 
and hence the execution of a deterministic protocol is in 
no way different for both of them. This allows all virtual 
players with the same committees to be simulated by one 
committee alone, with the simulation of equivalent virtual 
players being left to the local computation of the participat- 
ing players. This modification reduces the communication 
complexity to that  of a protocol among O(n 9) committees 
and n real players. A Phase King protocol [3, 1] on these 
O(n 9) (real and virtual) players results in a protocol with 
polynomial communication complexity. The discussion so 
far leads to the following theorem. 

THEOREM 4.1. Distributed consensus tolerating the Sec- 
tional adversary (.A, 4 )  can be achieved in polynomial com- 
munication complexity. 

5. CONSTRUCTING AN EFFICIENT PRO- 
TOCOL 

A more efficient protocol relies on a close analysis of two 
components - one, the internal protocol among the virtual 
players, and two, the Phase King protocol itself. In this 
section, we show how modifications on these lines can bring 
down the communication complexity to a slim O(n4). We 
first describe, briefly, the Phase King protocol and then pro- 
ceed with the modifications. 

The Phase King protocol was originally proposed by 13]. 
This protocol (more correctly, a recursive modification of 
this protocol) could achieve bit-optimal consensus in the 
case of the threshold adversary. This protocol was extended 
to the case of a mixed non-threshold adversary in [1]. For 
the proof of correctness of this protocol and its analysis, we 
refer the reader to [3i 1]. Here we only present the protocol 
listing (Figure 2). Note that, in our case, it is enough to 
restrict the set of kings to the real player set 79 alone, sittce 
at least one honest real player is guaranteed. 

We introduce the notation q(.A), or more simply q, to 
denote the largest integer k for which Q(k)(A) holds. The 
condition Q(3)(.A) then translates to q > 3. 
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for k = 1 to IPl do (* Set of kings *) 
begin (* Start of a phase *) 

send(value) (*Universal Exchange 1; all players send.*) 
receive(V) 
V ~ = { r  e P U V 7  ~ , r s e n t i } , i ~ - 0 , 1  
f o r i = 0 ,  l d o  

if Q(1)(7~ - V i) does not hold 
send(l)  

else 
send(0) (*Universal Exchange 2; all players send.*) 

receive(R) 
R i =  { r E P U ] ) 7  ~ , r s e n t  1 } , i = 0 , 1  
if Q(1)(R1) holds 

value : 1 
else 

value : 0 
(for the king Pk only) 

send(value) (* King's Broadcast *) 
receive(king's value) 
if Q(1)(p _ R ~ a ~ )  holds 

value = king's value 
end (* End of the phase *) 

F i g u r e  2: Descript ion of  the  Phase  King protocol  
for a p l a y e r  in "P U VT::' 

5.1 Modification to the virtual player commit- 
tee protocol 

The aim of this modification is to move virtual  player par- 
t icipation in the protocol from the repeated use of the inter- 
nal agreement protocol, used to simulate the virtual  player, 
(which is primarily responsible for the high communication 
complexity of all previous protocols) to local simulation of 
virtual player behaviour by the real players as much as pos- 
sible. To this end, we assert the following lemma. 

LEMMA 5.1. For any deterministic protocol, a player's 
protocol run can be completely simulated i f  the following are 
known: (1) The player's initial value, and (2) The messages 
that the player receives. 

Proof  : The player 's initial value and the messages tha t  
the player receives completely determine the view of the 
protocol and so, the rest of the protocol behaviour can be 
simulated. []  

We, therefore, modify vir tual  player behaviour so tha t  
the messages a vir tual  player receives can be made known 
(reliably and efficiently) to all other players. This will allow 
all other (real) players to simulate vir tual  player behaviour, 
reducing the overhead involved in the vir tual  player internal 
agreement protocols. To this end, we introduce a primitive 
called the public internal agreement protocol, which is only 
a slightly modified form of the protocol used for sufficiency 
in Theorem 3.2. 

We present the details of this internal agreement protocol, 
doubling as broadcast,  tha t  we call public internal agree- 
ment in Figure 3. I t  is clear tha t  the procedure of Figure 3 
works and performs its objective. 

We now modify the actions of the Phase King protocol 
for virtual players so tha t  the two conditions in Lemma 5.1 
are satisfied. This then allows real players to simulate the 

Round 1: Virtual  player representatives send the 
inputs of the agreement protocol to the verifiers. 

Round 2: Verifiers and representatives together send 
the inputs to all other players. Recipients apply the 
majori ty function on the values received (first on 
the values received from each tr iplet  corresponding 
to each adversary set and then on the three values 
thus obtained) to determine the result of the inter- 
nal agreement protocol. 

Figure 3: P u b l i c  internal agreement  ( P I A )  

complete virtual  player behaviour locally itself, leading to a 
significant reduction in the communication complexity. The 
modifications are as follows. 

1. send(input) in the very first round of the protocol for 
a virtual  player is replaced by H A ( i n p u t )  for that  
player. 

2. receive(value) in any round is replaced by PIA (re- 
ceived_value ). 

We now analyze the complexity of the new protocol thus 
obtained. We note that ,  in the Phase King protocol, a 
real player acting as representative for many virtual  players 
sends the same value for all those vir tual  players and hence 
step 1 in the PIA protocol can be performed in O(n 2) bits 
for all virtual  players. Step 2 then takes O(n 2) bits per real 
player (and hence, O(n 3) over all vir tual  players) because 
each verifier sends O(n) bits for every possible representative 
tha t  the verifier verifies. Thus overall, each global invocation 
of PIA (i.e. by all vir tual  players) in the Phase King proto- 
col incurs an overhead of O(n 3) bits. Each round involves 
O(n) (global) receive operations and there are O(n) rounds, 
accounting for O(n 2) global invocations of PIA. Hence, the 
overall contribution of vir tual  players to the communication 
complexity of the Phase King protocol is O(n 5) bits, which 
dominates the communication cost of real players (which is 
O(n 3) bits, in fact). Thus, we have the following theorem. 

THEOREM 5.1. The Phase King protocol on ~ U  V~  with 
the modification listed above achieves consensus and involves 
a communication complexity of O(nh). 

5.2 Modification to the Phase King protocol 
for virtual players 

In this subsection, we further improve the communica- 
tion complexity of the protocol by taking advantage of some 
specific aspects of the Phase King protocol, bringing the 
communication complexity down to O(n4). 

We now describe, informally, the changes we propose to 
make and the motivation behind them. Each exchange round 
in the Phase King protocol is of the form Vi receive(mesgi) ,  
followed by a computat ional  step, and then resulting in 
Vi send(new_mesgi).  In the current version of the proto- 
col, what happens in a round is tha t  virtual  players reach 
(public) agreement on each of the messages to be received, 
i.e. each mesgi,  and all real players use this knowledge to 
decide on the new_mesgi of the vir tual  player. We claim 
that ,  instead, it is enough for vir tual  players to reach agree- 
ment on new_mesgi directly based on the new_mesgi's of 
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the virtual player representatives. After this modification, 
virtual players need only to engage in O(1) global receives, 
leading to a factor of n improvement in the communication 
complexity. 

We now describe formally the modified Phase King pro- 
tocol for virtual players to be executed by the virtual  player 
committees. We use the following notation. Messages that  a 
player sends in exchange i, i = 1, 2, 3 of the jth phase are de- 
noted respectively by m~. The protocol is listed in Figure 4. 

During jth phase do 

• Universal Exchange 1 : PIA(m~), i.e, virtual  player 
committees execute PIA on the m~ values of repre- 
sentatives. 

• Universal Exchange 2 : PIA(m~), i.e. virtual  player 
committees execute PIA on the m~ values of repre- 
sentatives. 

• Kin 9's Broadcast : no action. 

F i g u r e  4.. M o d i f i e d  v i r t u a l  p l a y e r  p r o t o c o l  

We now show the correctness of the modified protocol. 
P r o o f  of  c o r r e c t n e s s ( s k e t c h ) :  We note that  in protocols 
where, (1) the messages sent in a round depend solely (and 
in the same fashion) on the messages received from players 
in the previous round and, (2) any player sends the same 
value to all other players, a honest player 's message can be 
replaced with any other honest player 's message without af- 
fecting the correctness of the protocol. This is because the 
messages that  they receive the previous round only differ 
in the faulty players'  values and a different set of faulty 
player messages should not affect the correctness of the pro- 
tocol. The Phase King protocol satisfies the above condi- 
tions. A honest virtual  player',,; messages in such a protocol 
can, therefore, always be replaced by the messages of any 
of its honest representatives. This can be done by achieving 
consensus on the representatives'  messages. The modifica- 
tion in Figure 4, therefore, does not affect the correctness of 
the protocol. []  

We now analyze the communication complexity of the pro- 
tocol. As usual, virtual  player operations dominate the cost. 
Each virtual player performs O(1) operations per phase, 
each operation involving a (global) invocation of PIA, which 
takes O(n 3) bits. Overall, the protocol therefore involves 
O(n 4) communication. 

6. CASE OF GENERALIZED SECTIONAL 
ADVERSARY 

We now extend the efficient protocol for Sectional adver- 
sary, as described in Figure 4, to the case of the Generalized 
Sectional adversary. We retain the same structure of the fi- 
nal protocol and present an equivalent protocol for the PIA 
primitive. 

The PIA primitive in the protocol for Sectional adver- 
saries (Section 5) can be replaced by the Generalized PIA 
primitive to get the protocol for Generalized Sectional ad- 
versaries. This primitive can be taken to be the protocol 
for sufficiency given in Theorem 3.3, with players pl ,  p2 and 

P3 (as defined in the proof of Theorem 3.3) simultaneously 
broadcasting their value to all other players. 

We now analyse the communication complexity of a global 
invocation of this primitive. Round 1 can be done using 
O(n) messages per each possible pi, which means O(n 2) 
messages in all. In Round 2, each of the representatives 
send the values they have received from the players pl,p2 
and p3. This takes O(n 3) messages in all. In Round 3, the 
verifiers broadcast  the messages they receive from all repre- 
sentatives. This takes a total  of O(n 4) messages. Hence, a 
global invocation of this primitive requires O(n 4) messages. 

THEOREM 6.1. The final version of the protocol of See- 
tion 5 with the PIA replaced by the Generalized Public Inter- 
nal Agreement achieves agreement tolerating the Generalized 
Sectional adversary with a communication cost of O(nS). 

7. CONCLUSION 
We have defined a new fault model which incorporates 

additional knowledge about  the fault. We have presented 
necessary and sufficient conditions under which consensus 
can be achieved in this model. We have made a beginning 
in the direction of efficient protocols for consensus in this 
model with the O(n 4) communication complexity protocol 
of Section 5. The following theorem expresses the results of 
this paper  in a nutshell. " 

THEOREM 7.1 (MAIN THEOREM). Consider a set of n 
players, any two of which can communicate with each other, 
under the corrupting influence of a Byzantine Sectional ad- 
versary characterized by by (A, 17). 

1. Consensus is possible if and only if .,4 satisfies Q(2) 
and either of the following conditions hold for every 
three adversary sets A1, A2, A3 of A: 

(a) A1 U A2 t3 Aa ~ 7 9, or 

(b) Each of A1,A2,A3 is verifiable w.r.t the adver- 
sary structure {Am, A2, A3}. 

2. Whenever the conditions in (1) hold, there exists a pro- 
tocol with the following properties: 

(a) The protocol achieves consensus with certainty. 

(b) The protocol communicates O(n 4) bits, irrespec- 
tive of the size of the adversary structure. Its 
computation complexity is polynomial in the in- 
put size. 

The significance of the results can be understood by the 
following implications. 

1. There exist (a lot of) scenarios for which consensus 
was deemed impossible (in the extant  fault models), 
whereas consensus is achievable in the Sectional ad- 
versary model. 

2. Usually, the more general the model the less efficient 
the (worst-case) protocol. Notwithstanding this, the 
additional power of our model does not hinder the ef- 
ficiency of the protocol (which is comparable to that  
of any known protocol for the non-threshold model). 

3. Implicit  in our characterization is the minimal net- 
work primitives required to achieve the desired fault- 
tolerance. 
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4. Our characterization strictly generalizes the Q(a) char- 
acterization of [7]. Note that  Q(3) is identical to the 
l(a) condition, whereas we require either l(a) or l(b) 
to be satisfied. 

One evident future work in this area is to concentrate on 
developing more efficient protocols. We note that all our 
protocols are 'built ' on known protocols like the Phase King 
protocol. Hence, any efficiency improvement for consensus 
tolerating Byzantine faults in the non-threshold adversary 
model would directly trigger an improvement in the com- 
plexity of our algorithms. Not much work has been done in 
the area of achieving optimal consensus in the non-threshold 
fault model (unlike the threshold fault model [3]) and op- 
timal non-threshold Byzantine agreement remains a signifi- 
cant open problem. 

The success of this effort (and the ones like in [11, 7]) 
to improve fault tolerance by increasing the description of 
the fault model should serve as a motivation to further ef- 
forts in this direction. It looks worthwhile to study "Fault- 
knowledge versus Fault-tolerance" in general. Intuitively, 
there exists a direct correlation between them, namely, as 
the knowledge about the faults increases, the fault-tolerance 
increases; however, the exact relationship is to be explored. 
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