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Abstract

In PODC ’04, Koo [2] presented a protocol that achieves broadcast in a radio network toler-
ating (roughly) 1

2
r2 Byzantine faults (where r is the transmission range in the radio network).

We prove that the simple protocol of [2] indeed tolerates 1
√

2
r2 faults. We also consider a gen-

eralization of the model of [2] to account for missing nodes in the network, and provide a fairly
general sufficient condition for broadcast.

1 Introduction

Simulating a broadcast channel among n nodes using point-to-point channels between every pair
of them, tolerating malicious behavior of t nodes, is the classical setting of Byzantine Agreement
(BA) [3]. It is known that, in this setting, broadcast is achievable iff t < n/3. Some of the
subsequent work on this problem addressed the situation where the point-to-point channels are
replaced with k-cast channels for some constant k (such as [4, 1]).

Koo [2] considered the broadcast problem in a radio network. In a radio network, each node
can broadcast its message to all the nodes within a distance r (in an appropriate metric). At the
end of the broadcast protocol, all the nodes in the network should have accepted m. The problem
is thus to simulate global broadcast using local broadcast channels of a specific form.

Koo [2] proved that, in the ℓ∞ metric,

• If t < 1
2r(r +

√

r/2 + 1), there is an (explicit) protocol that achieves broadcast.

• If t ≥ 1
2r(2r + 1), there is no protocol that achieves broadcast.

Note that the total number of neighbours of any node in the ℓ∞ metric is (2r + 1)2 − 1. Thus, the
above result says that, if for each node, at most a 1

8 fraction of its neighbors are corrupted, then
broadcast is achievable, and broadcast is not possible if more than 1

4 fraction of them are corrupted.
We asymptotically improve the upper bound of [2] and prove the following.

Theorem 1. If t < ( 1√
2
−ǫ)r2 (for some constant ǫ > 0), there is a protocol that achieves broadcast

in the ℓ∞ metric.

Koo [2] considers the setting in which the radio network is modeled as an infinite grid and all the
grid points are occupied by nodes. A natural question to ask is whether broadcast is possible even if
some of the grid points are unoccupied. To this end, we consider the problem of achieving broadcast
in an arbitrary graph (a multicast topology), where each node of the graph has a multicast channel
to its neighbors. We obtain a sufficient condition on the structure of the multicast graph such that
broadcast is achievable.
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2 Previous Work and Our Result

The model of broadcast in radio networks we work with was proposed in [2]. In this model, each
integral point (x, y) of an infinite square grid (of side-length 1) represents a radio node p(x, y). Each
node can multicast a message to all the nodes situated within a distance of r from (x, y) (in the
appropriate metric space). The message delivery is synchronous and there exists a pre-determined
schedule for the nodes to send messages so that no two neighbours any node will send messages at
the same time. Some set of nodes could be corrupted by an all-powerful adversary. A t-adversary
is one that corrupts not more than t neighbours of any honest node. A corrupted node could act
arbitrarily maliciously except that it is constrained to send messages according to the pre-fixed
schedule.

The “dealer” D (which is w.l.o.g, p(0, 0)) multicasts a message m to its neighbours in the
beginning. Broadcast is achieved if every honest node eventually receives and accepts m.

The broadcast protocol of [2] is simple: the dealer multicasts the message m to its neighbours.
If a node p(x, y) gets message m directly from the dealer (i.e, p(x, y) is within a distance of r from
the dealer), p(x, y) accepts m and multicasts m to its neighbors. If a node p(x, y) is not a neighbour
of the dealer, then it waits till it receives the same message from more than 2t+1 of its neighbours,
accepts m and multicasts m to its neighbours. This protocol achieves broadcast as long as at most
t < 1

2r(r +
√

r/2 + 1) neighbors of each node are faulty.

2.1 Proof of Theorem 1

We prove that the protocol of [2] achieves the desired fault-tolerance. Our analysis improves upon [2]
by a more refined counting of the number of neighbours of a node p(x, y) that have already accepted
m.

Denote by P [a . . . b, c . . . d] the set of all (nodes corresponding to the) points (x, y) such that
a ≤ x ≤ c and b ≤ y ≤ d. Denote by N , the number of neighbors of any node in the ℓ∞ norm.
Note that N = 4r2 + O(r). Assume (w.l.o.g) that the dealer D is at point (0, 0). We prove the
statement by induction on the ℓ∞ distance n of the point (x, y) from (0, 0).

Basis case: n ≤ r. All the nodes in P [−r . . . r,−r . . . r] receive and accept m. This is because
all these nodes are within one-hop distance of D.

Induction Hypothesis: Assume that all nodes in S
def
= P [−n . . . n,−n . . . n] accept m. We will prove

that all nodes in P [−(n+1) . . . (n+1),−(n+1) . . . (n+1)] accept m eventually. We divide the nodes
into sets S0, S1, . . . Sk (for some k to be determined later). S0 is a stack of nodes (a “triangle”)
with the length of the base β0r (for some β0 to be determined later), whereas S1, S2, . . . , Sk are the
“concentric regions” surrounding S0 (Refer to figure 1). Think of Si as the set of nodes that accept
m after receiving messages from the nodes in S ∪ ⋃i−1

j=0 Si. Lemma 1 shows that all nodes in S0

accept m. Lemma 2 shows that if all nodes in S0 ∪ S1 ∪ . . . Si accept m, then all the nodes in Si+1

accept m. The theorem follows from these Lemmas and an appropriate setting of the parameters.
(See discussion after the lemmas). If a protocol works against an adversary that corrupts an α′

fraction of any node’s neighbors, then it is said to have a fault-tolerance of α′.

Lemma 1. All nodes in the region S0 accept m. Moreover, if α′ = α
8 is the fault-tolerance, then

β0 ≥ 2 − α − O(1
r
) and |S0| ≥ β2

0

4 r2 − O(r).

Proof. Note that a node v accepts message m after receiving m from at least 2α′N +1 = αr2+O(r)
neighboring nodes. The proof now follows from the following two observations:
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Figure 1: The sets S0, S1, . . . used in the
proof of Theorem 1
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Figure 2: This construction is used to calcu-
late β0 in Lemma 1
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Figure 3: The grey square illustrates the neighbors of the black square in S that are not the
neighbors of the black dot.
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• Consider the node P [n + 1, n + 1 − r(1 − β0)] ∈ S0 (marked by a black dot in Figure 2).
This node has at least (2 − β0)r

2 neighbors in S. Setting (2 − β0)r
2 ≥ αr2 + O(r), we get

β0 ≥ 2 − α − O(1
r
).

• If a node (x, y) has N ′ neighbors in S, then a node (x − 2, y + 1) has N ′ − O(1
r
) neighbors

in S. From this, we know that the height of the triangle is (at least) half its base (minus a
constant).

Now, we count the number of nodes in S0. Since we know that the base is β0r and the height is at

least β0

2 r (half the base), the number of nodes is
β2
0

4 r2 − O(r).

Lemma 2. If all nodes in S, S0, . . . , Si (i ≥ 0) accept m, then all the nodes in the Si+1 accept m
too. Moreover, βi+1 ≥ β1(β0)

i and |Si+1| ≥ 1
2β1(β0)

i+1r2.

Proof. This is proven by induction on i. From Lemma 1 and symmetry considerations, we know
that all nodes in S ∪ S0 ∪ S′

0 accept m. Now, we prove the basis case (i = 0). In Figure 3, note
that the black dot (the extremal node in S1) has β1r

2 less neighbors in S compared to the black
square (the extremal node in S0). But, this is compensated by the nodes in S0 ∪ S′

0, which have

already accepted m. Thus, β1r
2 ≥ 2 × β2

0

4 r2 − O(r). Thus, β1 ≥ β2
0

2 − O(1
r
).

For induction, observe the following:

• In Figure 3, the node v ∈ Si+1 (the black dot) has βi+1r×r less neighbors in S∪
⋃i−1

j=0 compared
to node u ∈ Si (the cross in Figure 3). But, by induction hypothesis, we know that all the
nodes in Si have accepted m, and we can use these nodes now. These are |Si| ≥ β1

1
2(β0)

ir2

nodes. Moreover, observe that we can use the nodes in the set S′
i which is symmetric to Si

along the perpendicular edge of the n×n square. (See Figure 3) and from T ∪S′′
i (Figure 3).

These balance out when βi+1r
2 = 2 × 1

2β1(β0)
ir2. Thus, βi+1 ≥ β1(β0)

i.

• From the figure, the area of Si+1 is the area of
⋃i+1

j=0 Si minus the area of
⋃i

j=0 Si. |Si+1| =
((
Pi

j=0
βj)+βi+1)2r2

4 − (
Pi

j=0
βj)2r2

4 ≥ 1
4 · 2βi+1(

∑i
j=0 βj)r

2 ≥ 1
2βi+1β0r

2 ≥ 1
2β1β

i+1
0 r2.

Now, we manage to cover all the nodes in P [n + 1, 0 . . . n + 1] if the sum of the bases of
all the regions Si become 1 after some point. i.e, if

∑∞
j=0 βj > 1. Expanding the βj ’s, we get

β0 + β1 + β1β0 + β1(β0)
2 + . . . = β0 + β1

1−β0
> 1. We know that β0 = 2 − α − O(1/r) (from

Lemma 1) and β1 =
β2
0

2 (from the basis case of Lemma 2). Solving the resulting quadratic gives

us β0 > 2 −
√

2 and thus, α <
√

2. Thus, the total number of faults that we can tolerate is
α′r2 − O(r) = α

2 r2 − O(r) = ( 1√
2
− O(1

r
))r2.

Author’s Note 1: Note that we can tolerate twice this many faults, if the faults were fail-stop.
i.e, tfail-stop = (

√
2 − O(1

r
))r2. Also, using cryptographic techniques (specifically, digital signa-

tures), we can tolerate (
√

2 − O(1
r
))r2 Byzantine faults.

Author’s Note 2: We can improve the analysis of Theorem 1 to get a fault-tolerance of (3
4 −O(1

r
)r2

in the Byzantine setting. We believe that this is the maximum number of faults that can be
tolerated using the simple protocol of [2].
We can extend Theorem 1 to the ℓ2 metric, using standard techniques, giving us the following:

Corollary 1. If t < ( 1
2
√

2
− ǫ)r2 (for some constant ǫ > 0), there is a protocol that achieves

broadcast in the ℓ2 metric.
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3 Simulating Global Broadcast using Local Broadcast Channels

In this section, we look at a more general form of the broadcast problem we considered in the
previous section. The model of [2] (and the one we dealt with) required that all the grid points of
the radio network be occupied by live radio nodes at all times. It is a natural (and very practical)
question to determine the conditions under which broadcast is possible in sparse topologies of radio
nodes. We take a first step in this direction, by proving a sufficient condition on the topology
(which is modeled as a multicast graph) so that broadcast is possible.

More precisely, the radio network if modeled as a multicast graph G = (V,E). Denote by N(v)
the set of all neighbours of node v in G. The node p(v) corresponding to each vertex v ∈ V has
the capability to multicast messages to all the nodes in the set {p(w) : w ∈ N(v)}. An active
α-adversary is one that can corrupt nodes subject to the condition that for any node u, at most an
α fraction of the neighbours of u are corrupted. Any node v can initiate the broadcast of a message
m by multicasting m to all its neighbours. We say that broadcast is achieved if all the honest
nodes receive and accept m eventually. The goal, then, is to achieve broadcast in the presence of
an α-adversary. It is easily seen that the broadcast problem in radio networks we considered in the
previous section can be cast in this framework.

Below, we provide a sufficient condition on the multicast graph G so that broadcast can be
achieved in the presence of an α-adversary. A directed orientation ∆ of a graph G is an assignment
of a direction to all the edges of the graph. The directed graph so formed is denoted ∆(G). Let
N−

∆(v) denote the in-degree of node v in ∆(G). Below, we give a recursive definition for what it
means for a graph to be orientable.

Definition 1. A graph G = (V,E) is said to be (β, S)-orientable for a set S ⊆ V , if either S = V
or there exists a directed orientation ∆ such that

• There exists a node u /∈ S, such that |N−
∆ (u) ∩ S| ≥ β|N(u)|, and

• G is (β, S ∪ {u})-orientable.

G is said to be β-orientable, if for every v ∈ V , G is (β,N(v) ∪ {v}-orientable.

Theorem 2. If the multicast graph is 2α-orientable, then there exists a protocol that achieves
broadcast against an α-adversary.

Proof. The simple protocol of [2] achieves broadcast in this setting. The proof is fairly easy to
see, and is omitted due to lack of space. It would be interesting to come up with more natural
characterizations under which broadcast is achievable.
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