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A spanner of a graph is subgraph that roughly preserves the pairwise distances of the graph. The benefit
of spanners is to compress information about distances in a graph by looking at distances within a subgraph.

Definition 0.1. An (α, β)-spanner of G = (V,E) is a subgraph H = (V,EH), EH ⊆ E, such that ∀u, v ∈ V ,

d(u, v) ≤ dH(u, v) ≤ αd(u, v) + β.

The d(u, v) ≤ dH(u, v) is always true, since H is a subgraph of G.
If β = 0, then it’s called an α-mutiplicative spanner; if α = 1, then it’s called a +β-additive spanner;

otherwise, it’s call at mixed (α, β)-spanner. In general, directed graphs don’t contain sparse spanners. An
example is shown in Figure 1, where G is a directed bipartite graph, with all its edges leaving nodes in set U
and pointing to nodes in set V. In this case, any spanner with finite (α, β) must contain all edges in G. As
a result, directed graphs don’t always have sparse spanners. Thus, we will focus on spanners of undirected
graphs in this class.
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Figure 1: An example of a directed graph which does not have a good spanner.

Most of this lecture will be about additive spanners. At the end of this lecture, we will talk a bit about
multiplicative spanners.

1 Additive Spanners

We restrict ourselves to unweighted graphs, in which an additive spanner makes sense. We will cover +2,
+4 and +6 spanners in this lecture.

Theorem 1.1. Any n-node graph G has a +2-spanner with O
(
n

3
2 log n

)
edges.

Theorem 1.2. Any n-node graph G has a +4-spanner with Õ
(
n

7
5

)
edges.
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Theorem 1.3. Any n-node graph G has a +6-spanner with Õ
(
n

4
3

)
edges.

Theorem 1.3 is optimum for spanners with constant additive errors. Due to the following theorem, any
spanner with much fewer edges must have polynomial error.

Theorem 1.4. [1] There exist graphs with n nodes such that if a spanner has O(n4/3−ε) edges for some
ε > 0, then it has an additive error at least nδ for some δ > 0.

Remark 1. It is an open problem whether we can get +4-additive spanners with Õ(n4/3) edges.

Proof of Theorem 1.1. The proof of this theorem is very similar to the +2-approximation to the APSP
problem covered in Lecture 13. Let S be a hitting set for {N(v) | deg(v) ≥

√
n}. Do a BFS search from

each s ∈ S, and add the BFS tree rooted at s to EH . For every u ∈ V with deg(u) <
√
n, add all edges

incident to u to EH . By construction, EH = O(|S| ·n) +O(n
√
n) = O

(
n

3
2 log n

)
. Consider any pair of edge

(u, v) ∈ V with shortest path P in G. We have two cases:

� P contains only low-degree nodes. Then P is entirely contained in EH , so dH(u, v) = d(u, v).

� P contains a high-degree node x. Let sx ∈ S be a node adjacent to x. Then we can approximate the
distance from u to v by appending the paths from u to sx and from sx to v, since EH contains shortest
paths from sx to every other vertex. Thus

dH(u, v) ≤ dH(u, sx) + dH(sx, v) = d(u, sx) + d(sx, v) ≤ (d(u, x) + 1) + (d(x, v) + 1) = d(u, v) + 2.

Therefore the H constructed by this algorithm is a +2-spanner, as desired. �

The +4 and +6-additive spanners both rely on the following idea.

Claim 1. Let P be a shortest path in G = (V,E). Let x ∈ V , then x has at most 3 neighbors on P .

Proof. Suppose for the sake of contradiction, x has four neighbors on P , consecutively labeled as v1, v2, v3, v4.
Since v1, v2, v3, v4 are vertices on a shortest path, the distance between v1 and v4 is at least 3. However,
since v1 and v4 are both neighbors of x, their distance is at most 2, a contradiction. �

Using Claim 1, we can show the following Corollary, which will be used in the construction of both the
+4 and +6 additive spanners.

Corollary 1.1. If a shortest path P has at least L nodes of degree at least D for some D ≥ 4, then there
exists Ω(LD) distinct neighbors of the path P .

Proof. For each node v ∈ P that has degree at least D, it has at most 3 neighbors in P by Claim 1. Thus,
each v has at least D − 3 neighbors outside of P . For each neighbor of P , it can have at most 3 neighbors
in P by Claim 1, so the number of distinct neighbors of P is at least 1

2 (D − 3)L = Ω(LD) when D ≥ 4. �

Now we are ready to show the +4-additive spanner.

Proof of Theorem 1.2. This proof actually won’t be an algorithm; instead, it is a proof for the existence of
the spanner. Let D,L be two parameters of the algorithm. We will call a vertex with degree at least D a
“high degree” vertex and a vertex with degree less than D a “low degree” vertex. For any pair of vertices
u, v, we fix one arbitrary shortest path P (u, v) between them.

Let S ⊆ V where |S| = O( nD log n) be a subset of vertices that hits the neighborhood of every high
degree vertex. By Corollary 1.1, the size of the neighborhood of every P (u, v) where where P (u, v) contains
at least L high degree nodes is Ω(DL). Thus, we can find T ⊆ V where |T | = O( n

DL log n) that hits the
neighborhood of every P (u, v) where P (u, v) contains at least L high degree nodes.

Initially, let the edge set of H be empty. The construction for a +4-spanner H from G is as follows:
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1. For all low degree v ∈ V , add all the edges incident to v to H. This contributes at most n ·D = O(nD)
edges.

2. For each s ∈ T , add the entire breadth-first-search tree rooted at s into H. Here, we add O(n|T |) =

Õ( n
2

DL ) edges.

3. For each high degree node x, let sx be one of its neighbors in S, add (x, sx) to H. We only add O(n)
edges in this part.

4. For each s ∈ S, we use N(s) to denote the set of neighbors of s. We continue adding edges to H with
Algorithm 1.

Algorithm 1: Adding final edges to H

foreach distinct s, s′ ∈ S do
Ps,s′ = {};
foreach a ∈ N(s), b ∈ N(s′) do

if some shortest path P from a→ b has at most L high degree nodes then
Ps,s′ .insert({(s, a)} ∪ P ∪ {(b, s′)});

if P = {} then
continue;

p = shortest path in Ps,s′ ;
foreach edge e ∈ p do

H.insert(e);

The path added to H corresponding to s and s′ will be referred to as the (s, s′)-linking path. There

are Õ( n
2

D2 ) pairs of s, s′. For each pair, we may add the edges from some path P connecting s and s′.
The only edges in P not already in H are those between two high degree nodes and the edges (s, a)
and (b, s′), of which there are ≤ L+ 2 in P . Thus each pair s, s′ adds O(L) edges to H. Summing over

the pairs, Õ( n
2

D2L) edges are added.

Summing over all steps, the number of edges in H is Õ(nD + n2

DL + n2

D2L). By setting D = n2/5 and

L = n1/5, we get Õ(n7/5) edges as promised. It remains to show that H is an additive 4-spanner of G.
If a pair of vertices u and v in G have a shortest path using no high degree nodes, then that path is in

H due to Step (1).
If P (u, v) contains at least L high degree vertices, then T hits a neighbor of the path P (u, v). Thus the

edges added in Step (2) include a +2-approximation for a shortest path between such u and v.
The only remaining case is uv-shortest paths hitting between 1 and L high degree nodes.

Claim 2. If P (u, v) contains between 1 and L high degree nodes, then after Step (4), dH(u, v) ≤ d(u, v) + 4.

Proof. Let x be the first and y be the last high degree nodes in P (u, v) (possibly not distinct). Recall
that sx, sy ∈ S and we added edges (x, sx), (y, sy) in Step (3). Let a and b be the neighbors of sx and sy
respectively connected by the (sx, sy)-linking path. Note that the (sx, sy)-linking path exists because there
is at least one pair of elements of N(sx) and N(sy) connected by a shortest path using ≤ L high degree
nodes, namely x and y.

Since the subpath of P (u, v) from u to x and from y to v is in H (Step (1)), we have

dH(u, v) ≤ d(u, x) + dH(x, y) + d(y, v).

Thus we need only show that dH(x, y) ≤ d(x, y) + 4.
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Recall that a and b have the shortest path between them in G of any pair of elements in N(sx) and
N(sy), excluding paths with greater than L high degree nodes. Namely, since x ∈ N(sx) and y ∈ N(sy), we
have that d(a, b) ≤ d(x, y). Plugging this in yields

dH(x, y) ≤ dH(x, sx) + dH(sx, a) + dH(a, b) + dH(b, sy) + dH(sy, y) = 1 + 1 + d(a, b) + 1 + 1 ≤ d(x, y) + 4,

completing the proof.
�

�

The construction for 6-additive spanner shares many ideas with the construction for the 4-additive span-
ner, so for simplicity in the proof we skip the proof of some claims that are already proved in the proof for
Theorem 1.2.

Proof of Theorem 1.3. Let D be a parameter of the algorithm. We will call a vertex with degree at least D
a “high degree” vertex and a vertex with degree less than D a “low degree” vertex. For any pair of vertices
u, v, we fix one arbitrary shortest path P (u, v) between them.

Let S ⊆ V where |S| = O( nD log n) be a subset of vertices that hits the neighborhood of every high
degree vertex. Fix some 0 ≤ j ≤ log n. By Corollary 1.1, the size of the neighborhood of every P (u, v)
where where P (u, v) contains at least 2j high degree nodes is Ω(D · 2j). Thus, we can find Sj ⊆ V where
|Sj | = O( n

D·2j log n) that hits the neighborhood of every P (u, v) that contains at least 2j high degree nodes.
Initially, let the edge set of H be empty. The construction for a +6-spanner H from G is as follows:

1. For all low degree v ∈ V , add all the edges incident to v to H. This contributes at most n ·D = O(nD)
edges.

2. For each high degree node x, let sx ∈ S be one arbitrary neighbor of x in S. We add (x, sx) to H. We
only add O(n) edges in this part.

3. We use N(v) to denote the neighborhood of vertex v. We continue adding edges to H with Algorithm
2 for every integer j ∈ [0, log n].

Algorithm 2: Edge-Adding(j)

foreach s ∈ S, s′ ∈ Sj do
Ps,s′ = {};
foreach a ∈ N(s), b ∈ N(s′) do

if some shortest path P from a→ b has at most 2j+1 high degree nodes then
Ps,s′ .insert({(s, a)} ∪ P ∪ {(b, s′)});

if P = {} then
continue;

p = shortest path in Ps,s′′ ;
foreach edge e ∈ p do

H.insert(e);

The path added to H corresponding to s and s′ during Edge-Adding(j) will be referred to as the j-th

(s, s′)linking path. The total number of edges we added is O(
∑logn
j=0 |S||Sj | · 2j+1). By plugging in

|S| = Õ( nD ) and |Sj | = Õ( n
D·2j ), we get

O

logn∑
j=0

|S||Sj | · 2j+1

 = Õ

logn∑
j=0

n

D
· n

D · 2j
· 2j+1

 = Õ

(
n2

D2

)
.
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Summing over the three steps, the number of edges in H is Õ(nD + n2

D2 ). By setting D = n1/3, the

number of edges in H becomes Õ(n4/3) as promised. It remains to show that H is an additive +6-spanner
of G.

If P (u, v) does not contain any high degree vertex, then the edges added in Step (1) already contain
P (u, v), and thus dH(u, v) = d(u, v).

Now suppose there are h high degree nodes on P (u, v) for some h ≥ 1. Pick j such that 2j ≤ h < 2j+1.
Let x be the first high degree vertex on P (u, v), y be the last high degree vertex on P (u, v). Since the path
from x to y contains h ≥ 2j high degree vertices, by the construction of Sj , there exists a vertex s ∈ Sj that
hits a neighbor on the shortest path from x to y. Let z ∈ P (x, y) be a neighbor of s. Recall we added an
edge between x and sx ∈ S, and an edge between y and sy ∈ S in Step (2).

Consider the following path in H from u to v. First, we take the path from u to x on P (u, v) (edges
added in Step (1)), then move from x to sx. From sx to s, we use the j-th (sx, s) linking path. We can
show that the length of the j-th (sx, s) linking path is at most d(x, z) + 2, since the path sx → x  z → s
is a valid candidate for j-th (sx, s) linking path. From s to sy, we use the j-th (sy, s) linking path, which
has length at most d(z, y) + 2. We then take the edge from sy to y, and finally, take the path from y to v
on P (u, v). All edges on the path above are added to H, and the length of the path is at most d(u, v) + 6.

Therefore, H is a +6-additive spanner.
�

2 Multiplicative Spanners

In this section, we study multiplicative spanners. For simplicity, we use α-spanner to refer to α-multiplicative
spanner in this section.

Theorem 2.1. Let k ≥ 1 be an integer, then every n-node undirected weighted graph G contains a (2k− 1)-

spanner with O
(
n1+

1
k

)
edges.

Theorem2.1 is tight if we assume the following popular conjecture known to be true for small values of k.

Conjecture 1. (Erdős girth conjecture) For integer k ≥ 1 and sufficiently large n, there exist n-node

undirected unweighted graphs of girth ≥ 2k + 2 with Ω
(
n1+

1
k

)
edges.

Claim 3. The Erdős girth conjecture implies that the bound in Theorem 2.1 is tight, i.e. there exists some

graph G on n nodes such that any (2k − 1)-spanner has Ω
(
n1+

1
k

)
edges.

Proof. Let G be an unweighted graph on n edges with girth 2k+ 2 and Ω
(
n1+

1
k

)
edges, given by the Erdős

girth conjecture. We’ll show that G has no non-trivial (2k − 1)-spanners.
Assume there exists some subgraph H ( G that is a (2k − 1)-spanner for G. Choose some edge (u, v) ∈

E − EH . By the definition of a spanner, dH(u, v) ≤ (2k − 1)d(u, v) = 2k − 1. Therefore there exists some
path P in EH connecting u, v with length at most 2k − 1. However, adding (u, v) to P then completes a
cycle in G of length at most 2k; since G has girth at least 2k + 2, this is a contradiction. �

Now we prove Theorem 2.1.

Proof of Theorem 2.1. We can generate a (2k − 1)-spanner using the Create-Spanner algorithm. We prove
the correctness of this algorithm with the following three claims.

Claim 4. H is a (2k − 1)-spanner, i.e.,∀u, v ∈ V, dH(u, v) ≤ (2k − 1)d(u, v).

Claim 5. H has girth greater than 2k.

Claim 6. Any n-node graph with girth greater than 2k has O
(
n1+

1
k

)
edges.
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Algorithm 3: Create-Spanner(G)

EH ← ∅.
foreach (u, v) ∈ E in non-decreasing weight order do

if dH(u, v) > (2k − 1)w(u, v) then
EH ← EH ∪ (u, v)

Return H.

Proof of Claim 4. Let u, v be vertices in V , and P be their shortest path in G. For each edge (x, y) in P ,
either:

� (x, y) ∈ EH

� There is some path in H between x, y of length at most (2k − 1)w(x, y). If no such path exists, then
(x, y) would have been added to EH in Create-Spanner when it was considered.

Therefore

dH(u, v) ≤
∑

(x,y)∈P

dH(x, y) ≤
∑

(x,y)∈P

(2k − 1)w(x, y) = (2k − 1)w(P ) = (2k − 1)d(u, v).

�

Proof of Claim 5. Assume H has a cycle C of length ≤ 2k for contradiction. Let (u, v) be the edge of C
with largest weight and (u, v) is the last edge in C added to EH . Thus, we must have∑

(x,y)∈C,
(x,y)6=(u,v)

w(x, y) > (2k − 1)w(u, v),

since otherwise we wouldn’t add (u, v) to H. On the other hand, each edge in the path C \ {(u, v)} has
weight at most w(u, v) and there are 2k − 1 edges on C \ {(u, v)}, so∑

(x,y)∈C,
(x,y)6=(u,v)

w(x, y) ≤ (2k − 1)w(u, v).

Thus, we have a contradiction. �

Proof of Claim 6. For the sake of contradiction, let H be any graph with girth greater than 2k and at least
10n1+

1
k edges. Modify the graph by repeatedly removing any nodes of degree ≤ n 1

k , and any edges incident
to that node, until no such nodes exist. The total number of edges removed in this way is at most n1+

1
k ,

which means that at least 9n1+
1
k edges remain (and so the graph is not empty).

The minimum degree of the resulting subgraph is greater than 4n
1
k . If we consider a BFS search from

some node v and look at all the levels up until level k, if there is no cycle of length ≤ 2k, then up until level
k all edges seen by the BFS form a tree. However, since the branching factor is more than n1/k for each of
the levels from 0 to k − 1, and so more than n nodes are seen. This is a contradiction. �

The subgraph returned by Create-Spanner is a (2k− 1)-spanner by Claim 4, and has O
(
n1+

1
k

)
edges by

Claim 5, Claim 6. This completes the proof of the theorem. �
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