
6.890 Lecture 11 Shortest Cycle Approximation Algorithms in Undirected Unweighted Graphs
Scribe: Yinzhan Xu Date: October 14, 2021

Last time, we showed that computing shortest cycle is equivalent to detecting triangles. We also showed
the O(n2) algorithm by Itai and Rodeh [1] computing g′ such that g ≤ g′ ≤ g + 1, where g is the girth. In
today’s lecture, we will keep studying the girth of undirected unweighted graphs.

Specifically, we will study two algorithms for approximating the girth. Let the number of vertices in the
graph be n and number of edges be m. The first algorithm computes an additive 3-approximation of the

girth in Õ(n3

m) time. The second algorithm computes a multiplicative 2-approximation of g′ in Õ(n5/3) time.
Both algorithms can actually find the simple cycle that is close to the girth in length.

In order to show these two algorithms, we need to use some tools. The first tool is the BFS-Cycle
algorithm used last time.

Lemma 1. There exists an algorithm BFS-Cycle(s) that given G = (V,E) and s ∈ V that lies on a cycle
C of length q runs in O(n) time and returns a cycle of length ≤ q + 1. If q is even, it returns a cycle of
length ≤ q.

The BFS-Cycle algorithm is actually stronger than what we showed last time. Specifically, we can use
BFS-Cycle(s) to find some short cycle as long as the vertex s has short distance to a simple cycle of short
length, so it will be more flexible since s doesn’t have to be on a simple cycle.

Claim 1. The algorithm BFS-Cycle(s) that given G = (V,E) and s ∈ V that is at distance at most ` from
a cycle C of length q runs in O(n) time and returns a cycle of length ≤ 2` + q + 1. If q is even, it returns a
cycle of length ≤ 2` + q.

The proof for Claim 1 is similar to the proof of Lemma 1. In the proof of Lemma 1, we argued that
either BFS-Cycle already finds a cycle before level d q2e − 1 of the BFS tree is completely computed, or it
must find a cycle that closes at level d q2e − 1 or d q2e. In either case, the cycle found will have length at most
2d q2e. To prove Claim 1, we can replace level d q2e − 1 with level ` + d q2e − 1, and other parts of the proof
follow the same reasoning.

The other tool we will use is the following theorem from extremal graph theory.

Theorem 1 (Bondy and Simonovits [2]). If an n-node graph G has at least 100kn1+1/k edges for integer
k ≥ 2, then G contains a 2k-cycle.

Using Theorem 1, we will prove the following the claim.

Claim 2. If an n-node graph G has at least 200kn1+1/k edges for integer k ≥ 2, then a random edge of G
is on a 2k-cycle with probability at least 1/2.

Proof. Let G = (V,E). Let E′ ⊆ E be a maximal subset of edges so that the graph G′ = (V,E′) does not
have a 2k-cycle.

By maximality of E′, (V,E′ ∪{e}) has a 2k-cycle for every e ∈ E \E′. Such a 2k-cycle must contain e as
one of the 2k edges, since these 2k edges cannot fully lie in E′. In other words, e is on a 2k-cycle for every
e ∈ E \ E′.

By Theorem 1, |E′| < 100kn1+1/k, so |E \ E′| ≥ |E| − |E′| ≥ 1
2 |E|. Thus, with probability at least 1/2,

a random edge is on a 2k-cycle. �

The next claim is what we will actually use in the algorithm.

Claim 3. If an n-node graph G has at least 200kn1+1/k edges, then there exists an O(n log n) time algorithm
that finds a cycle of length at most 2k with high probability.

Proof. The algorithm is simple. We just run BFS-Cycle on the endpoints of O(log n) random edges of the
graph. By Claim 2, at least one of the endpoints s will be on a 2k-cycle with high probability. Then by the
guarantee of BFS-Cycle in Lemma 1, BFS-Cycle(s) outputs a cycle of length at least 2k.

Since BFS-Cycle runs in O(n) time for each endpoint, the total run time is O(n log n). �

1

1 The Õ(n
3

m) time additive 3-approximation

In this section, we will show the additive 3-approximation algorithm for girth that runs in Õ(n3

m) time, where
m is the number of edges in the graph.

Theorem 2. There exists a Õ(n3

m) time algorithm that finds a simple cycle of length g′ such that g ≤ g′ ≤
g + 3, where g is the length of the girth.

Proof. Let k′ = d log n
log log ne be a parameter of the algorithm

Case 1: If m < 200k′n1+1/k′
, then we use Itai-Rodeh’s algorithm from last lecture. The algorithms

runs in O(n2) time, and it gives an additive 1-approximation to the girth (which is better than the required
additive 3-approximation). Notably, in this case

m < 200(1 +
log n

log logn
) · n · nlog log n/ log n︸ ︷︷ ︸

=log n

= Õ(n),

so the O(n2) running time is actually in Õ(n3

m) time.

Case 2: Now we can assume that m ≥ 200k′n1+1/k′
. Thus, there exists an integer k ≤ k′ such that

200(k + 1)n1+ 1
k+1 < m ≤ 200kn1+1/k.

Thus, by Claim 3, in O(n log n) = Õ(n3

m) time, we can find a cycle of length at most 2k + 2. Since we aim
for an additive 3-approximation, we will be done if g > 2k − 2.

Case 3: Let’s assume g ≤ 2k − 2 for the remainder of this algorithm, since otherwise the previous two
cases already solve the problem. Let ∆ = n1/k be a parameter. In this case, we assume that on the shortest
cycle C, will vertices have degree at most ∆.

In this case, we run BFS from every vertex v of degree at most ∆, and we only explore edges out of
vertices of degree at most ∆. We perform the BFS until we reach level k − 1. If the shortest cycle contains
v, and only contains nodes of degree at most ∆, we will find it.

The running time is n ·∆k−1, since we start from n choices of v, and the BFS tree can have ∆ branches

from level 0 to level k − 2. By plugging in ∆ = n1/k, the running time becomes n2−1/k = Õ(n3

m).
Case 4: For the last case, we assume that g ≤ 2k − 2 and there exists a vertex v in the shortest cycle

C that has degree greater than ∆.
We randomly sample O(n

∆ log n) vertices S. Then with high probability, S hits a neighbor of v. If we
run BFS-Cycle(v), we are guaranteed to find a cycle of length at most 2 + g + 1 by Claim 1. Therefore,
we can run BFS-Cycle(s) from every s ∈ S, and take the shortest cycle from all the outputs. The running

time is O(n
∆ log n · n) = Õ(n2−1/k) = Õ(n3

m).
�

2 The Õ(n5/3) time multiplicative 2-approximation

In this section, we will show the Õ(n5/3) time algorithm that computes a multiplicative 2-approximation of
the girth. The guarantee of the algorithm can be formally defined as follows.

Theorem 3. There exists a deterministic algorithm such that given a graph G, if the girth of G is g = 4c−z
for some integer c ≥ 1 and some z ∈ {0, 1, 2, 3}, then the algorithm returns a cycle of length at most 6c− z
if g is even, and at most 6c− z + 1 if g is odd.

We first argue that Theorem 3 gives a multiplicative 2-approximation.
Notice that we always have 1 ≤ 2c− z: if c ≥ 2 it holds since z ≤ 3, and if c = 1, z must be ≤ 1 since the

girth g is always ≥ 3. Thus, the length of the cycle returned is ≤ 6c−z+1 ≤ 6c−z+(2c−z) = 2(4c−z) = 2g.

2

Thus, Theorem 3 gives a multiplicative 2-approximation. In fact, if g ≥ 4, the approximation factor is always
better than 2.

The idea for the algorithm is to consider two cases separately. When there are a lot of nodes that are
close to the shortest cycle, then we run BFS-Cycle on random nodes and we will hit a node that is close
to the shortest cycle, and thus can get a reasonably good simple cycle. When all nodes on shortest cycle
have a small number of nearby nodes, we can compute all such nearby nodes, and use a different algorithm
for this case.

Proof of Theorem 3. Let C be a shortest cycle. Of course the algorithm doesn’t know C, and it will only
be used in the analysis. Let R = n1/3 be a parameter of the algorithm. Recall that g = |C| = 4c − z for
some z ∈ {0, 1, 2, 3}. We let N c(v) = {u ∈ V : d(u, v) ≤ c} denote the set of vertices with distances at most
c from v.

Case 1: Consider the case when there exists v ∈ C such that |N c(v)| ≥ R. The algorithm below works
for this case.

Algorithm 1: Hitting-Set-Cycle(G = (V,E))

foreach v ∈ V do
Tv ← partial BFS tree rooted at v until we get R vertices in the tree;

S ← subset of V of size O(n
R

logn) that hits all Tv;
answer ← undefined;
foreach s ∈ S do

C′ ← BFS-Cycle(s);
if C′ is shorter than answer then

answer ← C′;

return answer;

We first analyze the running time of Algorithm 1. To compute one partial BFS tree of size at most R,
it takes O(R2) time, since the worst case is when there exists an edge between every pair of vertices in Tv.
Therefore, computing the partial BFS tree for every vertex takes O(nR2) time, Then running BFS-Cycle

from each vertex s ∈ S takes O(n) time, so in total it takes O(n|S|) = Õ(n2

R) time. Recall that R = n1/3, so

the running time of Algorithm 1 is Õ(n5/3).
Now we show the correctness. Let v ∈ C be the vertex in the shortest cycle such that |N c(v)| ≥ R.

Since |N c(v)| ≥ R, we have Tv ⊆ N c(v). Since S is a set that has S ∩ Tu 6= ∅ for all u ∈ V , in particular
there is some s ∈ S ∩ Tv. Since Tv ⊆ N c(v), s is also in N c(v). Thus, by Claim 1, when we run BFS-
Cycle(s), the returned cycle C ′ has length at most 2d(s, v) + g ≤ 2c + g = 6c− z if g is even, and at most
2c + g + 1 = 6c− z + 1 if g is odd.

Case 2: Now assume for every v ∈ C, |N c(v)| < R. In this case, N c(v) ⊆ Tv for every v ∈ C. We can
compute the girth exactly in this case.

Define LCATv (x, y) to be the lowest common ancestor of x, y on the tree Tv, dTv (x, y) to be the distance
between x and y in the tree Tv and pTv (x, y) to be the vertex next to x on the path from x to y in the tree
Tv.

As shown in Figure 2, we can pick a, b, x, y on C such that x, y ∈ Ta and x, y ∈ Tb. Also note that
LCATa(x, y) = a, since otherwise there would be a shorter path between x and y, and thus improving the
length of the shortest cycle. Similarly, LCATb(x, y) = b. Finally, notice that since C is a shortest cycle, it
must be that pTa(x, y) 6= pTb(x, y).

Based on these observations, we have the following algorithm.
First we elaborate on how to get the simple cycle enclosed by P1 and P2. Since pTv (x, y) 6= pTu(x, y), it

is guaranteed that P1 and P2 are two different paths that start to diverge immediately after x. Let y′ be the
first vertex on P1 after x that is also on P2. We know such a vertex exists since y is such a vertex. Finally,
the portions on P1 and P2 from x to y′ form a simple cycle of length at most val(x, y).

3

x

cac

y

c b c

4c

x

c− 1ac

y

c b c

4c− 1

x

c− 1ac− 1

y

c b c

4c− 2

x

c− 1ac− 1

y

c− 1 b c

4c− 3

Figure 1: Split the shortest cycle to four roughly equal parts.

Algorithm 2: Close-Neighbors-Search(G = (V,E))

foreach v ∈ V do
foreach x, y ∈ Tv do

if LCATv (x, y) = v then
Insert (v, dTv (x, y), pTv (x, y)) to Qx,y;

foreach nonempty Qx,y do
Find the two tuples (v, dTv (x, y), pTv (x, y)), (u, dTu(x, y), pTu(x, y)) such that pTv (x, y) 6= pTu(x, y) and
dTv (x, y) + dTu(x, y) is minimized;

val(x, y)← dTv (x, y) + dTu(x, y);
a(x, y)← u;
b(x, y)← v;

(x, y)← arg min(x,y) val(x, y);

P1 ← path from x to y on Ta(x,y);
P2 ← path from x to y on Tb(x,y);
C′ ← a simple cycle enclosed by P1 and P2;
return C′;

We analyze the run time of Algorithm 2. Since each Tv has size R, the total size of lists Qx,y is
O(nR2) = O(n5/3). Inside the second loop, we need to find two smallest tuples for each nonempty Qx,y.
We can do so by sorting the list with respect to dTv (x, y) and then scan the list until we get two different
pTv (x, y). Thus, it takes time linear in the size of Qx,y. Therefore, the overall running time is Õ(n5/3).

For correctness, since our choices of a, b, x, y as shown in Figure 2 ensures that x, y ∈ Ta and x, y ∈ Tb,
so both (a, dTa(x, y), pTa(x, y)) and (b, dTb(x, y), pTb(x, y)) are in Qx,y, so the optimum val(x, y) is at most
dTa(x, y)+dTb(x, y) = g. Since the final cycle returned has length at most val(x, y) ≤ g, it must be a shortest
cycle.

�

References

[1] Alon Itai, Michael Rodeh: Finding a Minimum Circuit in a Graph. SIAM J. Comput. 7(4): 413-423
(1978).

[2] John A. Bondy, Miklós Simonovits Cycles of even length in graphs. Journal of Combinatorial Theory,
Series B 16.2 (1974): 97-105

4

