Instructions: Everyone needs to submit their own write-up. If you work together with other students, indicate their names on your write-up.

The possible grades for each (sub)problem are Check-, Check and Check+, corresponding to 0, 1 and 2 points respectively. For this problem set the maximum number of points is 22.

All graphs in this problem set are undirected, simple and unweighted.

Problem 1: 3-Paths are easier to find than Triangles.

Let P_3 be the path on 3 nodes. We say that an undirected graph G = (V, E) contains an induced P_3 if there exist $u, v, w \in V$ such that $(u, v), (v, w) \in E$ but $(u, w) \notin E$.

Design an O(m+n) time algorithm that finds an induced P_3 in any *m*-edge, *n*-node graph *G*, or determines that *G* does not contain an induced P_3 .

Problem 2: Four-cycle in sparse graphs.

In class we showed that a 4-cycle (if one exists) in an *n*-node graph can be found in $O(n^2)$ time using a lookup table approach. In the following two subproblems, assume that you have a data structure that can initialize a look-up table in constant time and can write and read from the look-up table in constant time.

(E.g. a hash table can accomplish this, at the cost of randomization and expected running time, but here you can assume a deterministic data structure. One way to do this is to be given an $n \times n$ matrix that is initialized at all zeros, where you don't have to pay for the initialization.)

- (a) Using a lookup table approach, give an algorithm that can find a 4-cycle in an *m*-edge *n*-node graph in $O(m\sqrt{n})$ time. (Hint: use the high degree-low degree technique)
- (b) Using a lookup table approach, give an algorithm for finding a 4-cycle running in $O(m^{4/3})$ time; the algorithm can be randomized, working with high probability. (Hint: Consider the following iterative procedure: While the graph contains a node v of degree $< 400m^{1/3}$, remove v. Repeat until every vertex in the remaining graph has degree at least $400m^{1/3}$, or the remaining graph is empty. If the remaining graph is nonempty, show that it has at least $200 \cdot 3 \cdot (n')^{3/2}$ edges, where n' is its number of vertices, so that you can quickly return a 4-cycle. What do you do if the remaining graph is empty?)

Problem 3: Reducing H to Clique.

Let $k \ge 3$ be a constant integer. Let H be any k node graph. Suppose there is an $O(n^c)$ time algorithm that can determine if an *n*-node graph contains a k-clique. Given this, give an $O(n^c)$ time algorithm that can determine if an *n*-node graph contains an induced copy of H.

Hint: Given an *n*-node G in which you want to detect an induced copy of H, create a new *k*-partite graph G' on kn nodes that contains a *k*-clique if and only if G contains an induced copy of H.

Problem 4: A useful lemma.

Recall that a polynomial over variables x_1, \ldots, x_n is multilinear over \mathbb{Z}_m if it is of the form $P(x_1, \ldots, x_n) = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i$, where the coefficients $c_S \in \{0, \ldots, m-1\}$ are elements of \mathbb{Z}_m for every choice of $S \subseteq [n]$. The degree of a multilinear polynomial is the largest size of S such that $c_S \neq 0$.

Here you will prove the following statement: Let $m \ge 2$ be an integer. Let $P(x_1, \ldots, x_n)$ be a non-zero multilinear polynomial over \mathbb{Z}_m of degree d. Then

$$Pr_{(a_1,\ldots,a_n)\in\{0,1\}^n}[P(a_1,\ldots,a_n)\neq 0 \mod m] \ge 1/2^d.$$

To prove the above statement prove the following:

(a) For any $Q(x_1, \ldots, x_n)$ that is a nonzero multilinear polynomial over \mathbb{Z}_m , there exist some $a_1, \ldots, a_n \in \{0, 1\}$ so that $Q(a_1, \ldots, a_n) \neq 0 \mod m$.

Hint: Use induction on the number of variables.

(b) Recall that $P(x_1, \ldots, x_n) = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i$, with $c_S \in \mathbb{Z}_m$ and that P has degree d.

Consider any one of the nonzero monomials of P of degree d; say it is $c_S \prod_{i \in S} x_i$ with |S| = d. Rename the variables so that the variables in S are x_1, \ldots, x_d .

Now consider any setting of the variables not in S, $x_j = \alpha_j \in \mathbb{Z}_m$ for $x_j \notin S$. Let Q be the polynomial that is P with the values $x_j = \alpha_j \in \mathbb{Z}_m$ for $x_j \notin S$ plugged in. Q is a multilinear polynomial only over the variables x_1, \ldots, x_d (the variables in S):

$$Q(x_1,\ldots,x_d) = \sum_{T \subseteq S} c'_T \prod_{i \in T} x_i,$$

for some $c'_T \in \mathbb{Z}_m$.

Argue that $c'_S = c_S \neq 0 \mod m$, and that Q is a nonzero polynomial over \mathbb{Z}_m .

(c) Use (a) and (b) to conclude that the probability that P evaluates to nonzero mod m on a random assignment in $\{0,1\}^n$ is at least $1/2^d$.

Problem 5: 6-cycle detection

In this problem we will give an $\tilde{O}(n^2)$ time algorithm for detecting whether a graph contains a 6-cycle, and returns a 6-cycle if there exists one. We will actually prove a stronger result. The algorithm will run a BFS-like procedure rooted at every vertex v. If v is in a 6-cycle, the algorithm should return a 6-cycle (not necessarily containing v) in $\tilde{O}(n)$ time. For convenience, we will use L_i to denote the set of vertices at distance i from v. We use $e(L_i)$ to denote the number of edges whose two endpoints are both in L_i and use $e(L_i, L_{i+1})$ to denote the number of edges whose two endpoints are in L_i and L_{i+1} respectively. (Recall that in a BFS the edges are all contained in $\cup_i (e(L_i) \cup e(L_i, L_{i+1}))$.)

(a) Show that there exists a constant C so that if H is a connected graph with k vertices and at least Ck edges, then from any vertex $u \in V(H)$, there exists a simple path on 4 edges from u to some other vertex x.

For the following subproblems, the input to the algorithms will be a vertex v, and for each i, L_i is the *i*th layer of the BFS out of v.

- (b) Give an O(n) time algorithm that given a starting vertex v, reports a 6-cycle if $e(L_1) \ge C|L_1|$. Similarly, give an O(n) time algorithm that given a starting vertex v for which $e(L_1) < C|L_1|$, reports a 6-cycle if $e(L_1, L_2) \ge C(|L_1| + |L_2|)$.
- (c) Give an O(n) time algorithm that given a starting vertex v for which $e(L_1) < C|L_1|$ and $e(L_1, L_2) < C(|L_1| + |L_2|)$, reports a 6-cycle if $e(L_2) \ge C|L_2|$. Similarly, give an O(n) time algorithm that given a starting vertex v for which $e(L_1) < C|L_1|$, $e(L_1, L_2) < C(|L_1| + |L_2|)$ and $e(L_2) < C|L_2|$, reports a 6-cycle if $e(L_2, L_3) \ge C(|L_2| + |L_3|)$.
- (d) Give an $O(n \log n)$ time algorithm that given v that lies on a 6-cycle and for which $e(L_1) < C|L_1|$, $e(L_1, L_2) < C(|L_1| + |L_2|)$, $e(L_2) < C|L_2|$, and $e(L_2, L_3) < C(|L_2| + |L_3|)$, with high probability returns a 6-cycle (not necessarily containing v).

Using the previous parts, conclude that there is an $O(n^2 \log n)$ time algorithm that with high probability returns a 6-cycle if the graph has a 6-cycle, and if the graph does not have a 6-cycle always correctly returns that there is no 6-cycle.