
6.890 Lecture 13 Additive Approximations to Unweighted Undirected APSP
Scribe: Nike Sun, Patrick Harvey, Nicole Wein Date: October 20, 2021

1 Approximate Shortest Paths

In this lecture, we will show an additive +2-approximation for All-Pairs Shortest Paths (APSP) on undirected
unweighted graphs. That is, for each pair of vertices u, v ∈ V our algorithm will output an estimate d̃(u, v)
such that d(u, v) ≤ d̃(u, v) ≤ d(u, v) + 2.

Recall that Seidel’s algorithm gives an exact algorithm for APSP in time Õ(nω). Here, we will give a
+2-approximation for APSP in time Õ(n7/3), which is better than Õ(nω) for the current best known bound
on ω. As a warm-up, we will give an Õ(n2.5) time +2-approximation algorithm.

Theorem 1.1. There is an O(n2.5
√

log n) time algorithm that computes a +2-approximation to APSP.

Proof. The pseudocode is given in Algorithm 1, but we also describe the algorithm here.
We will use the high degree-low degree technique and the hitting set technique. Let ∆ be a parameter

that we will set later and call a vertex high-degree if its degree is at least ∆ and otherwise call it low-degree.
Compute a set S of size O(n

∆ log n) that hits the neighborhood of every high-degree vertex. Recall
that this set can be chosen randomly or we can use the greedy hitting set algorithm to choose the set

deterministically. Perform BFS from each vertex in S. This takes time O(n3

∆ log n)
Consider a pair u, v of vertices and consider a shortest path P between them. We will consider two cases:

either P contains a high-degree vertex or every vertex on P is low-degree.
For the case where P contains a high-degree vertex x, we know that S hits a neighbor sx of x. We claim

that d(u, sx)+d(sx, v) gives a +2-approximation for d(u, v) (note that we can compute this quantity because
we performed BFS from sx). First, by the triangle inequality, d(u, v) ≤ d(u, sx) + d(sx, v). Again, by the
triangle inequality, d(u, sx) ≤ d(u, x) + 1 and d(sx, v) ≤ d(x, v) + 1, so d(u, sx) + d(sx, v) ≤ d(u, v) + 2.

For the case where every vertex on P is low-degree, we let Glow be the subgraph of G that contains
the set of edges incident to at least one low-degree vertex. We perform APSP on Glow. The path P is in
Glow so this finds the exact value d(u, v). Also note that for pairs of vertices from the previous case, this
APSP overestimates their true distance. The number of edges in Glow is at most n∆ so this step takes time
O(∆n2).

The running time of the entire algorithm is O(n3

∆ log n+∆n2). Optimizing for ∆, we get that ∆ =
√
n log n

so the running time is Õ(n2.5
√

log n).

Algorithm 1: +2-Approx APSP in time Õ(n2.5)

S ← a set of size O(n
∆
logn) that hits the neighborhood of every high-degree vertex

foreach s ∈ S do
run BFS from s

foreach u, v ∈ V do
d1(u, v)← mins∈S(d(u, s) + d(s, v))

Glow ← the subgraph of G that contains the set of edges incident to at least one low-degree vertex
Run APSP in Glow and let d2(u, v) be the distances found
foreach u, v ∈ V do

return min{d1(u, v), d2(u, v)}

�

1

Theorem 1.2 ([1]). There is an Õ(n7/3) time algorithm that computes a +2-approximation to APSP.

Proof. The pseudocode is given in Algorithm 2, but we also describe the algorithm here.
The idea of this proof is that instead of just having high-degree and low-degree vertices, we will also

have medium-degree vertices. Let R and ∆ be parameters to be set later with R < ∆. We say that a vertex
is high-degree if its degree is at least ∆, medium-degree if its degree is less than ∆ and at least R, and
low-degree if its degree is less than R.

Again, we choose a set S of size O(n
∆ log n) that hits the neighborhood of each high-degree vertex.

Additionally, we choose a set T of size O(n
R log n) that hits the neighborhood of each medium-degree vertex.

Like before, we perform BFS from each vertex in S, which handles all shortest paths that contain a

high-degree vertex. This takes time O(n3

∆ log n).
Now, we define the graph Gmed to be the subgraph of G that contains the set of edges incident to at

least one low or medium-degree vertex. Instead of computing APSP on this graph like we did for Glow in
the previous algorithm, we only compute BFS in Gmed from the vertices in our sample T . The number of
edges in Gmed is at most n∆ so this step takes time Õ(n

R∆n).
Now comes the most interesting and clever part of the algorithm. For every vertex v we create a new

graph Gv. Gv is a weighted graph on the same vertex set as the original graph with the following edges:

� Include all edges incident to at least one low-degree vertex. This is at most nR edges.

� For each medium-degree vertex x, let tx ∈ T be a neighbor of x and include the edge (x, tx). Recall
that such a tx exists by choice of T . This is at most n edges.

� For each vertex t ∈ T , include a new edge from t to v whose weight is the distance in Gmed between
t and v. Recall that we calculated this distance when we computed BFS in Gmed from the vertices of
T . This is at most |T | = O(n

R log n) edges.

Then, for every vertex v we run Dijkstra’s algorithm from v in the graph Gv. Each Gv contains Õ(nR)
edges so this takes time Õ(n2R). We will prove that this algorithm is correct after calculating the running
time.

The running time of the entire algorithm is Õ(n3

∆ + n2

R ∆ +n2R). Setting the first two terms equal we get

that ∆ =
√
Rn. Setting the first and third term equal we get that R = n1/3. Thus, ∆ = n2/3. Therefore,

the total running time is Õ(n7/3).

Correctness We have already shown correctness for pairs u, v of vertices whose shortest path P contains
a high-degree vertex. So, suppose P contains no high-degree vertices. Recall that we performed Dijkstra’s
algorithm from u in Gu. First, note that distances in Gu cannot underestimate distances in the original
graph, so our algorithm will never always return an estimate that is at least d(u, v). Gu contains all edges
incident to low degree vertices so if P only contains low-degree vertices then we have found an exact shortest
uv-path.

Thus, suppose P contains at least one medium-degree vertex. Let x be the last medium-degree node on
P (i.e. the farthest from u). Recall that Gu contains an edge from x to tx. Further recall that Gu contains
a weighted edge from u to tx. The entire path P is contained in Gmed since we assumed that P has no
high-degree vertices. Also, since x is of medium degree, the edge (x, tx) is also in Gmed. Thus, by the triangle
inequality, the distance in Gmed from u to tx is at most d(u, x) + 1. So, the edge in Gu from u to tx has
weight at most d(u, x) + 1.

We can form a uv-path in Gu by taking the edge from u to tx followed by the edge from tx to x followed
by the subpath of P from x to v. Note that this entire subpath is indeed in Gu since all vertices after x on
P are of low degree. Therefore, by the triangle inequality, the distance between u and v in Gu is at most
d(u, x) + 1 + 1 + d(x, v) = d(u, v) + 2.

2

Algorithm 2: +2-Approx APSP in time Õ(n7/3)

S ← a set of size O(n
∆ log n) that hits the neighborhood of every high-degree vertex

T ← a set of size O(n
R log n) that hits the neighborhood of every medium-degree vertex

foreach s ∈ S do
run BFS from s to compute d(s, v) for all v ∈ V

foreach u, v ∈ V do
d1(u, v)← mins∈S(d(u, s) + d(s, v))

Gmed ← the subgraph of G that contains the set of edges incident to at least one low or
medium-degree vertex
foreach t ∈ T do

run BFS in Gmed from t to compute dmed(t, v) for all v ∈ V

foreach u ∈ V do
initialize a new graph Gu = (V,Eu) where Eu is initialized to ∅
add to Eu every edge incident to at least one low-degree vertex
foreach medium-degree vertex x do

tx ← an arbitrary vertex in N(x) ∩ T
add (x, tx) to Eu

foreach t ∈ T do
add to Eu the edge (u, t) with weight dmed(u, t)

run Dijkstra’s algorithm from u in Gu to obtain distances d2(u, v) for all v ∈ V

foreach u, v ∈ V do
return min{d1(u, v), d2(u, v)}

�

After seeing these two algorithms, you might wonder whether we can get a better algorithm by partitioning
the vertices into more than 3 sets based on degree. In fact, there are algorithms that do this, however they
get worse approximation factors. For example, on the other side of the time/accuracy trade-off there is
an algorithm that runs in time Õ(n2) and achieves a + log n-approximation. The Õ(n7/3) time algorithm
remains is the fastest known algorithm for getting a +2-approximation.

References

[1] Dor, D., Halperin, S., and Zwick, U. (2000). All-pairs almost shortest paths. SIAM J. Comput., 29(5),
1740-1759.

3

