
6.890 Lecture 14 Distance oracles
Scribe: Charles Celerier, Nicole Wein Date: October 28, 2021

Given a graph G, a distance oracle is a data structure that stores a summary of G so that distance queries
can be answered efficiently.

1 t-approximate distance oracles

A t-approximate distance oracle is defined by two algorithms:

� a preprocessing algorithm that takes as its input a graph G = (V,E) (possibly with nonnegative edge
weights) and returns a summary S(G) of G stored in memory.

� a query algorithm that takes as its input two vertices u, v ∈ V and returns an estimate D(u, v) such
that d(u, v) ≤ D(u, v) ≤ t · d(u, v) where d(u, v) is the distance from u to v in G. The query algorithm
does not have access to G, but only to the summary S(G) of G stored in memory.

The quality of an approximate distance oracles is determined by four things:

� the approximation factor t,

� the storage space |S(G)|,

� the preprocessing time, and

� the query time.

We would like to minimize all of these quantitites.
A first idea for a t-approximate distance oracle is to use a t-spanner graph of G. The space usage would

be small, and the quality of the distance estimates would be guaranteed, and the preprocessing time would
be small. However, in order to compute each query, one may still need to run Dijkstra’s algorithm (or BFS
for unweighted graphs) on the spanner, and this would take time at least linear in the number of edges in
the spanner. Last lecture we saw a (2k − 1)-spanner on n1+1/k edges, so this implies a distance oracle with
query time Õ(n1+1/k). However, we would like the query time to be constant.

2 A lower bound on space usage

Although the above spanner does not achieve good query time, as we will show, it does achieve optimal
space usage for any distance oracle with the same approximation factor, if we assume the widely believed
Erdős girth conjecture.

Conjecture 1 (Erdős girth conjecture). Let mk(n) be the maximum number of edges in an n-node undirected
unweighted graph of girth ≥ 2k + 2. Then mk(n) = Ω(n1+1/k).

As a sidenote, recall that last lecture we showed that if an n-node graph has at most 2n1+1/k edges then
it has girth at most 2k. The Erdős girth conjecture shows that this statement is asymptotically optimal in
the sense that the conjecture says that there exist graphs on Cn1+1/k edges for some constant C < 2 with
girth at least 2k + 2.

Now we will prove that this above spanner achieves optimal space usage under this conjecture:

Theorem 2.1. If D is a t-distance oracle for t ≤ 2k, then for all n-node graphs G, the storage space |S(G)|
of D on G must be at least mk(n) bits.

1

The consequence of this theorem is that the Erdős girth conjecture implies that the required amount of
storage is at least Ω(n1+1/k). The amount of storage our spanner uses is O(n1+1/k log n) where the log factor
is simply for writing down the name of each edge. Intuitively, this theorem suggests that graphs with low
girth cannot be “compressed” very well.
Proof of Theorem 2.1. Let G be a girth ≥ 2k+ 2 graph on mk(n) edges and n nodes. Note that this implies
G has 2mk(n) subgraphs. The main idea of this proof is to show that for any pair H1, H2 of subgraphs of G,
any distance oracle must store different information for each one, that is, S(H1) 6= S(H2). This provides a
lower bound on the storage space.

Let H1 and H2 be subgraphs of G so that H1 6= H2. Then, without loss of generality, let there be an edge
(u, v) in H1 that is not in H2. Let D be a t-approximate distance oracle for t < 2k + 1. We will consider
what D stores in memory for all 2mk(n) subgraphs of G.

Let DH1(u, v) and DH2(u, v) be the answer that D gives for dH1(u, v) and dH2(u, v), respectively. Since
dH1(u, v) = 1, we know that

1 ≤ DH1
(u, v) ≤ t. (1)

Furthermore, since G has no cycles of length at most 2k + 1, removing the edge (u, v) from G causes the
distance between u and v to become at least 2k + 1. Thus, dH2

(u, v) ≥ 2k + 1. Therefore, we have

DH2(u, v) ≥ dH2(u, v) ≥ 2k + 1 > t. (2)

Combining euqations 1 and 2, we have that DH1(u, v) < DH2(u, v). Since the distance oracle uses the same
query algorithm for both H1 and H2, and the only input to the query algorithm is the summary S of the
input graph, this means that S(H1) 6= S(H2).

Thus, for all 2mk(n) subgraphs of G, the information that D stores must be distinct. Then since 2mk(n)

different bit strings cannot be represented by less than mk(n) bits, the storage space that D uses must be
at least mk(n) bits. �

3 A (2k−1)-approximate distance oracle with constant query time

For the rest of the lecture we will show that there exist distance oracles with constant query time that still
have optimal space usage. In particular, we will prove the following theorem.

Theorem 3.1. For all integers k ≥ 2, for any n-node undirected weighted graph, there exists a (2k − 1)-
approximate distance oracle using Õ(n1+1/k) space, Õ(mn1/k) time for preprocessing, and can answer queries
in O(1) time.

It turns out that good distance oracles do not exist for directed graphs. It is a good exercise to think
about why.

3.1 Warm-up: A 3-approximate distance oracle

As a warm-up to proving theorem 3.1, we will consider the k = 2 case, i.e. a 3-approximate distance oracle
with Õ(n3/2) space usage.

Construction

� For each v ∈ V , let N√n(v) be the set of the closest
√
n nodes to v.

� Let A be a random subset of V of size O(
√
n log n) so that by the hitting set results from previous

lectures, we have that A hits N√n(v) for all v with high probability. (We can also create A determin-
istically, given all the N√n(v).)

� For each vertex v, let p(v) be the closest node to v that is in A.

2

� Let A(v) to be the set of nodes that are closer to v than A is to v. That is, A(v) = {x ∈ V | d(v, x) <
d(v, p(v))}.

� Let the ball (or bunch) B(v) of v be A ∪A(v) for all v.

For all v ∈ V and for all x ∈ B(v) we store d(v, x) in a hash table. We also store for each v, p(v).

Query algorithm If v ∈ B(u), then the distance oracle returns d(u, v) from memory by accessing the
hash table of v. Otherwise, v 6∈ B(u), so the distance oracle accesses p(u) and returns d(u, p(u)) +d(p(u), v).
This is possible in constant time since by definition p(u) ∈ A ⊂ B(x) for all x ∈ V .

Storage space We will show that we only store n3/2 distances. To do this, we will show that each ball is
of size at most Õ(n1/2) with high probability.

Recall that B(v) = A ∪ A(v). Since |A| = O(
√
n log n), it suffices to show |A(v)| ≤

√
n. Because A hits

the closest
√
n nodes to v with high probability, we necessarily have that some node a ∈ A is also in N√n(v).

Thus, all nodes closer to v than a are also in N√n(v). By the definition of A(v), this implies A(v) ⊂ N√n(v).
Therefore, |A(v)| ≤ |N√n(v)| =

√
n.

Approximation factor We are only left with proving that the query responses satisfy

d(u, v) ≤ D(u, v) ≤ 3d(u, v). (3)

First we note that if v ∈ B(u), our query algorithm returns the exact distance. Thus, suppose v 6∈ B(u). In
this case our query algorithm returns d(u, p(u))+d(p(u), v). By the triangle inequality, d(u, v) ≤ d(u, p(u))+
d(p(u), v), so the first inequality in (3) holds.

Now we prove the second inequality. Since v 6∈ B(u) we know that v 6∈ A(u). Thus, by definition
d(u, v) ≥ d(u, p(u)). Applying this inequality along with the triangle inequality, we have:

D(u, v) = d(u, p(u)) + d(p(u), v)

≤ d(u, p(u)) + (d(p(u), u) + d(u, v))

= 2d(u, p(u)) + d(u, v)

≤ 3d(u, v).

4 Proof of Theorem 3.1

We will ignore preprocessing time for this lecture; you will prove it on the homework.

Construction Instead of taking a single sample A of nodes, we take many nested samples.

Let A0 = V and Ak = ∅. For 1 ≤ i ≤ k− 1, choose a random Ai ⊆ Ai−1 of size |Ai−1|
n1/k log n ≤ Õ(n1−i/k).

Let pi(v) be the closest node to v in Ai, with the caveat that if d(v, pi(v)) = d(v, pi+1(v)) then we let
pi(v) = pi+1(v). Now we define the following sets for all v

Ai(v) = {x ∈ Ai | d(v, x) < d(v, pi+1(v))}

and

B(v) = Ak−1 ∪

(
k−2⋃
i=0

Ai(v)

)
.

Then ∀ v ∈ V , ∀ x ∈ B(v), store d(v, x) in a hash table for v. Also store for each v ∈ V and each i ≤ k − 1,
pi(v).

3

Query algorithm

Algorithm 1: Query(u, v)
w ←= v
for i = 0 to k − 1 do

if w ∈ B(u) then
return d(u,w) + d(w, v);

else // w 6∈ B(u)
w ← pi+1(u);
swap u and v;

This algorithm looks strange at first glance. Below we will discuss the ideas behind what is happening
here.

Storage space We will show that we only store n1+1/k distances. To do this, we will show that each ball
is of size at most Õ(n1/k) with high probability.

By definition, |A0| = n, |A1| = Θ(n1−1/k log n), and more generally, |Ai| ≤ O(n1−i/k logi n), so |Ak−1| ≤
Õ(n1−(k−1)/k) = Õ(n1/k).

It remains to show that for all i, |Ai(v)| ≤ Õ(n1/k). Let Ti,v be the closest n1/k nodes of Ai to v. By

construction, Ai+1 ⊆ Ai is random and has size O(|Ai|
n1/k log n). This implies, again by the hitting set results

discussed before, that with high probability for all v, Ai+1 hits Ti,v (i.e. there is a node in Ai+1 that is also
in Ti,v). By the definition of Ai(v), similar to our proof for the k = 2 case, this implies Ai(v) ⊆ Ti,v. We
can then conclude that |Ai(v)| ≤ |Ti,v| = n1/k.

Query time First notice that in iteration i of the for loop w = pi(v), although u and v swap at each
iteration so w alternates between pi of the original v and pi of the original u. Thus, we return d(u, pi(v)) +
d(pi(v), v) (where possibly u and v have swapped from their original identities).

To show that the query algorithm runs in constant time, we need to show that the distance oracle has
stored the distances d(u, pi(v)) and d(pi(v), v). That is, we will show that

Claim 1. For all i, u, pi(u) ∈ B(u).

Proof. By induction. Observe that pk−1(u) ∈ Ak−1 ⊆ B(u). Assume pi+1(u) ∈ B(u). If pi(u) = pi+1(u), we
are done. Otherwise, d(pi(u), u) < d(u, pi+1(u)) so pi(u) ∈ Ai(u) ⊆ B(u). �

Approximation factor Note that by the triangle inequality, we have

d(u, v) ≤ d(u,w) + d(w, v) = D(u, v)

for all i. Hence any distance estimate returned will always be at least the real distance.
We will prove correctness by induction via Lemma 4.1 below. The following few paragraphs before the

lemma statement describe the analysis for the first few levels. They are not strictly necessary for the proof,
but may provide some idea of what is going on.

If v ∈ B(u) the algorithm returns the exact distance. So assume otherwise. Then, v 6∈ A0(u), so
d(u, v) ≥ d(u, p1(u)).

Now, the algorithm asks if p1(u) ∈ B(v). If so, the algorithm returns D(u, v) = d(v, p1(u)) + d(p1(u), u).
Applying the triangle inequality to the triangle composed of u, v, and p1(u), we have that since d(u, v) ≥
d(u, p1(u)), we have d(v, p1(u)) ≤ 2d(u, v). Thus, D(u, v) ≤ 3d(u, v).

On the other hand, if p1(u) 6∈ B(v), then p1(u) 6∈ A1(v) so d(v, p1(u)) ≥ d(v, p2(v)). Since d(v, p1(u)) ≤
2d(u, v), we have that d(v, p2(v)) ≤ 2d(u, v). Now, the algorithm asks if p2(u) ∈ B(v). If so, the algorithm
returns D(u, v) = d(u, p2(v)) + d(p2(v), v) ≤ d(u, v) + 2d(v, p2(v)). Now, we have that since d(v, p2(v)) ≤
2d(u, v), we have that D(u, v) ≤ 5d(u, v).

Now we give our lemma that gives us an inductive proof of the approximation quality.

4

Lemma 4.1. If in iteration i, for w = pi−1(v), we have d(w, v) ≤ (i− 1) · d(u, v), then:

� d(u,w) + d(w, v) ≤ (2i− 1) · d(u, v)

� if w /∈ B(u), then d(u, pi(u)) ≤ i · d(u, v)

Proof of Lemma 4.1. Note that the initial condition is trivially true when i = 1 as w = v and d(w, v) = 0.
Suppose d(w, v) ≤ (i− 1) · d(u, v).

d(u,w) + d(w, v) ≤ d(u, v) + d(v, w) + d(v, w)

≤ d(u, v) + 2(i− 1) · d(u, v)

= (2i− 1) · d(u, v)

Furthermore, assume that w /∈ B(u). Note that w = pi−1(v) ∈ Ai−1 and by definition Bi−1(u) = {x ∈
Ai−1|d(u, x) < d(u, pi(u))} ⊆ B(u). Hence since w /∈ Bi−1(u),

d(u, pi(u)) ≤ d(u,w)

≤ d(u, v) + d(v, w)

≤ d(u, v) + (i− 1) · d(u, v)

≤ i · d(u, v)

�
Lastly, we note that the algorithm will return an estimate D(u, v) = d(u,w) + d(w, v) in some iteration.

To see this, notice that pk−1(u), pk−1(v) ∈ Ak−1 ⊂ B(u)∩B(v). Hence if no value was returned by iteration
k, in iteration k we’ll have w = pk−1(v) and w ∈ B(u).

Since the worst possible return is in the kth iteration, we get the our desired approximation factor by
induction via Lemma 4.1.

5

