
6.890 Lecture 12 Graph Diameter
Scribe from 2014/2015: Jessica Su, Hieu Pham Date: October 18, 2021
Editors: Jimmy Wu, Yinzhan Xu

Today we will talk about algorithms for graph diameter. Given a directed graph G = (V,E), the
eccentricity of a vertex u is defined as ε(u) = maxv∈V d(u, v). The diameter, which is defined as D(G) =
maxu∈V ε(u), is the maximum distance between two vertices in the graph.

Of course, we can compute the diameter by first solving APSP and computing all pairwise distances.

Using the fastest algorithm for APSP, diameter can be solved in n3/2Θ(
√

log(n)) time. This is the fastest
known algorithm for the diameter of a weighted graph.

There are two big open problems about the complexity of the diameter problem.
Open problems:
1) Is there an O(n3−ε) time algorithm for graph diameter for some ε > 0?
2) Is the diameter problem in n node graphs subcubically (in n) equivalent to APSP?
In the first part of the lecture, we will give some barriers to reducing APSP to graph diameter. In the

second part, we will present a fast algorithm that approximates the graph diameter.
In both parts of the lecture we will assume that we are given a graph with nonnegative integer edge

weights in weights in {0, 1, . . . , nc} for some constant c.

1 Non-deterministic Algorithms for Diameter and APSP

For a decision problem, we can define an non-deterministic algorithm for it as follows. The algorithm takes
the input I of the problem, and it also takes a proof P . If the decision problem on the input I is true, then
the algorithm needs to output 1 on at least one proof P ; otherwise, the algorithm needs to output 0 on every
possible proof P . The running time of a non-deterministic algorithm is the running time to check the proof.

In this section, we will give non-deterministic algorithms for both diameter and APSP which are both
faster than cubic time. The best known non-deterministic algorithm for APSP uses fast matrix multiplication
and is markedly slower than the best known non-deterministic algorithm for diameter, and the latter does
not use fast matrix multiplication.

Obtaining a subcubic time non-deterministic algorithm for APSP without resorting to fast matrix mul-
tiplication would be a surprising result. Thus the simple and fast non-deterministic algorithm for diameter
that we will present can be seen as a certain barrier for deterministic reductions from APSP to diameter:
if a truly subcubic time deterministic reduction from APSP to diameter that doesn’t use matrix multipli-
cation exists, then combined with the simple and fast non-deterministic algorithm for diameter, one would
obtain a simple truly subcubic time non-deterministic algorithm for APSP that does not use fast matrix
multiplication, and that would be surprising.

We begin with the non-deterministic algorithm for diameter. In fact, we need to give two algorithms:
one that verifies that the diameter is at least D (for a given D), and one that verifies that the diameter is
at most D. These are the two decision versions of diameter.

Proposition 1. There exists a Õ(n+m) time non-deterministic algorithm that checks whether the diameter
of an n node m edge directed graph with nonegative weights is at least D.

Proof. The proof of the algorithm could be a vertex v such that maxu d(v, u) is at most D.
The algorithm can run Dijkstra’s algorithm from v, and compute ε(u) exactly. If ε(u) ≥ D, the algorithm

outputs 1; otherwise, it outputs 0. �

Proposition 2. There exists an O(n2) time non-deterministic algorithm that checks whether the diameter
of an n-node graph with arbitrary edge weights and no negatice cycles is at most D.

Proof. The proof of the algorithm is n weighted rooted trees, one tree Tv for each v ∈ V .
The algorithm checks the proof as follows. For each v ∈ V , it checks that

1

1. Tv is a rooted tree on the vertex set V , rooted at v;

2. For every edge (x, y) ∈ E(Tv), (x, y) ∈ E(G) and wTv (x, y) = wG(x, y);

3. and for every u ∈ V , check dTv (v, u) ≤ D.

If all these checks pass, then dTv (v, u) is an upper bound for dG(v, u). Thus, if dTv (v, u) ≤ D for every
pair v, u, then the diameter of the graph is at most D as well.

Also, if dG(v, u) ≤ D for all v, u ∈ V , then returning the set of shortest paths trees rooted at each v is a
proof that will be accepted by the algorithm. �

Since APSP itself is not a decision problem, we cannot give a non-deterministic algorithm for it in the
usual sense. Instead, we will give non-deterministic algorithms for a problem that is harder than APSP.
Recall that APSP and negative triangle are subcubically equivalent, as showed in lecture 8. We can show
that negative triangle can be reduced to the following Zero Triangle problem, and thus Zero Triangle is a
harder problem than APSP.

Definition 1.1 (Zero Triangle). Given a graph G = (V,E) with weights w : E → Z, decide whether there is
a triangle (a, b, c) (with a, b, c ∈ V, (a, b), (b, c), (c, a) ∈ E) such that w(a, b) + w(b, c) + w(c, a) = 0.

The proof that Negative Triangle can be reduced (subcubically) to Zero Triangle is very similar to a
proof you had to do on your problem set reducing Dominance Product to Equality Product.

The non-deterministic algorithm for Zero Triangle itself is easy.

Proposition 3. There exists an Õ(1) time non-deterministic algorithm for zero triangle.

The proof of Proposition 3 is just the three vertices a, b, c, and it is easy to check whether they actually
form a zero triangle or not.

However, it is trickier to show that there are no zero triangles in the graph.

Proposition 4. There exists an Õ(n(3+ω)/2) time non-deterministic algorithm that checks whether a graph
has NO zero triangles.

To prove Proposition 4, we will use the following two claims.

Claim 1. For any prime p and weighted graph G with integer weights in {−nc, . . . , nc}, there exists an
algorithm that counts the number of triangles in G of weight 0 modulo p in Õ(pnω) time.

Proof. Define a matrix A to be A(i, j) = xw(i,j) mod p, so that each entry of A is a polynomial of degree O(p).
We can compute A3 in Õ(pnω) time, since arithmetic operations of degree O(p) polynomials take Õ(p) time.
The number of triangles in G of weight 0 modulo p is exactly the sum of the coefficients in front of x0, xp, x2p

of all polynomials in the diagonal of A3. �

Claim 2. For any graph G with n vertices with edge weights in {−nc, . . . , nc} for constant c s.t. G has no
zero triangles, and for any constant 0 < µ < 1, there exists a prime p∗ = Õ(nµ) such that the number of
triangles that have weight 0 modulo p∗ is at most O(n3−µ).

Proof. Suppose G has weights in {−nc, . . . , nc}. We take a constant C large enough so that there are at least
nµ primes in the range {nµ, . . . , Cnµ log n} (this is possible by the prime number Theorem). Let L be the

weight of a triangle in G. The number of primes p ≥ nµ that divide L is at most log |L|
lognµ ≤

log(3nc)
lognµ = O(1).

Therefore, the number of pairs (p,∆) for which p ∈ {nµ, . . . , Cnµ log n} and p is a divisor of the weight of
the triangle ∆ is O(n3). Therefore, by averaging, there exists a prime p∗ in the interval that appears in
O(n3−µ) pairs (p∗,∆), and hence there is a prime p∗ that divides the weights of at most O(n3−µ) triangles.
�

Proof of Proposition 4. The proof of the algorithm is a prime p∗ = Õ(nµ) and a list of t = O(n3−µ) triangles.
The algorithm does the following.

2

1. Use Claim 1 to compute the number of triangles in G with weight 0 modulo p∗, which takes O(p∗nω) =
Õ(nµ+ω) time. Denote this number by t′.

2. Check t = t′.

3. Check that the triangles given in the proof are distinct triangles in G of weight 0 mod p∗. This steps
takes O(t) = O(n3−µ) time.

4. Check that the given triangles have nonzero weight in G, which also takes O(n3−µ) time.

If we take µ = n(3−ω)/2, the running time becomes Õ(n(3+ω)/2).
If G has no zero triangles then by Claim 2 there is a proof that will work. On the other hand, if the

proof works, then the triangles given in the proof are all the triangles in G whose weights are 0 mod p∗ and
since the proof is only accepted if the triangles are not zero triangles in G, then G must not have any zero
triangles. �

The proof for Proposition 4 is more involved than the proof for Proposition 2 and it requires matrix
multiplication. This suggests that even if we can reduce APSP to graph diameter, the reduction itself might
need to use matrix multiplication, and might be complicated. However, we don’t know whether such a
reduction is possible yet.

2 Approximate Graph diameter

The best known algorithm for finding the diameter exactly is by running an algorithm for APSP and
returning the largest distance. We hence do not know any substantially subcubic time algorithms for the
diameter. In unweighted graphs, we do not know substantially subcubic time algorithms that do not use
matrix multiplication.

When confronted with the lack of fast exact algorithms, we often consider approximation algorithms.
There are several types of approximations.

Definition 2.1. An additive c-approximation (“+c-approximation”) to a quantity D is an estimate D′ such
that D ≤ D′ ≤ D + c.

Definition 2.2. A multiplicative c-approximation (“c-approximation”) to a quantity D is an estimate D′

such that D ≤ D′ ≤ c ·D.

Definition 2.3. An (α, β) approximation (for some α ≥ 1, β ≥ 0) to D is an estimate D′ where D ≤ D′ ≤
αD + β.

Aingworth, Chekuri, Indyk, Motwani [1] studied how fast one can find good estimates to the diameter
and to APSP. They obtained an efficient (3/2, 3/2) approximation algorithm for the diameter of a graph
that does not use matrix multiplication.

Theorem 2.1 (Aingworth, Chekuri, Indyk, Motwani ’99). [1] There is an Õ(m
√
n + n2) time algorithm

that gives a (3/2, 3/2)-approximation for the diameter in unweighted graphs. Furthermore, if the diameter
is divisible by 3, it’s a 3/2-multiplicative approximation (without the extra additive term).

This algorithm is later improved by Roditty and V. Williams to Õ(m
√
n) time using randomization

[3]. The algorithm can also be derandomized using techniques from spanners research. For approximation
algorithms with a genuine multiplicative 3/2 factor guarantee, the current best running time is Õ(m3/2) or
Õ(mn2/3), by Chechik, Larkin, Roditty, Schoenebeck, Tarjan and V. Williams[2].

The algorithm is shown in Algorithm 1. We note that this algorithm uses BFS, and if we use Dijkstra’s
algorithm instead, we can make it work for weighted graphs with a slight additive loss, depending on the
largest edge weight. Here, for simplicity, we will focus on the special case of unweighted directed graphs with
diameter divisible by 3.

3

Algorithm 1: Diam-Approx(G = (V,E))

Step 1: For each v ∈ V , find the closest
√
n nodes to v; call those Tv.

Step 2: Find a set S of size O(
√
n logn) such that for every v, S ∩ Tv 6= ∅ (A “hitting set” for {Tv}v).

Step 3: For each s ∈ S, run BFS(s). Let D1 be the largest distance found from all of these BFS runs.
Step 4: Let w be the node farthest from the set S, i.e. the node maximizing mins∈S d(w, s).
Step 5: Run BFS out of w. Run BFS into x for every x ∈ Tw.
Step 6: Let D2 be the largest distance found in Step 5, i.e.
D2 = max{maxv∈Tw,u∈V d(u, v),maxu∈V d(w, u)}.

Step 7: Output E = 3
2
·max(D1, D2).

2.1 Proof of the approximation guarantee

For simplicity we only consider the case where D is divisible by 3.

Lemma 2.1. 2D/3 ≤ E = max(D1, D2) ≤ D if D is divisible by 3.

Lemma 2.1 implies the correctness of the algorithm, since 3
2 max(D1, D2) will be a 3/2-approximation

for D if it is true.
The first part of the inequality, E ≤ D follows from the fact that E is the distance between some vertices

in the graph, and D is the maximum distance. To prove the remaining part of the lemma, we show a series
of claims. In what follows, let a and b be endpoints of the diameter path, i.e. d(a, b) = D.

Claim 3. Suppose that for some s ∈ S we have that d(a, s) ≤ D/3. Then E ≥ D1 ≥ 2D/3.

Proof. By triangle inequality, d(s, b) ≥ d(a, b) − d(a, s) ≥ 2D/3. By definition of D1, D1 ≥ d(s, b) ≥ 2D/3,
and thus E ≥ 3D/3. �

Now let us assume that for all s ∈ S we have d(a, s) > D/3.

Claim 4. If for all s ∈ S we have d(a, s) > D/3, then mins∈S d(w, s) > D/3.

Proof. This claim is true by definition of w, since the distance from w to S is at least the distance from a to
S. �

Claim 5. If mins∈S d(w, s) > D/3, then all nodes at distance D/3 from w are in Tw.

Proof. By construction, S ∩ Tw 6= ∅. Let s be a node in S ∩ Tw. We know that d(w, s) > D/3. However,
since s ∈ Tw, and by the definition of Tw, all nodes strictly closer to w than s must be in Tw. In particular,
all nodes at distance exactly D/3 from w are in Tw. �

Now consider D2. If D2 ≥ 2D/3, then Lemma 2.1 is proven. Thus, let us assume that D2 < 2D/3.

Claim 6. If D2 < 2D/3 and mins∈S d(w, s) > D/3, then there is a node c ∈ Tw with d(c, b) < D/3.

Proof. Since D2 < 2D/3, we have in particular that d(w, b) < 2D/3. Consider the shortest path P from
w to b. It has length < 2D/3 since d(w, b) < 2D/3. By Claim 5, since mins∈S d(w, s) > D/3, all nodes at
distance exactly D/3 from w are in Tw, and thus the node c on P at distance exactly D/3 from w is in Tw.
Since d(w, b) < 2D/3, we have that d(c, b) = d(w, b)− d(w, c) < 2D/3−D/3 = D/3. �

Claim 7. If mins∈S d(w, s) > D/3, then D2 ≥ 2D/3.

Proof. Assume that D2 < 2D/3. Then by Claim 6, there is a node c ∈ Tw with d(c, b) < D/3. But then
by the triangle inequality, d(a, c) ≥ d(a, b) − d(c, b) > 2D/3. Since c ∈ Tw, the maximum distance into c is
considered when picking D2, and hence D2 > 2D/3. �

The proof of Lemma 2.1 follows from Claims 3, 4 and 7.
When D is not divisible by 3, the argument becomes more delicate. The lemma becomes that if D = 3s+q

for q ∈ {0, 1, 2}, then the estimate of the algorithm is at least 2s + q if q = 0 or q = 1, and it is at least
2s + 1 if q = 2. In particular, the estimate is a 3/2-approximation, unless q = 2 in which case it is a
(3/2, 3/2)-approximation.

4

2.2 Algorithm runtimes, and how to run the algorithm

Here we analyze the running time. The parts that are tricky is Step 1 and Step 2. For all other steps, it is
clear how to run them in Õ(n2 +m

√
n) time.

2.2.1 Step 1: For each v ∈ V , find the closest
√
n nodes to v

We can do this by modifying BFS to stop once
√
n nodes are visited. The runtime depends on the number

of edges scanned, which is twice the number of edges between visited nodes. Since the number of visited
nodes is ≤

√
n, the runtime is O(n). Since we must run the BFS procedure n times, Step 1 costs O(n2) time

total.

2.2.2 Step 2: Find a set S of size O(
√
n log n) such that S ∩ Tv is nonempty for all v

We can find this set by a “hitting set argument” that we will discuss in the next lecture.
Hitting set argument. Let Σ = {S1, . . . , Sn} be a set of n sets, which each set Si is a subset of

{1, . . . , n}, and |Si| = R. Then there is an algorithm that finds a set S ⊆ {1, . . . , n} that has nonempty
intersection with each Si (i.e. ∀i, |Si ∩ S| > 0), and has O(nR log n) elements. S is called the “hitting set.”

We have seen hitting set arguments multiple times before in this class. As we have discussed before,
there are two known ways to obtain a hitting set, each with some advantages and disadvantages.

Theorem 2.2 (Deterministic hitting set). There is an Õ(nR) time deterministic algorithm that given Σ,
finds a hitting set S of size O(n/R log n).

The algorithm of Theorem 2.2 is greedy, and is roughly as follows: Until Σ is empty, pick an element
that appears in the most sets in Σ, then remove the sets that element appears in.

Theorem 2.3 (Random hitting set). There is an O(n) time randomized algorithm A that finds S of expected
size O(nR log n) such that S∩Si is nonempty for all i with high probability. A does not need to know S1, . . . , Sn.

Above, and typically in algorithms research, with high probability means with probability ≥ 1− 1
nc where

c is a positive constant and n is the size of the input.
The algorithm A in Theorem 2.3 essentially picks a random set of size (c+ 1) nR lnn.
The advantage of Theorem 2.2 is that the algorithm always returns a correct answer. The disadvantage

is that it must be given the sets in Σ.
The advantage of Theorem 2.3 is that the algorithm does not need to know Σ. The disadvantage is that

the set S is only a hitting set with high probability and hence may be incorrect.
Depending on which theorem we use in Step 2, we get different guarantees by our algorithm. If we use

Theorem 2.2, we obtain an Õ(n2 +m
√
n) time (3/2, 3/2)-approximation algorithm for the diameter that is

always correct.
If we use Theorem 2.3 we can obtain an algorithm that has expected time Õ(m

√
n) that may fail to give

a (3/2, 3/2)-approximation with polynomially small probability. To do this, we just do not execute Step 1
at all. In order to obtain Tw, we just run BFS from w first and this will in particular compute Tw and we
can continue with the algorithm. (Notice that m

√
n is much faster than n2 for sparse graphs.)

References

[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast Estimation of Diameter and Shortest Paths
(Without Matrix Multiplication). SIAM J. Comput., 28(4), 1167:1181. 1999.

[2] Chechik, Shiri, et al. Better approximation algorithms for the graph diameter, Proceedings of the twenty-
fifth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Math-
ematics, 2014.

5

[3] Liam Roditty, Virginia Vassilevska Williams. Fast approximation algorithms for the diameter and radius
of sparse graphs.- STOC 2013: 515-524.

6

