
6.890 HOMEWORK 3 Due: October 28, 2021
Submit by email to 6890mit@gmail.com Handed out: October 15, 2021

Instructions: Everyone needs to submit their own write-up. If you work together with other students,
indicate their names on your write-up.

The possible grades for each (sub)problem are Check-, Check and Check+, corresponding to 0, 1 and 2
points respectively. For this problem set the maximum number of points is 22.

All graphs in this problem set are undirected, simple and unweighted.

Problem 1: 3-Paths are easier to find than Triangles.

Let P3 be the path on 3 nodes. We say that an undirected graph G = (V,E) contains an induced P3 if there
exist u, v, w ∈ V such that (u, v), (v, w) ∈ E but (u,w) /∈ E.

Design an O(m+n) time algorithm that finds an induced P3 in anym-edge, n-node graph G, or determines
that G does not contain an induced P3.

Problem 2: Four-cycle in sparse graphs.

In class we showed that a 4-cycle (if one exists) in an n-node graph can be found in O(n2) time using a
lookup table approach. In the following two subproblems, assume that you have a data structure that can
initialize a look-up table in constant time and can write and read from the look-up table in constant time.

(E.g. a hash table can accomplish this, at the cost of randomization and expected running time, but here
you can assume a deterministic data structure. One way to do this is to be given an n × n matrix that is
initialized at all zeros, where you don’t have to pay for the initialization.)

(a) Using a lookup table approach, give an algorithm that can find a 4-cycle in an m-edge n-node graph
in O(m

√
n) time. (Hint: use the high degree-low degree technique)

(b) Using a lookup table approach, give an algorithm for finding a 4-cycle running in O(m4/3) time; the
algorithm can be randomized, working with high probability. (Hint: Consider the following iterative
procedure: While the graph contains a node v of degree < 400m1/3, remove v. Repeat until every
vertex in the remaining graph has degree at least 400m1/3, or the remaining graph is empty. If the
remaining graph is nonempty, show that it has at least 200 · 3 · (n′)3/2 edges, where n′ is its number of
vertices, so that you can quickly return a 4-cycle. What do you do if the remaining graph is empty?)

Problem 3: Reducing H to Clique.

Let k ≥ 3 be a constant integer. Let H be any k node graph. Suppose there is an O(nc) time algorithm
that can determine if an n-node graph contains a k-clique. Given this, give an O(nc) time algorithm that
can determine if an n-node graph contains an induced copy of H.

Hint: Given an n-node G in which you want to detect an induced copy of H, create a new k-partite
graph G′ on kn nodes that contains a k-clique if and only if G contains an induced copy of H.

Problem 4: A useful lemma.

Recall that a polynomial over variables x1, . . . , xn is multilinear over Zm if it is of the form P (x1, . . . , xn) =∑
S⊆[n] cS

∏
i∈S xi, where the coefficients cS ∈ {0, . . . ,m− 1} are elements of Zm for every choice of S ⊆ [n].

The degree of a multilinear polynomial is the largest size of S such that cS 6= 0.
Here you will prove the following statement: Let m ≥ 2 be an integer. Let P (x1, . . . , xn) be a non-zero

multilinear polynomial over Zm of degree d. Then

1

Pr(a1,...,an)∈{0,1}n [P (a1, . . . , an) 6= 0 mod m] ≥ 1/2d.

To prove the above statement prove the following:
(a) For any Q(x1, . . . , xn) that is a nonzero multilinear polynomial over Zm, there exist some a1, . . . , an ∈

{0, 1} so that Q(a1, . . . , an) 6= 0 mod m.
Hint: Use induction on the number of variables.
(b) Recall that P (x1, . . . , xn) =

∑
S⊆[n] cS

∏
i∈S xi, with cS ∈ Zm and that P has degree d.

Consider any one of the nonzero monomials of P of degree d; say it is cS
∏

i∈S xi with |S| = d. Rename
the variables so that the variables in S are x1, . . . , xd.

Now consider any setting of the variables not in S, xj = αj ∈ Zm for xj /∈ S. Let Q be the polynomial
that is P with the values xj = αj ∈ Zm for xj /∈ S plugged in. Q is a multilinear polynomial only over the
variables x1, . . . , xd (the variables in S):

Q(x1, . . . , xd) =
∑
T⊆S

c′T
∏
i∈T

xi,

for some c′T ∈ Zm.
Argue that c′S = cS 6= 0 mod m, and that Q is a nonzero polynomial over Zm.
(c) Use (a) and (b) to conclude that the probability that P evaluates to nonzero mod m on a random

assignment in {0, 1}n is at least 1/2d.

Problem 5: 6-cycle detection

In this problem we will give an Õ(n2) time algorithm for detecting whether a graph contains a 6-cycle,
and returns a 6-cycle if there exists one. We will actually prove a stronger result. The algorithm will run
a BFS-like procedure rooted at every vertex v. If v is in a 6-cycle, the algorithm should return a 6-cycle
(not necessarily containing v) in Õ(n) time. For convenience, we will use Li to denote the set of vertices at
distance i from v. We use e(Li) to denote the number of edges whose two endpoints are both in Li and use
e(Li, Li+1) to denote the number of edges whose two endpoints are in Li and Li+1 respectively. (Recall that
in a BFS the edges are all contained in ∪i(e(Li) ∪ e(Li, Li+1)).)

(a) Show that there exists a constant C so that if H is a connected graph with k vertices and at least Ck
edges, then from any vertex u ∈ V (H), there exists a simple path on 4 edges from u to some other
vertex x.

For the following subproblems, the input to the algorithms will be a vertex v, and for each i, Li is the
ith layer of the BFS out of v.

(b) Give anO(n) time algorithm that given a starting vertex v, reports a 6-cycle if e(L1) ≥ C|L1|. Similarly,
give an O(n) time algorithm that given a starting vertex v for which e(L1) < C|L1|, reports a 6-cycle
if e(L1, L2) ≥ C(|L1|+ |L2|).

(c) Give an O(n) time algorithm that given a starting vertex v for which e(L1) < C|L1| and e(L1, L2) <
C(|L1| + |L2|), reports a 6-cycle if e(L2) ≥ C|L2|. Similarly, give an O(n) time algorithm that given
a starting vertex v for which e(L1) < C|L1|, e(L1, L2) < C(|L1| + |L2|) and e(L2) < C|L2|, reports a
6-cycle if e(L2, L3) ≥ C(|L2|+ |L3|).

(d) Give an O(n log n) time algorithm that given v that lies on a 6-cycle and for which e(L1) < C|L1|,
e(L1, L2) < C(|L1|+|L2|), e(L2) < C|L2|, and e(L2, L3) < C(|L2|+|L3|), with high probability returns
a 6-cycle (not necessarily containing v).

Using the previous parts, conclude that there is anO(n2 log n) time algorithm that with high probability
returns a 6-cycle if the graph has a 6-cycle, and if the graph does not have a 6-cycle always correctly
returns that there is no 6-cycle.

2

