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1 Matchings in graphs

This week we will be talking about finding matchings in graphs: a set of edges that do not share endpoints.

Definition 1.1 (Maximum Matching). Given an undirected graph G = (V,E), find a subset of edges M ⊆ E
of maximum size such that every pair of edges e, e′ ∈M do not share endpoints e ∩ e′ = ∅.

Definition 1.2 (Perfect Matching). Given an undirected graph G = (V,E) where |V | = n is even, find a
subset of edges M ⊆ E of size n/2 such that every pair of edges e, e′ ∈M do not share endpoints e∩ e′ = ∅.
That is, every node must be covered by the matching M .

Obviously, any algorithm for Maximum Matching gives an algorithm for Perfect Matching. First, we will
show that these problems are roughly equivalent. In particular we will prove the following claim:

Claim. If one can solve Perfect Matching in T (n) time, then one can solve Maximum Matching in time
Õ(T (2n)).

Proof. We will binary search for the maximum k for which there is a matching M with |M | ≥ k. For our
current value of k, to check whether such M exists, we can add a clique on n− 2k nodes to the graph G and
connect it to the original graph with all possible edges. (An independent set instead of a clique also works.)
We will now show that the new graph H has perfect matching if and only if G has matching with k edges.

Suppose G has a matching of size k. Then we can create a perfect matching in H by matching all of the
unmatched vertices in G to vertices in the clique.

Suppose H has a matching a perfect matching. At most n − 2k vertices in the clique are matched to a
vertex in G. Thus, at least 2k vertices in G are matched to each other. This gives a matching of size k in G.

The size of H is at most 2n so performing a binary search for k on H yields running time Õ(T (2n)). �

We will focus on Perfect Matching and give algebraic algorithms for it. Because of the above reduction,
this will also imply algorithms for Maximum Matching.

First we will give an Õ(nω) time algorithm that detects whether a graph has a pefect matching. Then
we will give an Õ(nω+1) time algorithm for finding a perfect matching if one exists. In the next lecture, we
will improve this to Õ(nω).

The idea of these algorithms will be to define some matrix such that the determinant of this matrix is
non-zero if and only if the graph has a perfect matching.

1.1 The Tutte Matrix

The Tutte matrix is a symbolic matrix i.e. each entry is a variable.

Definition 1.3. For a graph G = (V,E) with |V | = n, the following n× n matrix T is the Tutte matrix of
G:

T [i, j] =


0 if i = j or if (i, j) /∈ E
xi,j if (i, j) ∈ E and i < j

−xi,j if (i, j) ∈ E and i > j

1



Example 1. Consider the path on 2 edges where the vertices are labeled 1, 2, and 3 in order along the path.
The Tutte matrix of this graph is:  0 x1,2 0

−x1,2 0 x2,3
0 −x2,3 0


The Tutte matrix is a skew symmetric matrix i.e. T = −T t, that is, it is symmetric about the diagonal

except the entries below the diagonal are negated.
The following theorem is at the core of all the algorithms for Perfect Matching that we will discuss.

Theorem 1.1 (Tutte). For any graph G = (V,E), the determinant of the Tutte matrix T is non-zero if and
only if G contains a perfect matching.

det(T ) 6= 0 ⇐⇒ Gcontains a perfect matching.

Note that the determinant of a symbolic matrix is a polynomial and we say that a polynomial is zero if
it is identically the zero-polynomial, and non-zero otherwise. That is, it is possible for a polynomial to be
non-zero but still have a setting of the variables that makes it evaluate to zero.

Before proving the theorem we will recall the definition of the determinant of a matrix.

Definition 1.4. The determinant det(T ) of a matrix T is defined as

det(T ) =
∑
σ∈Sn

(−1)sign(σ) ·
n∏
i=1

T (i, σ(i)) (1)

where Sn is the set of permutations of [n] and sign(σ) is the parity of inversions for σ, i.e. the number of
pairs x < y for which σ(x) > σ(y). Another interpretation of sign(σ) is the parity of the number of even
cycles in a product representing σ.

Example 2. Consider the permutation σ = (1, 2)(5, 7, 3)(4, 6). It has two even cycles ((1, 2) and (4, 6)) so
sign(σ) = 0.

Proof of Theorem 1.1.

Claim. If G has a perfect matching then det(T ) 6= 0.

Proof. Say {(i1, i2), (i3, i4), . . . , (in−1, in)} is a perfect matching. Suppose the vertices are ordered so that
i1 < i2 < · · · < in. Consider the permutation σM = (i1, i2)(i3, i4) . . . (in−1, in). Now consider the term in
the determinant that corresponds to σM . We will show that this term cannot cancel out, which means that
the determinant is non-zero.

n∏
i=1

T (i, σM (i)) = T (xi1,i2) · T (xi2,i1) · T (xi3,i4) · T (xi4,i3) · · · · · T (xin−1,in) · T (xin,in−1)

= xi1,i2(−xi1,i2)xi3,i4(−xi3,i4) . . . (xin−1,in)(−xin−1,in)

= (−1)n/2(xi1,i2)2 . . . (xin−1,in)2

If you think about it, you can convince yourself that no other permutation yields a term that is exactly
the product of the square of every variable, so this term can’t cancel out. It follows that det(T ) 6= 0. �

Claim. If det(T ) 6= 0 then G has a perfect matching.

Proof. First we will show that all terms of det(T ) corresponding to permutations with at least one odd cycle
cancel out.

Let P be the set of permutations in Sn that contain at least 1 odd cycle. For each σ ∈ P , let Cσ be the
odd cycle in σ with minimum element, and let σ′ be σ with Cσ reversed.
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For example, if σ = (1, 5)(2, 3, 4)(6, 7, 8), then σ′ = (1, 5)(4, 3, 2)(6, 7, 8).
Note that this choice of pairing of permutations (σ, σ′) is a perfect bijection of the permutations with

odd cycles.
Now we will show that the term in the determinant corresponding to σ cancels with the term correspond-

ing to σ′. Since σ and σ′ have the same number of even cycles, sign(σ) = sign(σ′). Consider the sum of the
terms corresponding to σ and σ′:

n∏
i=1

T (i, σ(i)) +

n∏
i=1

T (i, σ′(i))

Since σ and σ′ only differ in Cσ, this is equal to∏
i6∈Cσ

T (i, σ(i)) ·
( ∏
i∈Cσ

T (i, σ(i) +
∏
i∈Cσ

T (i, σ′(i)))
)
. (2)

Say that Cσ = (i1i2 . . . it) for some odd t. Then
∏
i∈Cσ

T (i, σ(i) =
∏t
j=1 T (ij , ij+1) Since σ′ reverses Cσ,∏

i∈Cσ
T (i, σ′(i) =

∏t
j=1 T (ij+1, ij) = (−1)t

∏t
j=1 T (ij , ij+1) since T is skew-symmetric.

Thus ( ∏
i∈Cσ

T (i, σ(i) +
∏
i∈Cσ

T (i, σ′(i)))
)

= 0.

So the above expression (2) is the zero-polynomial. Thus, we have shown that all terms of det(T )
corresponding to permutations with at least one odd cycle cancel out.

Now we are left with permutations with only even cycles. Since det(T ) 6= 0, there must be at least
one permutation σ with only even cycles whose corresponding term in det(T ) is non-zero. Consider any
cycle C = (i1, . . . , i2k) in σ. The term in det(T ) that corresponds to C is xi1,i2 · xi2,i3 · · · · · xi2k,i1 .
Since this term is non-zero, the edges (i1, i2), (i2, i3), . . . , (i2k, i1) are all in G. Taking every other edge
(i1, i2), (i3, i4), . . . , (i2k−1, i2k) forms a matching. Taking the union of these matchings over all cycles in σ
yields a perfect matching.

�

�

Now we will show how to use Theorem 1.1 to detect whether G has a perfect matching. We would like
to determine whether det(T ) is non-zero, however because det(T ) has n2 variables and degree n, it can be
computationally expensive to do this. Instead, we will use a useful tool, the Schwartz-Zippel lemma, which
allows us to evaluate det(T ) on a set of random values to determine, with high probability, whether det(T )
is non-zero.

Lemma 1.1 (Schwartz-Zippel). Let P be a non-zero polynomial over {x1, . . . , xN} of degree d over a field
F. If we pick values v1, . . . , vN randomly from a finite set S ⊆ F and let P ({vi}) be the value obtained by
setting x1 = v1, . . . , xN = vN in P , then P ({vi}) 6= 0 with probability at least 1− d

|S| .

For det(T ) we have deg(det(T )) = n and therefore it is enough to pick |S| = n2 to get probability 1−1/n.
We can repeat the algorithm to further boost the probability.

However, if we work over Z the entries of this determinant could be very large and we only get a running
time of O(nω+1). Instead, pick a prime p = Θ̃(n2) and work over Zp, letting S = Zp. It is ok to work over
Zp for the following reason. If G has a perfect matching M then the term of the polynomial det(T ) mod p
corresponding to the permutation representing M is non-zero and therefore det(T ) mod p is a non-zero
polynomial.

To conclude, the algorithm is as follows. Construct the Tutte matrix T of G. Pick values vij for each xij
uniformly at random from {1, . . . , p} and let T ({vij}) be the matrix obtained from T by these substitutions.
Then compute det(T ({vij})) over Fp. Since each entry of T ({vij}) has O(log n) bits and we can compute
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determinants using O(nω) operations, computing det(T ({vij})) takes time Õ(nω). If det(T ({vij})) 6= 0 we
return that G has a perfect matching and if over all repetitions of this algorithm det(T ({vij})) is always 0,
then return that G does not have a perfect matching.

2 Finding the matching

The above algorithm tells us in Õ(nω) time whether the graph contains a perfect matching. In the rest of
this lecture (and the next one) we will discuss algorithms that can find a perfect matching.

There is a simple Õ(nω+2) solution: for every edge (x, y) ∈ E, remove it and its endpoints from the
graph and check if there is still a perfect matching in Õ(nω) time. If the graph does not contain a perfect
matching, put the vertices x and y back in the graph, together with all their incident edges except for (x, y)
and move on to the next edge. Otherwise include the edge (x, y) in the matching and remove the vertices x
and y from the graph.

Today we will see an Õ(nω+1) algorithm and next week we’ll see an Õ(nω) one.

2.1 The Rabin-Vazirani Algorithm

We will prove this thorem.

Theorem 2.1 (Rabin-Vazirani). A perfect matching can be found in Õ(nω+1) time.

For any n× n matrix A and subsets X,Y ⊆ [n], let A[X,Y ] denote A restricted to the rows indexed by
X and columns indexed by Y . Let AX,Y denote the matrix obtained from T by removing the rows indexed
by X and columns indexed by Y .

We will use a different definition of the determinant than above (this is probably the definition you saw
when you first saw determinants):

det(T ) =

n∑
j=1

(−1)1+j · T [1, j] · det(T{1}{j}),

Suppose G contains a perfect matching. Then det(T ) 6= 0 (by Theorem 1.1), so there exists j ∈ [n] such
that T [1, j] and det(T{1}{j}) are both non-zero. T [1, j] 6= 0 means that (1, j) ∈ E. For det(T{1}{j}), we will
prove the following claim (we will prove it at the end).

Claim 1. If det(T{1}{j}) 6= 0 then det(T{1,j}{1,j}) 6= 0.

Note that T{1,j}{1,j} is the Tutte matrix for the graph G \ {1, j}. Thus, by Claim 1, the graph G \ {1, j}
has a perfect matching. Combining this with the fact that (1, j) ∈ E, this means that G has a perfect
matching that contains the edge (1, j).

Since det(T ) 6= 0, T is invertible. It will be useful to study T−1. Recall the adjoin formula:

T−1(i, j) = (−1)i+j ·
det(T{i},{j})

det(T )
.

Therefore, T−1(1, j) 6= 0 if and only if det(T{1},{j}) 6= 0. This suggests the following algorithm, which
iteratively peels off edges from the perfect matching:
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Algorithm 1: Perf-matching(G)

T ← T ({vij}): a random substitution of the Tutte matrix modulo a large enough prime;
if det(T ) = 0 then

return no perfect matching;

Set M = ∅;
while |M | < n/2 do

Compute N = T−1;
Find j such that N(1, j) 6= 0 and (1, j) ∈ E;
M ←M ∪ {(1, j)};
T ← T{1,j},{1,j} i.e. remove rows 1 and j and columns 1 and j from T ;

return M ;

We claim that the running time of this algorithm is O(nω+1). This is because computing T−1 takes
Õ(nω) time, finding j such that N(1, j) 6= 0 and (1, j) ∈ E takes time Õ(n), and we do each of these O(n)
times.

Finally, we will prove Claim 1. The following properties of the Tutte matrix will be useful.

Proposition 1. Let A be an n× n skew symmetric matrix, then:

1. A−1 is skew symmetric.

2. If n is odd, then det(A) = 0.

3. (Frobenius) Let Y ⊆ [n] s.t. |Y | = rank(A) and the column rank of A[[n], Y ] is rank(A), then
det(A[Y, Y ]) 6= 0.

Property 1 is straightforward. Property 2 is straightforward for the matrices that we care about since a
graph with an odd number of vertices cannot have a perfect matching, but it is also true in general. We will
use property 3 without proof.

Proof of Claim 1. Assume without loss of generality that j = 2. By property 2 we know that det(T{1},{1}) =
0, so the rank of T{1},{1} is at most n − 2. By our assumption, det(T{1},{2}) 6= 0 so det(T{1},{2}) has rank
n− 1. Therefore the column rank of T{1},{1,2} is n− 2 and the rank of T{1},{1} is exactly n− 2. T{1},{1} is
skew symmetric, so it follows from the Frobenius property that for Y = {3, . . . , n}, det(T{1},{1}[Y, Y ]) 6= 0.
By definition, T{1},{1}[Y, Y ] = T{1,2},{1,2}. This completes the proof. �
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