
6.890 Lecture 10 k-Cycle and Shortest Cycle/Girth
Scribe: Virginia Williams Date: October 11, 2021
Editor: Andrea Lincoln, Victor Kaiser-Pendergrast, Yinzhan Xu

1 Finding longer cycles

In lecture 2 we gave an O(nω) time algorithm for triangle detection. A natural question is, can one detect
longer (not necessarily induced) cycles faster than triangles? Formally, the k-cycle problem asks that given
a directed/undirected graph G, whether G contains a simple non-induced cycle of length k. Throughout this
lecture, we will assume k is a constant. It turns out that for any k = O(1), we can detect a k-cycle in the
same time as detecting a triangle.

Theorem 1.1. Let k ≥ 3 be a constant integer. There is an Õ(nω) time algorithm (for ω < 2.373) for
k-cycle in n-node graphs.

Let A be the adjacency matrix of the graph G. Recall that in the algorithm for triangle detection, we
just compute the trace of A3. If A3[i, i] 6= 0, then there is a triangle containing node i. However, a similar
algorithm does not work for k-cycle since Ak[i, j] 6= 0 if and only if there exists a length k walk from i to i,
which is different from a length k simple cycle.

Proof of Theorem 1.1. The main technique we use is called color-coding; we saw it in the last lecture.
For every v ∈ V , we pick a color c(v) ∈ [k] independently at random. Note that for any fixed k cycle
v1 → v2 → · · · → vk → v1, with probability at least 1

kk , c(vi) = i for any 1 ≤ i ≤ k.
For each i ∈ [k − 1], we define a matrix Ai. The rows of Ai are indexed by vertices of color i, and the

columns of Ai are indexed by vertices of color i + 1. The entry Ai[u, v] = 1 if (u, v) ∈ E and Ai[u, v] = 0
otherwise. Now we compute the product A1A2 · · ·Ak−1 in O(nω) time. For every (u, v) ∈ E such that
c(u) = k and c(v) = 1, we check whether (A1A2 · · ·Ak−1)[v, u] > 0. If it is true for any u, v, then there exists
a k-cycle. Otherwise, there is no k-cycle v1 → v2 → · · · → vk → v1 where c(vi) = i for every i.

Note that if the algorithm detects a k-cycle, then G must have a k-cycle. Also, when G has a k-cycle,
the algorithm detects a k-cycle with probability at least 1

kk . Thus, we can repeat the algorithm for Θ(log n)
rounds, and we will have the correct answer with high probability.

It is worthwhile to mention that it is possible to derandomize this algorithm using special hash functions,
but we won’t cover it in this lecture. �

Hence, a k-cycle for any constant k can be found in the same time as a triangle. Can a k-cycle be found
faster than a triangle? We answer this question differently for two cases:

� For directed cycles or for undirected odd cycles, they are at least as hard as finding triangles.

� For undirected even cycles, they can be found more quickly than triangles.

In the rest of this section, we prove the first case, and we prove a special case of the second case for
4-cycles.

1.1 Odd Cycles and Directed Cycles are as Hard as Triangles

Theorem 1.2 (Directed cycles are at least as hard to find as triangles are). For any constant k ≥ 3, if there
is a T (n) algorithm for k-cycle in directed graphs, then there is an O(T (O(n))) time algorithm for triangle
detection.

1

Proof. Let G = (V1 ∪ V2 ∪ V3, E) be a graph on 3n nodes for which we want to find a triangle, where
|V1| = |V2| = |V3| = n. We create a new graph G′ on kn nodes as follows.

The vertex set of G′ is V ′1 ∪ V ′2 ∪ V ′3,1 ∪ · · · ∪ V ′3,k−2, which contains one copy of V1, one copy of V2 and
k − 2 copies of V3. We add edges from V ′1 to V ′2 using edges between V1 and V2; add edges from V ′1 to V ′3,1
using edges between V1 and V3; add edges from V ′2 to V ′3,k−2 using edges between V2 and V3; finally, for every
1 ≤ i ≤ k − 3, and for every u ∈ V ′3,i, we add an edge from u to its corresponding copy in V ′3,i+1.

It is not too hard to see that there is a directed k-cycle in G′ if and only if there is a triangle in G.
Thus, we can use the T (n) time algorithm for k-cycle on G′, which has O(n) vertices. Thus, there is an
O(T (O(n))) time algorithm for triangle detection.

�

Theorem 1.2 implies that if we assume triangle detection requires nω−o(1) time, then directed k cycle
also requires nω−o(1) time. The following theorem, combined with Theorem 1.2, shows that odd cycles in
undirected graphs also require triangle detection time.

Theorem 1.3 (Odd cycles are at least as hard to find as triangles are). If k is an odd constant, then directed
k-cycle can be reduced to undirected k-cycle.

Proof. Let G be a graph for which we want to detect k-cycle. First, via color-coding, we can assume G is a
k-partite layered graph. We make a new graph G′ just by removing the edge directions of G. We claim that
G has a k-cycle if and only if G′ has a k-cycle.

The forward direction is easier. If G has a k-cycle C, then the same cycle is a k-cycle in G′. For the
backward direction, assume G′ has a k-cycle, then this k-cycle must have a node in each of the k parts of G′.
Suppose not, then this k-cycle is contained in G′ \ Vi, where Vi is one of the k parts of G′. However, G′ \ Vi

is bipartite, so it cannot contain an odd cycle, which leads to a contradiction. Thus, this k-cycle must have
a node in each of the k parts of G′. Such a k-cycle is also a k-cycle in G. �

1.2 Even Cycles in Undirected Graphs

We can find even cycles in undirected graph faster than the time needed for triangle detection. The following
theorem in by Yuster and Zwick.

Theorem 1.4 (Even cycles can be found more quickly than triangles). For any constant k ≥ 2, there is an
O(n2) time algorithm that finds a 2k-cycle in a given undirected n-vertex graph, or determines that no such
cycle exists.

In this lecture, we will only show a special case for Theorem 1.4 when k = 2. We will show how to find
a 4-cycle or detect that there is no 4-cycle in O(n2) time.

Theorem 1.5. There is an O(n2) time algorithm that finds a 4-cycle in any given n-node graph G, or
determines that G does not contain any 4-cycles.

Proof. Consider Algorithm 1:
In this algorithm, T is an n by n matrix whose entries are either 0 or vertices of G, with the meaning

that T [s, t] is a vertex that is a neighbor of both s and t.
If u, s, v, t is returned by the algorithm, then s, t are neighbors of v, and u = T [s, t] which also means

that u is a neighbor of both s and t. Since u 6= v, the algorithm has returned a 4-cycle.
Suppose that G contains a 4-cycle a, b, c, d, where a is the latest vertex visited in the outer loop. Then,

when the outer loop has v = a, and the inner loop has s = b, t = d, either the algorithm has already found a
4-cycle, or the algorithm will find that T [s, t] is already set. Observe that the loop for c has already run, and
that b and d have been found to be neighbors of c. Hence, a 4-cycle will be returned. Thus, the algorithm
is correct.

Let’s consider the runtime: in each iteration, either the algorithm halts, or a new pair (s, t) is set in T .
Thus, the runtime of the algorithm is upper-bounded by the number of entries of T , which is O(n2). �

2

Algorithm 1: FourCycle(G = (V,E))

T ← 0;
foreach v ∈ V do

foreach s, t ∈ N(v) do
if T [s, t] = 0 then

T [s, t]← {v};
else

u← T [s, t];
return u, s, v, t;

return no 4-cycles;

2 Shortest Cycle / Girth

In this section, we will discuss how to find the shortest cycle of a given graph. Formally, we want to find
a simple cycle of minimum length. We define the Shortest Cycle problem as follows: given an undirected
graph G = (V,E), compute the length of the shortest simple cycle, called the girth, (or report that no cycles
exist in G).

Definition 2.1 (Girth). The girth of a graph G is the length of the shortest cycle in G, or ∞ if G contains
no cycles.

The girth g is a natural graph parameter, and its properties are well studied in graph theory. Let us look
at how large g can be. By the definition of a simple cycle, 3 ≤ g ≤ n; moreover, for any number of nodes n,
there exist graphs which have girth g for any choice of g in {3, . . . , n}. (To see this, consider constructing
the minimum cycle first and then adding additional nodes as necessary.)

We know that the problem of finding the longest cycle of a graph is NP-Complete, but as it turns out
the problem of finding the shortest cycle is contained in P. The question we aim to answer is how quickly
we can actually find such a shortest cycle.

We first observe that any algorithm for finding a shortest cycle must take at least the amount of time it
takes to detect whether or not a triangle exists in the graph: a triangle does not exist if and only if the girth
is greater than 3. Intuitively though, the problem at first seems even harder, as we may need to consider
cycles of arbitrary size, not just triangles. But in fact, a theorem from Itai and Rodeh [1] shows otherwise:

Theorem 2.1 (Itai, Rodeh’78). If there is an algorithm A that finds a triangle in an n-node graph in time
T (n), then one can also compute the girth of an n-node graph in O(n2 + T (2n)) time.

Recall that finding a triangle deterministically takes Ω(n2) time as we at the very least need to read the
input. Also, for all “nice” functions (e.g. polynomials, polylogarithms etc) T (2n) = O(T (n)), so the times
are essentially asymptotically equivalent.

The triangle problem and the shortest cycle problem on n node graphs are equivalent.

Itai and Rodeh prove another theorem, claiming the existence of an additive approximation algorithm
for computing the girth.

Definition 2.2. An additive c-approximation (or +c-approximation) for a quantity g is a quantity g′ such
that g ≤ g′ ≤ g + c.

Theorem 2.2 (Additive 1-approximation, Itai, Rodeh’78). There exists an O(n2) time algorithm that finds
a cycle of length ≤ g + 1 in any n-node graph of girth g, or determines that G contains no cycles. If g is
even, then the algorithm finds the shortest cycle of G.

We will prove these theorems as follows: first, we will exhibit the O(n2) algorithm described by Theo-
rem 2.2. Then, we will use this algorithm to show a proof for Theorem 2.1.

3

2.1 Computing an Additive Approximation using BFS

We start our discussion of how to approximate the girth of an arbitrary graph with an algorithm for finding
cycles given a starting node.

Lemma 2.1. There exists an algorithm BFS-Cycle(s) that given G = (V,E) and s ∈ V that lies on a
cycle C of length q runs in O(n) time and returns a cycle of length ≤ q + 1. If q is even, it returns a cycle
of length ≤ q.

Algorithm 2: BFS-Cycle(s)

L0 ← {s};
visited[s]← true;
foreach u 6= s ∈ V do

visited[u]← false;

foreach i ≥ 0 do
if |Li| = 0 then

return “no cycle”;

Li+1 ← {};
foreach u ∈ Li do

foreach (u, x) ∈ E do
remove (u, x) from E;
if visited[x] = false then

visited[x]← true;
Li+1 ← Li+1 ∪ {x};

else
find least common ancestor c of u and x;
return (u, x)∪ path u · · · c · · ·x in BFS-tree;

To be able find the least common ancestor of u and x, it suffices to store, for every node v, a pointer to
the parent p(v) in the BFS tree, i.e. the node that was scanned to first visit v. Then, starting at u and x,
one follows parent pointers up the tree to find the first common ancestor. This only increases the runtime
by a constant factor.

Claim 1. BFS-Cycle runs in O(n) time.

Proof. The algorithm returns once a node is visited more than once, so the runtime is bounded by the
number of nodes n. �

We’ll call a node, t, “scanned” if the loop “foreach u ∈ Li do” from Algorithm 2 is completed for u = t.

Claim 2. If (u, x) completes a cycle and u ∈ Li then x ∈ Li or x ∈ Li+1.

Proof. Whenever an edge from Li−1 to Li is scanned, it is removed. Hence once the last node of Li−1 is
scanned, there are no more edges from Li−1 to Li. Thus if (u, x) completes a cycle and u ∈ Li, we cannot
have that x ∈ Li−1. By the properties of BFS, x must be in Li ∪ Li+1. �

Now we prove a crucial lemma:

Lemma 2.2. If s is part of a cycle of length q, then if (u, x) closes the cycle returned by BFS-Cycle(s)
and u ∈ Li then i ≤ dq/2e − 1.

4

Proof. Let C be a cycle of length q through s. Let (u, x) close the cycle in BFS-CYCLE(s). Recall that a
node t is “scanned” if the loop “foreach u ∈ Li do” from Algorithm 2 has been completed for u = t.

Assume (for contradiction) that all nodes of Lj for j ≤ dq/2e − 1 have been scanned and no cycle was
found.

Now consider C. Since |C| = q, if C is odd, then for every node x ∈ C, d(s, x) ≤ dq/2e − 1, and so all
nodes of C have been scanned. If C is even, then let v0 be the furthest node from s on C. Then all nodes x
in C \ {v0} have d(s, x) ≤ dq/2e − 1, and so all nodes of C (except for possibly v0) have been scanned.

Suppose we have a node y ∈ C such that its neighbors on C, which we call x, x′, were both scanned
before y. Then when x and x′ were scanned, (x, y) and (x′, y) were both present, and y was visited twice.
We will show that such a node exists and its neighbors were scanned in level dq/2e − 1 at the latest, thus
contradicting our original assumption that all nodes of Lj for j ≤ dq/2e− 1 were been scanned and no cycle
was found

Suppose first that C is even and v0 was not scanned among the first dq/2e − 1 levels. Then, since all
nodes at distance ≤ dq/2e − 1 from s were scanned (among the first dq/2e − 1 levels), the neighbors v1 and
v2 of v0 were scanned before v0. Thus v0 is visited twice, and since v1 and v2 are at distance ≤ dq/2e − 1
from s, we see the contradiction to our assumption.

Now suppose that either C is odd or C is even and v0 was scanned among the first dq/2e−1 levels. Then
by our assumption, all nodes of C have been scanned among the first dq/2e − 1 levels. Let y be the last
node on C to be scanned. But then, its neighbors on C, x and x′ were scanned before y, thus again giving
a contradiction to our assumption.

Hence, in all cases, a cycle is closed by some (u, x) with u ∈ Li for i ≤ dq/2e − 1. �

We see that Lemma 2.2 allows us to show that if a node s is on a cycle C, of length q, then BFS-Cycle
returns a value at most 2dq/2e, which equals q if q is even, or q + 1 if q is odd, thus proving the theorem. To
see this, let c be the least common ancestor of u and x in the BFS tree out of s. We can bound the distances
from c to u and x as d(c, u) ≤ d(s, u) ≤ i and d(c, x) ≤ d(s, x) ≤ i + 1 because we know that u ∈ Li and
x ∈ Li ∪Li+1 by Claim2. This means that the cycle returned has length at most ≤ 1 + i+ (i+ 1) = 2(i+ 1).
Thus if Lemma 2.2 holds, then i ≤ dq/2e − 1 and we get a cycle of length at most ≤ 2 · dq/2e.

2.2 Girth is in Triangle Detection Time

We will prove Theorem 2.1 in this section.

Proof of Theorem 2.1. First, we run BFS-Cycle from every s ∈ V and get a cycle of length q at most g+1,
where g is the length of girth. If q is odd, then by Theorem 2.2 q = g and we are done. Thus, we assume
q = 2` is even in the rest of the algorithm. By Theorem 2.2, g could be q or q − 1.

Now we argue that running BFS-Cycle from every s ∈ V has computed all pairwise distances up to
` − 1. Suppose there exists s such that L`−1 is not fully computed. In this case, BFS-Cycle must have
returned a cycle for some i < `−1. Thus, the cycle returned by BFS-Cycle has length at most 2i+2 ≤ q−2,
a contradiction.

We create a triangle detection instance G′. First, we put a copy of G in G′. Then we create n vertices
v′1, v

′
2, . . . , v

′
n, which are copies of vertices in G. We add an edge between v′i and vj if dG(vi, vj) = ` − 1.

Since the distance up to `− 1 are already computed, it is possible to tell whether the distance between two
vertices are `− 1 or not.

Claim 3. The graph G′ has a triangle if and only if the girth of G is q − 1.

Proof. We first prove the forward direction. There could be two types of triangles in G′. For the first
type, the triangle completely lies in G, which is a cycle of length less than q. Thus the girth must be
q − 1. For the second type, the triangle has one vertex v′i connected with vj and vk. In this case, the cycle
v′i vj → vk v′i has length 2(`− 1) + 1 = q − 1. Even if this cycle is not simple, there must be an even

5

shorter simple cycle. Thus, the shortest cycle in G has length less than q, so it must have length q− 1 since
q is a 1-additive approximation.

For the backward direction, suppose G has a girth of length q− 1. Let s be an arbitrary vertex on girth,
and let v0, v1 be the two furthest points from s on this cycle. Clearly, the distance from s to v0 and v1 are
both `− 1, since otherwise there are shorter cycles. Thus, s′, v0, v1 must be a triangle in G′. �

By Claim 3, it is sufficient to call triangle detection on G′, which has 2n vertices. If there is a triangle,
we return q − 1 as the girth; otherwise, we return q as the girth. �

There are extensions of Theorem 2.1. For instance, Roditty and Vassilevska W. [2] provide an Õ(n2)
time reduction from the girth/shortest cycle problem in an n node undirected graph with edge weights in
{1, . . . ,M} for M = poly(n) to the minimum weight triangle problem in an O(n) node graph with weights in
{1, . . . , O(M)}. They also show that one can reduce the girth/shortest cycle problem in an n node directed
graph with edge weights in {−M, . . . ,M} in Õ(Mnω) time to minimum weight triangle in an O(n) node
graph with weights in {1, . . . , O(M)}. We won’t cover the details of these extensions in the lectures.

References

[1] Alon Itai, Michael Rodeh: Finding a Minimum Circuit in a Graph. SIAM J. Comput. 7(4): 413-423
(1978).

[2] Liam Roditty, Virginia Vassilevska Williams: Minimum Weight Cycles and Triangles: Equivalences and
Algorithms. FOCS 2011: 180–189.

6

